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Species Preservation and Biodiversity Value: A Real
Options Approach*

Ilhem Kassar' and Pierre Lasserre?

Résumé / Abstract

Nous étudions la biodiversité dans un cadre d'options reelles ou les ressources sont substituables.
Comment optimiser les décisions de conservation quand toute perte de biodiversité est irréversible et les
valeurs futures incertaines? Nous montrons que la substituabilité, normalement considérée comme
réduisant la valeur d'une espéce, est en fait source de valeur. La valeur marginale est décroissante dans le
nombre d'espéces mais croissante et convexe dans la valeur de l'espéce marginale. Pour un modéle
homogéne a deux espéces, nous montrons également que la volatilité est un facteur d'augmentation de la
valeur de la biodiversité, tandis que la corrélation réduit tant la valeur totale que la valeur marginale des
espéces. Ce rble de la corrélation entre valeur d'une espéce et valeur des autres espéces rappelle celui du
Beta des actifs financiers. De méme qu'un actif au Beta négatif tire de la valeur du fait qu'il permet de
s'assurer contre les fluctuations du marché, une espéce dont la valeur tend a évoluer en sens inverse de
celle de I'espece en exploitation vaut plus du fait qu'elle a plus de chances de se substituer a cette derniere
si celle-ci perd de la valeur.

We evaluate biodiversity in a real options framework, when the resources in use are substitutable. We
examine optimal conservation decisions given that a biodiversity loss is irreversible and that future use
values are uncertain. While species substitutability is generally believed to reduce the value of diversity,
we show that the flexibility associated with substitutability is a source of value. Marginal species value is
decreasing in the number of species, but rising and convex in the value of the marginal species. As we
show in the two-species homogenous model, increased volatility raises biodiversity value, and a positive
correlation between species values both reduces the value of the pool of species and the value of
biodiversity. The role played by the correlation between the value of a species and the value of other
species, is reminiscent of the Beta of a financial asset. Just like an asset with a negative Beta derives
additional value by providing insurance against fluctuations in the market portfolio, a species whose
value tends to move in the opposite direction as the species in use derives additional value from its higher
probability to be available for substitution if the value of the species in use diminishes.

Mots clés : Options réelles; valeur d'option; portefeuille biologique; biodiversité;
substituabilité; espéces; actifs; valeur marginale.

Keywords: Real options; Option value; Biodiversity; Biological portfolio;
Substitutability; Species; Assets; Marginal value.
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1 Introduction

Biodiversity is the total variety of life on earth. Biological diversity may also reflect the
range of species at a site, the size of the gene pool, or the number of ecosystems on the
planet. Extinction is a natural phenomenon that is part of the evolutionary cycle of
species. However, by the extension and development of human activity, man’s actions
have become a cause of natural resources depletion and environment deterioration. Con-
sequently, there is considerable interest in analyzing and assessing the value of biological
diversity. In this paper we improve on previous contributions in two ways. First we
apply for the first time real options techniques to diversity and marginal diversity, that
is to situations where several species interplay, rather than one species only. Second
we show that, and explain why, species substitutability may be a source of value for
biodiversity, contrary to a widespread belief.

The concept of Total Fconomic Value, as developed in the literature and adopted
by the United Nations (Moran and Bann, 2000), makes a distinction between direct
use values (production and consumption), indirect use values (ecosystems stability and
survival), existence value (intrinsic value of nature), and option values (potential future
uses). Actually any of the first three forms of value may include unknown future com-
ponents and qualify as option value, the main ingredient to the notion of option value
being the irreversibility of a change.

The main focus of the literature on biodiversity valuation is to establish an economic
basis for preservation by pointing out to its benefits. Many difficulties arise. Interde-
pendencies between species and their ecological functions within an ecosystem are not
well understood (Norton 1988). FExistence values are inherent to people’s preferences
and hence to their willingness to pay (Moran and Bann 2000). With regard to potential
use values, option valuation requires the identification of species and their possible uses
as well as the assessment of the likelihood of future use discoveries.

Weitzman (1993) shows how diversity theory can be used operationally in the analysis

of conservation policies. Using the example of cranes, he defines diversity as a measure



of genetic differences (distances) between species. The value of marginal diversity is
then the value of improving survival probabilities for the different species. Our point of
view is related except that the focus is on the survival of the good or service provided
by the species rather than the survival of the species itself.

Indeed, as Swanson (1994), we view biological resources as part of the asset portfolio
of human society. The decline of a species results from disinvestment, by overexploita-
tion, resource mining, or biodiversity depletion. The real-options approach to biodiver-
sity investments is anterior to this portfolio view; Fisher and Hanemann (1986) proved
the existence of a premium from conserving a species or a forest for future use, as long
as the future value is uncertain and current exploitation or conversion is irreversible.
Regardless of risk preferences there is a flexibility premium in delaying any project that
converts a natural environment irreversibly. In a similar real-options context, Wesseler
(1999) finds an economic justification to the Furopean Union decision of postponing
the release of transgenic crops, as the project has uncertain future direct benefits and
uncertain and irreversible costs in terms of biodiversity loss.

Theses approaches to policy or decision making require the quantification of biodiver-
sity value. There is an extensive literature on direct use value, often focusing on research
for the development of new marketable products, pharmaceutical products in particular.
These studies point to the economic relevance of use value and, hence, of biodiversity.
However, as Fromm (2000) shows, the range of valuations and methodologies is quite
wide.!' An important question is substitutability: if a species can be substituted for, it
is not unique and it seems natural that its value should be lower than if it was unique.

Simpson et al (1996), and Craft and Simpson (2001), consider substitution possibil-
ities amongst species in a bioprospecting model. A species value depends not only on
the probability that it eventually yields a successful commercial product, but also on the
likelihood that other species can, or cannot, lead to the development of this product.

The value of the marginal species decreases with the number of species and increases

Fromm (2000) reports that species values are relatively low when they are based on prospection

costs and higher when based on market or social values of eventual products.



with the probability of success. A similar point is made by Fromm (2000) who argues
that considering the production value of species reduces the set of species functions to
those related to particular uses, thus reducing the value of marginal species. All this
results in weak incentives for conservation. Rausser and Small (2000) introduced the
concept of information rents in bioprospecting. (Given appropriate institutions these
rents protect biodiversity. However, here again, the magnitude of the rents depends on
the degree of differentiation or substitutability between species.

One major concern of this paper is to check whether production substitutability
necessarily reduces grounds for conservation or whether, on the contrary, this might not
be a source of value. We consider a pool of species characterized by their ability to
produce a specific gene, or a particular principle of interest. All species within that
pool are perfectly substitutable in that respect and can contribute to the production of
a particular good, a medication for example, or a particular service. Under certainty,
since the species are perfect substitutes, only one species, the most convenient one, is
needed at any time; all other species in the pool are left unused. This is the situation
under which the above literature claims that diversity in the pool is valueless.? The
same value is produced if only one species exist as if many do. If conservation is costly,
all species will be allowed to disappear except for the most convenient one. Under risk
of extinction the conclusion may be diluted somewhat, but not altered in any significant
way; close substitutes, often sensitive to similar risks, are not good as insurance policies.

Under uncertainty about the relative abilities of the species in the pool to produce
the good or service of interest in the future, the situation is quite different. The species
best able to produce the good or service may change over time. If, furthermore, diversity
losses are irreversible, then there is a justification for keeping an otherwise useless species
alive because it may become the species of choice in the future, despite the fact that

it is currently dominated by some other species. In such circumstances, a species that

’For a dissenting voice, see Dasgupta (2000) , who points out that “... to invoke the idea of sub-
stitutability among natural resources in order to play down the use value of biodiversity, as people

frequently do (e.g., Simon 1981, 1994), is a wrong intellectual move.”



would have no use value if it was not a substitute for a valuable species becomes valuable
precisely because it is substitutable: our result is not an attenuation of the conventional
wisdom on the impact of substitutability on the value of biodiversity; it goes in the
opposite direction.

Uncertainty is probably the main issue in valuing biodiversity. In particular, scien-
tific knowledge on relationships and interdependencies among species is in continuous
evolution, and future needs or tastes are largely unknown. The model presented in
this paper does not claim to be realist, much less to be complete. However there is no
doubt that the type of value (use value) and the type of uncertainty (about the relative
use values of species) that we introduce are present in most situations involving biodi-
versity evaluation and decisions. There are clearly other aspects to the evaluation of
biodiversity, but the point that we are making is necessarily one of them.

Option values in environmental economics have a history that dates back to Henry
(1974), and Arrow and Fisher (1974). Although it has long been clear that losing a
species implies losing an option, the innovation in this paper is that we are characterizing
an option model involving a relationship between species, rather than a single species.
While the model that we are able to solve analytically is restricted to two species and
involves special assumptions, its solution is instructive both from an economic and from
a methodological point of view. In fact the solution to the more general version of the
model that we solve numerically retains several features of the analytical solution. In
particular the decision rule whether to conserve a species or allow it to disappear does
not involve a critical value of the species but a critical locus that depends on the other
species. A species will only be allowed to disappear if it is not likely that it will soon
become the dominant species; this depends on how close it is to the other species and,
in general, the relative position of the species changes over time.

In the next section we specify a general framework for a real options model of bio-
diversity evaluation. Simplifying assumptions are made and a model is developed and
resolved analytically in Section 3. In Section 4 we release some restrictive assumptions

and present the results of a numerical evaluation of biodiversity as well as a description
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of the decision rules. We conclude in the last section.

2 A general model to evaluate biodiversity

A species’ value results from its production or use value. We define a pool of species
by the condition that species in the pool are perfectly substitutable in their use. They
are also costly to conserve and any loss of species is irreversible; we ignore the possible
apparition of new species on the ground that it occurs on a longer time scale.

The decision-maker, call her ’society’, benefits from a specific service that can be
provided by each of the n available species; since the species are perfectly substitutable,
only one, the one which is most valuable at the time, is put into use at any time. The
value U5 of the service is inherent to species i. Current values v; are observable but future
values are uncertain. For example, a zoo might have a spot for elephants. Two species
of elephants exist: big elephants i and smaller ones j but at any time only one species
can be shown. At times where big elephants are in demand (9; > 7;), big elephants
will be exhibited by the zoo; when small elephants are fashionable (9; < ¥,), small
elephants will be shown. More realistically one may think of the main active principle
in a medication as being potentially provided by several species, with only the currently
preferred species being in use at any one time, perhaps because the principle is cheaper
to extract from that species, or because its location is more favorable. However, should
the situation change and another species become preferable, substitution is costless and
the newly preferred species becomes the one used in preparing the medication.

Information on species evolve over time, making future values uncertain. We assume
that the value ©; of species i follows a geometric Brownian motion, with constant drift

«; and variance U?dt:

where dz; is the increment of a Wiener process. Assuming a Brownian geometric motion

is not simply a matter of convenience here, but probably the best simple alternative:



the value cannot be negative and, as with wealth or with future knowledge, there is no
particular force that would maintain it at, or take it back to, any particular level.® In
general some sources of uncertainty over future values may be common to species; for ex-
ample if a medication becomes highly valued, all the species providing its main principle
will probably increase in value. We call p;; the correlation coefficient: F(dzidz;) = p,,dt.

If the decision-maker wants to keep open the opportunity of using biodiversity assets
for present or future use, she must devote resources to their maintenance. We model
conservation expenditures as a continuous non stochastic cost C (7;) that can be inter-
rupted at any time; if the expenditure is interrupted, the species disappears irreversibly.
We call v; = ©; the value of species 7 when 1t is in existence, and we set v; = 0 when
the species is extinct, with ' (0) = 0. Thus, at any time ¢, there are n (t) < N existing
species whose value is strictly positive, and N —n (¢) extinct species whose value is zero,
where n (t) and N are integers and N is the initial number of species.

At any instant, the decision-maker may decide to limit the diversity of the set of
species, thereby reducing conservation costs and causing the irrevocable depletion of
biodiversity. The decision to let a species disappear by cutting its conservation expendi-
ture implies losing the option to make use of it in the future. This is an optimal stopping
problem in continuous time with 7 (¢) stochastic state variables; n (t) is determined by
past conservation decisions. At all dates, the decision-maker compares the net expected
value of preserving the n (t) remaining species while using the most valuable one, to the
expected value obtained if one or more of the n (t) — 1 unexploited species is abandoned.
Fach state is described by a leading species i (i € {1..n(¢)}) and, (n (t) — 1) species j
(j # 1) whose survival status must be chosen.

The cumulated expected return from using species 7 over an infinite time horizon
is B, ftoo e (5=, (s)ds where 7 is a discount rate. Let 7, = max{v; (t)}; since it is

possible to switch species in such a way as to exploit the most valuable one at any time,

3A good comparison is wealth, whose level is not limited in its growth by such factors as, say,

production costs, unlike the price of a good.



the expected net present value from using the whole set of species is

F(Ul (t) y ey UN (t)) =

max I {/too e "0 (s) ds (s) — Z /too e TN (v (s)) ds | v () =1 (t)v (t)}

I;(t)e{0,1}
(1)

where the second term on the right-hand side accounts for cumulative discounted costs
of maintenance costs. The decision to let species i disappear at date ¢ corresponds
to setting I; (t) = 0; thereafter, v; (s) , s > t, remains equal to zero and so does the
associated maintenance cost. Although, at any time ¢, the I; (t) vector has N elements,
the choice is only relevant in the case of non extinct species: when a species is already
extinct, setting I; (t) = 0 or 1 does not make any difference since v; (s) remains equal
to zero thereafter anyway.

Under symmetry (o; = «; 0; = 0) and perfect correlation (pl-j = 1), the problem
reduces to the classic real options model (Fisher and Hanemann (1987), Henry (1974)).
Indeed, the decision-maker would only consider preserving the initially dominant species.
She does not expect any change in relative advantages between available species so
that all species but the dominant one are valueless, implying that diversity is valueless.
This is the context under which Simpson et al (1996) observe that perfect substitution
annihilates diversity value: not only must perfect substitution be possible; the preferred
species must also be the same forever.

The main focus of this work is on valuing biodiversity and determining the strength
of conservation incentives when species are perfectly substitutable. To make the analy-
sis tractable and rigorous, we first concentrate on a simplified model which admits an
analytical solution. Then we release some of the simplifying assumptions and solve the
new model by numerical methods. We find that the main intuitions of the simplified

model carry out to the more general one.



3 A simplified two species homogenous model

The range of available biodiversity components is narrowed to N = 2. It is also assumed

that the processes governing species are symmetrical; when the species are in existence,

dv; .
i =odt+odz; , i=1,2 (2)

Uy

with p;y = p.

Furthermore, we assume that the cost C; of maintaining species i is proportional to
its use value v;: C; = kv; with k < 1. At any time ¢ when both species exist, the decision
maker exploits the dominant species i (v; > v, ;1,7 € {1,2}) and receives a current net
return v; — kv; — kv;. Proportionality of conservation costs implies homogeneity of degree
one of value functions, as we will verify below.

The decision-maker must decide whether to continue spending for the preservation of
the currently unproductive species or to exercise the option to disinvest. If biodiversity
is maintained, the decision-maker holds the option to change the species in use at any
future time if the prevailing state of dominance is reversed. Note that with k& < 1,
at least one species is always conserved; this is not so in the case with constant costs
examined further below.

By symmetry the same value function applies whether species 1 or species 2 has been

allowed to go extinct: V(vy (1)) = F (0,19 (¢)) (V(v1(2)) = F (vy (¢),0) ) with:

V(v (t) = E /too e "1 — k), (s)ds

%vi (1) ifr >« )

o ifr <a

We will focus on the case r > a to avoid tedious analyses of alternative cases.

When both species coexist, the expected net present value of cumulated payoffs
F(v1,v9) may be thought of as taking two alternative forms: Fy(vy,vs), applying when
vy > v9; and Fy(vy,v9), applying in the alternative case; reversals may happen several

times during the period when both species coexist. During a time interval where v > v,



species 1 is in use and both species are maintained so that

F1<”U1,’U2) = ((1 — kf)’Ul — k”UQ) dt + Et{eir(H»dt)Fl(’Ul + d”Ul, Vo + dUQ)}

subject to (2),71=1,2 (4)

I

The problem is symmetric, so we can solve (4) and treat the case where species 2
dominates by symmetry.

The Bellman equation is
TF1<U1,U2)dt = ((1 - 1{7)1}1 - 1{71}2) dt + B [dFl] . (5>

FExpanding the expectation term in (5), using Ito’s Lemma and substituting equation
(2) for dvy and dvy, we get the following second-order partial differential equation in vy
and wvs.

9 U% 82F1 i U% 82F1 i 82F1
2 ol 2 vl P o0,

ta < OF} OF}

“18_@1 + U28_1;2> —rF 4+ (1 — k)vy —kvg) = 0. (6)

Equation (6) captures the dynamic relationship between the state variables vy and vy
and must be satisfied by Fi(vy,v2) when both species are in existence and species 1
dominates.

Equation (6) admits a particular solution F}(vy,v9) = (},:Z Tfa ) which is

homogenous of degree 1 in v; and vy. Complementary solutions Ff(vy,vy) of the ho-

mogenous part of equation (6) must satisfy

2 92 e 2 e 2 e c c

2 <%38£;1 : %F +pvlv28?11§1}2> + « <vl 8851 —I—z@%fi) —rFy =0 (7)
Recalling the structure of the problem, an increase in vy and vy of the same proportion
induces proportional increases in production returns and conservation costs. Hence, any
general solution is homogenous of degree one in v and vy; Consequently, since general
solutions must be the sum of a particular solution, homogenous here, and complementary

solutions, any complementary solution must be homogenous of degree one as well. Thus



I may be written:
¢ : U1
Fi(vi,va) = veg1(Ve)  with V= o
2
It is clear that the decision rule depends on the ratio Z—; and 1s homogenous de degree
zero. Equation (7) becomes:

d291(V2)

(1 - p) 0_2‘/22 d‘/22

+ (@ =7)g1(V2) = 0. (8)

Any solution of (8) is of the form A, Vf T AQ‘/QB 2 where A; and Ay are constants to

be determined; the constants 3; > 1 and 3, < 0 are respectively the positive and the

a—r 4.
apoz =05

3 —1j: 1+ rT—Q
2 4 (1—p)o?

Any complete solution for (6) is the sum of a particular solution and the complementary

negative roots of the quadratic equation 3* — 3 +

solution and can be written:

1k K
Fitnen) = o (V5" 4 4:157%) 0, < Vs~ > with V; = 2L (9)

rT—Q Tr—Q

= 1) (V2) (10>

The second term between represents the expected net present value if the status quo is
maintained forever: use and maintain species 1 for ever as in (3) and maintain species
2 forever at an expected cost of ﬁw. It follows that the other term must account for
the two options available when species 1 is in use: switch to species 2 when vy overtakes
v1; and abandon species 2 when vy becomes low enough relative to vy.

Turning now to situations where species 2 is dominant (v > v;) and both species
are in existence, all variables and functions may be defined by symmetry, and the same

properties hold: V; = 2 = L and the linearly homogeneous value function F is

U1 Vo
1—-k k
FQ(UQ,Ul) = M (Al‘/lﬁl + AQ‘/lBQ) —I-Ul < Vi — > = UlGl (Vi) (]_]_>

Tr—Q Tr—«

_ _ 11—k k
= Uy (Alv; fry AQV; BQ) + vy < — V2>

Tr—Q Tr—«

*Replace ¢1(v) by its general solution Av” in (8) to obtain a quadratic equation in 3.
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For a complete description of the solution, we need the values of A; and As, as

well as the threshold values of V3, V5, which triggers the abandonment of species 2 (by

1
vy

symmetry the threshold value of V; is 7=). We also need to characterize the transition
between situations where one species is dominant and situations where the other species

1s dominant.

3.1 Abandonment rules and dominance changes

When v; > v;, conservation of species j is optimal if v; is larger than the critical bound-
ary vx (v;). This frontier separates a waiting region (biodiversity conservation) from an
exercise region (biodiversity loss). As was noted above, the decision depends only on
the ratio V; = %;- vy (v;) must be a straight line starting from the origin. Thus, for the
abandonment of species 2, v}(v1) = Vy*vy, where the constant Vj* denotes the critical

1
v

line slope. Similarly, for the abandonment of species 1, v}(vg) = Vi'vy, or vl (v1) =
On the critical frontier the value function F;(v;,v;) must satisfy the value-matching
condition and the smooth-pasting condition

-1

Fi(vi,v;) = V(v;) when v; = v} (vj) (12)
aFi<UZ', Uj) . 8V(UZ> sl
Do o when v; = v} (v;). (13)

Condition (12) says that on v} (v;) the decision-maker is indifferent between conserving
species j and losing it; condition (13) imposes the equality of marginal (in v;) changes
in the continuation value and the stopping value when v; = v} (v;).

For i = 1, substituting (9) for Fi(vy,ve), and (3) for V(vp) in (12) gives:
k

Tr—Q

AV 4 AV — =0 (14)

Substituting for the same functions in (13) after deriving with respect to vy gives:
AT+ BV =0 (15)
For i = 2, similar manipulations using (11) give:
AV Vs =0 (16)

11



Since Vj = V%, (16), concerning the abandonment of species 2, is analogous to (15), for
the abandonment of species 1, when V)" is substituted for V5.

Finally, the dominant species changes whenever the line v; = vy is crossed by the
pair (v1,v9). By symmetry, when v1 = vy, the functions Fi(vq,vs) and Fy(vy,v1) must be
equal and have the same derivatives with respect to v1 and vy respectively. Using (10)
and (11), it follows after some manipulations that, at V; = V5 = 1, G1(1) = G4(1) and
8%:;‘/21) = 8%‘;‘/(11)‘ Thus these two conditions do not provide any additional information.

To recapitulate, the abandonment conditions imply three equations, (14), (15), and
(16) , in the three variables, Ay, Ay, and V. This solves the problem implicitly. The con-
stants Ay and Ay are positive (otherwise (14) and (15) could not be true simultanously).
The solution is illustrated in Figure 1 for r = .08; C; = ivi; a = 0.04; 02 = 0.02; and
p = 0. The graph shows the abandonment values v}(v) = Vi for species 2 in the
(v1,v9) plane; a similar locus Ufl(l@) gives the critical value v; below which species
1 is to be abandoned. The conservation region is bounded by these two linear critical

frontiers. When both species exist, species 1 is in use and for each (vq,v9) pair under

the bisecting line, while species 2 is in use for pairs above the bisecting line.

In the deterministic case, the unexploited species is abandoned without any delay;
the critical lines merge and the conservation area vanishes. Uncertainty makes any
irreversible biodiversity loss costly, which creates a value to waiting and conserving
despite the fact that the species are perfect substitutes.

At its maximum, reached on the bisecting line, the option value represents 14% of
the total value. The conservation area represents almost 53% of the total surface of the
graph, which means that for more than half the possible realizations it is desirable to
preserve biodiversity. This motivation for conservation would be absent were the species
not substitutable.

It is also intuitively clear and simple to show that the value of biodiversity is de-
creasing in k and increasing in . Greater k means higher costs: it is more expensive to

maintain biodiversity for a possible future use. An increase in k reduces the conservation
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Figure 1: Conservation decision: critical frontiers

area in Figure 1.

On the other hand, with greater uncertainty (higher o), the gap between the critical
frontiers is larger; the critical abandonment values are less severe. This can be shown
using proofs of similar impacts of volatility that appear repeatedly in the literature
(see Dixit and Pindyck, 1994). For example, when the variable under scrutiny is the
decision to invest, the value of the option is governed by a differential equation which
is formally identical to (8). It is shown that the investment threshold is lower and the
value of the option is higher when volatility is higher. In equation (8), the variable
under investigation is not the investment threshold but the relative species value V5.
The threshold value V5" which triggers the abandonment of species 2 is thus lower when
volatility is higher, which means that the v} (v1) curve has a lower slope in Figure 1.
By symmetry, the curve corresponding to the abandonment of species 1 has a higher
slope, so that the biodiversity conservation zone is larger when volatility is higher. The

intuition for this result is also clear: when volatility is higher, the probability of a
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reversal in species dominance is higher; in order to avoid regretting the abandonment of
a species, it 1s then better to require more pronounced a dominance before letting the
species disappear.

The role of value correlation is also crucial and complementary. A visual inspection of
(8) indicates that (1 — p) multiplies 0?; thus a rise in p has the same impact as a drop in o.
When species values tend to move in opposite directions (p < 0), the impact of volatility
is amplified; indeed reversals in species dominance are more likely when the correlation
is negative, so that abandonment is riskier, which calls for a larger conservation zone.
On the contrary, when p = 1, the conservation zone disappears altogether because it is

certain that no reversal will ever occur.

3.2 The marginal value of biodiversity

Simpson, Sedjo and Reid (1996) find that the value of the marginal species is decreasing
with the number of available species. The richer biodiversity, the lower the contribution
of a given species to total value. The same result obtains here. In the absence of
biodiversity, the net use value V(v;) of the subsisting species is given by equation (3).
The marginal value of diversity is the additional value achieved if the second species is
in existence, tough unexploited. When the marginal species is species 2, its marginal

value is’

Vm2<1}1,1}2) = F1<U1,U2) — V(Ul) , U;(Ul) < vy < . (17>

Figure 2 gives the values of species j in two circumstances: in the absence of biodiversity,
when j is the sole existing species; and in the presence of biodiversity when 7 is not in use
although vy = v9. The figure makes it plain that, although species 1 and 2 are identical
and could be substituted for each other at no cost, maintaining two of them provides
less additional value, V},;, than maintaining only one, V. Thus in the situation most

favorable to the marginal species j, that is when v; = v;, the marginal species has less

®Marginal value is defined as net of maintenance cost.
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value than the other species; in less favorable circumstances not represented in Figure 2,
when v; < v;, the relative value of the marginal species is even lower; when v; = v} (v;),
the marginal value of species j is zero.

It is shown in the Appendix that Vj,s(vq,v9) is rising and convex in v,. This clarifies
the notion of marginal value. On one hand, the contribution of the marginal species to
the total value of the pool is lower than the contribution of other species; this property
borders triviality as this is precisely the way species were ranked in the first place. On
the second hand, within the interval over which a species is marginal, its marginal value
is rising and convex. This property is little known in the context of biodiversity although

convexity is known to be arising in presence of real options.

80 y (VJ)
40+ -
20+ ij (Vl,vz)
/ - B
_ -
o 1 5 3 ; .

Figure 2: Marginal species values

It is simple to see that these results also obtain when the number of species exceeds

two, and do not rely on the homogeneity of the value function in surviving species.
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Consider Problem (1) when three species are in existence, at a date when it is optimal to
let one of them disappear, say species 3. Suppose without loss of generality that species
1 is in use; then, by definition of the maximization in (1), F' (v, ve,v3) = F (v1,v9,0)
and F (vy,0,v3) < F (vy,v9,0). It follows that the marginal value of species 3 is zero,
Ving(v1,v9,v3) = F(v1,v9,v3) — F(vy,v2,0) = 0, while the marginal value of species 2
is positive: Vio(v1,v9,v3) = F(v1,v9,v3) — F(v1,0,v3) > 0. Similar arguments can be
constructed at dates other than abandonment dates and for any number of existing
species. Unused species play the role of insurance against a drop in the value of the
species in use. The more numerous unused species, the less valuable the extra insurance

coverage provided by the marginal species.

4 A non-homogenous model: numerical resolution

The homogeneity of the value functions enabled us to derive an algebraic solution for
the model. This property obtains under the assumption that conservation costs are pro-
portional to the use value of the species. This proportionality rules out total extinction
because the cost of maintaining the last species is always smaller than its value, however
small. In many circumstances, it is more realistic to assume the conservation cost to be
independent of species value.

In what follows, we assume a constant cost C' for maintaining a species®. As a
result the current net utility derived from exploiting a species may be negative if its
use value is sufficiently low: the decision-maker must consider the option of abandoning
the sole subsisting species altogether. All other assumptions of the previous section are
maintained; unless otherwise mentioned, the notation is the same.

We will first determine the value function and the optimal disinvestment rule when
there is only one surviving species. Next, we will evaluate biodiversity numerically and

characterize the conservation decisions in presence of two species. It can be anticipated

81t could also be assumed that C (v;) = C+kv;. For example, protection from poaching may become

costlier as the value of the species increases. Our methodology can be adapted to such a possibility.
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that the critical frontiers are not linear since the value functions are not homogenous.

4.1 The last surviving species

The value of a single surviving species is the expected cumulated discounted value of
exploiting and maintaining the species until, possibly, it is allowed to disappear. Since

N =1, expression (1) reduces to

Vs (1) =  max Et{ /t ey () ds (5) — /t e 0Cds | () = 1 (1) v (t)}

I;(t)e{0,1}

or
(5 C
V() = va2 + —a 7 (18)
where
—1 B
D «(1-82) > 0

= —.
By(r —a)
and the abandonment rule takes the form of a critical value v} such that it is optimal to

let species i disappear once v; < v}:

r—a)C
vl = B | ) : (19)
At v}, since %(ﬁ;‘) < 1, exploitation returns do not cover conservation costs. This

is the usual result of the option value model applied to the problem of abandonment
(Brennan and Schwartz (1985); Dixit (1989)). In the abandonment zone, preservation
costs are high relative to current and expected returns. The probability that the value of
the species will recover is so low that giving up the possibility of profitable use in the fu-
ture is a better decision than exposure to heavier losses. In an unfavorable environment,

complete extinction is desirable.
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4.2 Biodiversity

For any number of species above one, the Bellman equation analogous to (5) is a partial
differential equation that cannot be solved analytically. We describe the numerical
solution to the problem when two species are in existence. Rather than solving the
Bellman equation, we compute a discrete version of the value function F' (vy,vq) directly,
using a binomial approximation of the value processes (2) for 0 = 0.2, @ = 0.04, r = 0.08
and C' = 4.

Expression (18) defines the value function into which F' (v, v9) is transformed when
one of the two species is abandoned. Suppose that v; > vy, so that the decision to take

is whether of not to abandon species 2; then, in discrete time,

1 1

Fi (v1,v9) = Ig{%ﬁ}ﬂ {mv(m); mFl (1}171}2)} (20)

where g is the discount rate applying over the relevant time interval. The difficulty
in the above maximization is that, while the abandonment alternative is known to
yield V (v1), continuing preservation yields F}, which is unknown. We obtain Fj by
successive iterations, each iterations yielding an improvement over the previous approx-
imation F} (vy,v3). The process begins at a = 0 and is terminated when the improve-
ment becomes arbitrarily small. The initial approximation exploits the property that
Fy (v1,v9) > V (v1); thus we set F} (v1,v2) = V (v1) for a set S of possible values of
(v1,v9) generated by the binomial approximation of the v; processes. Using that approx-
imation for F on the right-hand side of (20), it is possible to compute the expected
values and to solve the maximization problem. This generates a value for the left-hand
side, F} (v1,v9) which is in its turn, used as a new, improved, approximation. Precisely
the following formula is used repeatedly starting with a = 0:

1 1
Pt = By ——V (vy); —— I} :
(1, ) e, t{1+u (v1); Tl (01702)}

The solution F*! becomes the new approximation to be used on the right-hand side

in the next step, and the process is interrupted when the new function is arbitrarily
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Figure 3: Conservation decision: critical frontiers

close to the old one for all values of (v1,v3) in S. The function Fy (vy,v9), v1 < vy, is
generated in the same fashion.

As before, the solution can be described by the critical frontiers vf(ve) and vj(v1)
in the (v1,vy) plane. The curve vi(vq) (respectively vi(vy)) represents (v, 1) pairs at
which a rise in vy (a rise in v1) cause the solution to the maximization in (20) to switch
from conservation (I; (v1,v9) = 1) to abandonment (I; (vy,v9) = 0). The curves origin
from a common point (v{ = v*,v5 = v*) on the bisecting line, that corresponds to the
abandonment thresholds defined by (19) for each species in the absence of diversity. For
all pairs (vy,v3) between the two curves, biodiversity is preserved. When both vy and vy
exceed v* and v; < v} (v;) it is optimal to abandon species j, while keeping species i in
use; otherwise, conservation is optimal.

Along the critical boundary v} (v;), the value of v; relative to v; is decreasing: when

v; 1s close to v*, a small dominance of species 7 is sufficient to justify abandoning species
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J; when v; is high, it must dominate more definitely if species j is to be abandoned.
This happens because the expected loss becomes high relative to the cost saving as
values become high; any mistake would be costly and mistakes are avoided by attribut-
ing a higher value to the abandonment option. A higher option value combined with
unchanged conservation costs make conservation incentives stronger.

The value of the biological pool has two components. On the one hand, a higher
value of the unexploited species v; brings the pair (vy,vy) closer to equality. It is then
more likely that the option to substitute species in use will be exercised rather than the
option to reduce diversity; this is a source of value for the pool of species through its
biodiversity component. On the other hand, if it is the value of the species in use that
rises, the pair (vy,v9) gets closer to the critical abandonment region; total value rises,
but the value of biodiversity diminishes.

Figure 4 compares the conservation rules under proportional costs (previous section)
and under constant costs. At low use values, conservation is more likely and total
disappearance is ruled out, with proportional costs; with constant costs, conservation is

more likely when use values are high.

4.3 Uncertainty and value correlation

A rise in uncertainty over future use values aflfects the conservation decision in two ways.
First, the critical threshold v* for the conservation of the last surviving species dimin-
ishes. This is the standard option value result whereby the option to preserve and exploit
a single available resource gains value when volatility rises, which makes disinvestment
less attractive. Second, the biodiversity conservation region is larger because, for any
(v1,v9) pair, higher volatility means that substitution of the currently used species by
the unused one is more likely. In Figure 3, the combination of these two effects of in-
creased volatility is that the point (vf,v3), from which the abandonment loci originate
is shifted to the South-West, and that the abandonment loci make more open an angle

than at lower volatility levels.
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The correlation in species’ use values qualifies the effect of volatility. In the absence
of uncertainty, the abandonment loci coincide and, although conservation of one species
may be desirable, biodiversity is never optimal; the coefficient of correlation is mean-
ingless since species values do not change. Under uncertainty, a positive correlation
(p1s > 0) indicates that the values tend to move together; an increase in the value of
one species does not imply that relative values change much, so that the probability of
substitution is not very sensitive to value changes. With perfect positive correlation, the
dominant species will remain dominant forever so that biodiversity has no value; it is
always optimal to abandon the unused species, and the problem of conservation reduces
to a standard one-variable real-options problem of the type already investigated in the
environment literature.

On the contrary a negative correlation (py, < 0) tends to amplify changes in relative
values and the substitution probability. For any (vy,vy) pair, the probability that the

pair will cross the bisecting line and make substitution optimal over a given time interval
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is higher so that abandoning the unused species is more likely to be a mistake than if
Py Was positive. As a result, the optimal abandonment loci make a wider angle, the

lower the correlation coefficient, as shown in Figure 5.

5 Discussion and conclusion

The numerical solution procedure that we have used for the case of two species can be
generalized to any higher number of species, yielding, for each number of species, the
value of the marginal species, the abandonment rule, and the total value of the biological
pool under investigation.

As illustrated for two species, the extension procedure requires establishing the value
of holding n — 1 species before that of holding n species. Tt also requires knowing which
species i1s the marginal one, i.e. the candidate for abandonment; when the processes

governing species values are symmetric, the marginal species is the lowest-valued species;
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with more general processes, this may have to be verified numerically. In any case, the
value of holding n species is bounded below by the value of holding n — 1 species, which
provides a first approximation for the former. This first approximation can be improved
upon by solving the n-species version of (20) repeatedly until the remaining error is
small enough to be neglected. In the last iteration, the set of v; values at which a drop
in the value of the marginal species leads to a switch from preservation to abandonment
is defined as the abandonment locus for that species.

In existing analyses of species substitutability, it is argued that, if species are perfect
substitutes, all species but the species in use are valueless because they are redundant.
We have shown that, on the contrary, the fact that species can be substituted for one
another gives value to biodiversity: an unused species derives value from the fact that
it might, in the future, be in a better position to provide the same product or service
as the one currently in use. This result is intuitively obvious in a real options context;
however it can only be made formal within a several-species analysis, which has not been
provided sofar in the resource literature.

Besides making the concept of decreasing marginal species value precise in this bio-
diversity context, we have shown, in the two-species homogenous model, that increased
volatility raises biodiversity value and that a positive correlation between species values
reduces the value of both the pool of species and biodiversity. Intuitive reasoning, and
the computations made in the non homogenous case, lead us to conjecture that the same
results hold for any number of species.

The second result, a negative relationship between the value of a species and the
correlation of its value with that of other species, is reminiscent of the Beta of a financial
asset. Just like an asset with a negative Beta derives additional value from the fact that
it can provide insurance against fluctuations in the market portfolio, a species whose
value tends to move in the opposite direction as the species in use derives additional
value from its higher probability of being available for substitution if the value of the
species in use diminishes.

In fact there is also an analogy between the single-asset, Mean-variance model and
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the single-asset, real-options model on one hand, and between the several-assets CAPM
model and the many-species real-options model on the other hand. In the first two
instances volatility is what matters; the value of a financial asset is lower, the higher its
variance. In the second two instances the correlation between assets is just as important
as their volatility; a low beta, or a low coefficient of correlation between species values,
improves the ability of an asset (whether a species or a financial asset) to be used as
insurance, thus giving it additional value.

Yet the analogy is not total. In real option models, irreversibility creates convexity
in value, which explains why increased volatility means increased values, while volatility
and expected return are substitutes in most financial management situations. An asset
negatively correlated with the market derives value from the fact that it can be used
to limit risk. A species whose value is negatively correlated with that of its substitutes
derives its value from the fact that it can be used to seize the opportunities that may

arise if it becomes dominant. Nature likes to play dices.

Appendix: the marginal value of biodiversity

Let species 2 be the marginal species: v3(vq) < vy < vy

k
Vm2<1)171)2) — A1U2<ﬂ)ﬁ1 +A2U2<2)52 _ Vs
Vo Vo Tr—Q
_ _ k
= All}; /311}1[31 ‘I—AQU; [321}1[32 — ()
T —Q
OV =(1-7p4) Ay, 1oy (1—0,) Ao, P2, %2 — k
Ovy ? 2 r—o
82Vm2 —(81+1). B —(By+1) .
oz A1(By = DAy 0171+ By (g — 1) Agvy V172
2

32‘/ A . e . .
A1 >0, A >0,0,>1 and 5, < 0 = W?Z > 0 = 522 is increasing in vs. Also

8Vm2 —
vy

matching (12), at the abandonment of 2, ﬁ = A1V2*51 + AQ‘/Q*ﬁQ. Substituting into the

0 at vy = v} (vy): this can be shown as follows. By smooth pasting (13) and value

expression for 38‘/_5;27 38‘/_5;2 - _ﬂ1A1V251 _ﬂ2A2V2527 which is zero by (15). Since _3(})21;2 -

at v9 = v3(vy) and rising in vy for any pair such that vi(vy) < vy < vy, 8—;/5;2 > 0:
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Consequently, Vi,2(vy,v9) is increasing in vy and reaches a maximum at v; = vy. By

symmetry, a similar property applies to species 1. [ |
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