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Past Market Variance and Asset Prices

Federico M. Bandi’, Benoit Perron?

Abstract

Recent work in asset pricing has focused on market-wide variance as a systematic factor and
on firm-specific variance as idiosyncratic risk. We study an alternative channel through which
the variability of financial market returns may help our understanding of cross-sectional price
formation in financial markets. Invoking the countercyclical nature of market variance, we
allow the (stochastic) discounting of future cash-flows to depend on the level of past market
variance (pmv). Employing pmv as a conditioning variable in a classical consumption-CAPM
framework, we derive economically meaningful conditional factor loadings and conditional
risk premia. We show that scaling by pmv may also yield more effective pricing results than
scaling by successful, alternative variables (such as the consumption-to-wealth ratio) precisely
at frequencies at which their predictive ability for excess market returns should be (in theory)
and is (empirically) maximal, i.e., business-cycle frequencies.

Keywords: Asset prices, financial markets.
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1 Introduction

We conjecture that the level of past financial market variance might have an important effect
on the way market participants risk-adjust, or discount, future cash flows for the purpose of
cross-sectional asset pricing. Specifically, the (stochastic) discounting of future pay-offs may
depend on the state of the economy, as summarized by the level of financial market variance.
Differently put, it is often assumed that the relevant notion of cross-sectional risk is not the
unconditional beta of an asset but its conditional (on the state of the economy) counterpart.
We conjecture that past market variance may serve as an economically-meaningful sufficient
statistic when computing conditional (on the state of the economy) cross-sectional betas.

The macroeconomic determinants of financial market variance are rather uncontroversial.
Higher volatility of output growth, inflation, and interest rates translate into higher market
variance. High inflation and low output growth are also associated with high market variance
(see, e.g., Engle and Gonzalo, 2008). Hence, higher variance tends to be associated with weak
economic conditions. It may also be induced by related (to the prevailing economic conditions)
changes in risk-aversion as well as by changes in investor’s uncertainty about fundamentals
(when this uncertainty is priced in equilibrium). In other words, market-wide financial vari-
ance may correlate in important ways with the state of the economy, both in terms of macro
fundamentals and in terms of market participants’s sentiment about fundamentals. This said,
while consumption risk may be the relevant priced risk as postulated by classical cross-sectional
pricing paradigms, we conjecture that the impact of consumption risk on the cross-sectional
prices of financial assets (i.e., their consumption betas) might change depending on the pre-
vailing variance level. This is the sense in which market variance may serve, in terms of
cross-sectional pricing, as a sufficient statistic for the state of macro economic fundamentals as
well as for the state of agents’ uncertainty about fundamentals and changes in risk preferences.

Using ubiquitous test assets, such as portfolios sorted on size and book-to-market, we con-
firm this intuition. Differently from much existing work in asset pricing, we evaluate equilibrium
pricing at alternative frequencies ranging from 1 quarter to 40 quarters (10 years) with a focus
on (roughly) business-cycle frequencies (2 to 5 years). Specifically, we show that the value and
size premium (i.e., the higher average returns delivered by high book-to-market/small capital-
ization stocks) may be the results of porfolios of small companies and value companies having
relatively higher risk (higher betas with respect to consumption growth) in less favorable times
(i.e., in times of high market variance).

Our approach and results relate to a broad recent literature on conditional or scaled pricing.
In the context of traditional pricing paradigms, such as the consumption-CAPM, meaningful

choices of the conditioning variable(s) have been shown to deliver smaller pricing errors than



those implied by the corresponding unconditional models. These pricing errors often fare
satisfactorily when compared to the ones yielded by well-known benchmarks, such as the Fama-
French three-factor model. Implementing conditional models, however, is not an obvious task.
While economic theory places restrictions on the set of viable conditioning variables, time-
variation in the stochastic discount factor naturally depends on the agents’ utility function
and its inputs. Hence, even though variables tracking predictable changes in the conditional
moments of market returns are natural candidates, the set of possible conditioning variables is
broad and, for obvious reasons, hard to completely pin down. Importantly, even when clearly
implied by a model, these variables may be unobservable, the surplus consumption ratio of
Campbell and Cochrane (1999) being a notorious example.

Relying on the countercyclical nature of variance, we show that past market variance (pmv)
may serve as an easily-computable prory for macro variables driving state dependence in the
stochastic discount factor. Conditioning on pmuv drastically improves on the performance
of the classical C-CAPM leading to pricing errors that are similar to those induced by the
Fama-French three-factor model and are often smaller than those implied by the successful
consumption-to-wealth ratio (cay) advocated by Lettau and Ludvingson (2003). Between 2
and 5 years, when conditioning on pmu, the scaled C-CAPM explains 55.6%, 70.9%, 69.2%,
and 54.5% of the variation in average retiurns. The corresponding values for the unconditional
C-CAPM and the C-CAPM conditional on cay are 24.7%, 16.2%, 8.6%, —0.9% and 46.3%,
35.9%, 33.1%, 37.2%, respectively. The limitations of using purely statistical metrics (such
as coefficients of determinations) when evaluating unconditional and conditional asset pricing
models are of course well-known (for recent discussions, Lewellen and Nagel, 2006, and Lewellen
et al., 2007). The above figures should therefore be interpreted as being merely suggestive.
The remainder of the paper places emphasis on the economic implications of our problem.

As said, proper conditioning of the stochastic discount factor should rely on variables that
have explanatory power for the conditional moments of market returns. Bandi and Perron
(2008) document that the predictive ability of pmuv for excess market returns increases with the
aggregation horizon. In the long run, pmuv is a much stronger predictor of excess market returns
than both the classical dividend-yield (dy) and cay. Admittedly, in conditional pricing models,
the dependence between conditional moments of market returns and conditioning variables is,
in general, nonlinear. However, the predictive ability of pmv in linear models for conditional
expected market returns (and conditional variances) makes pmuv, as is the case for dy and cay
in the recent literature, a viable candidate for a theoretically-meaningful conditioning variable.
We evaluate the cross-sectional pricing implications of this time-series predictability and show

that pmv may lead to effective time-variation in cross-sectional consumption risk.



A vast amount of recent work has been devoted to the relevance of variance in asset pricing
tests. The existing work has focused on innovations in market variance employed as a system-
atic factor found to be priced cross-sectionally (see, e.g., Adrian and Rosenberg, 2008, Ang et
al., 2006, Bandi et al., 2008, and Moise, 2006) as well as on the residual cross-sectional pric-
ing of idiosyncratic variance beyond that provided by a variety of widely-employed systematic
factors (Ang et al., 2006, and Spiegel and Wang, 2005, among others). This paper suggests
an alternative channel (i.e., time-variation in the stochastic discount factor) through which
market variance may help our understanding of price formation in financial markets.

The remainder of the paper is structured as follows. Section 2 provides, in the context of
modern approaches to asset pricing, economic motivation for deriving easy-to-compute proxies
for variables driving state dependence in the stochastic discount factor. As previously pointed
out, our results suggest that pmv may be one such proxy. Section 3 introduces the data
and the pmv estimator in a fairly general continuous-time setting. In Section 4 we present
motivating findings about the cross-sectional relation between the returns on the size- and
value-sorted portfolios and pmuv. Section 5 discusses conditional (on pmv) cross-sectional pric-
ing at business-cycle frequencies and in the long run. In Section 6 we compare our pricing
results to alternative, successful models, namely the classical Fama-French three-factor model
and scaled specifications relying on cay. Section 7 discusses issues of robustness in the context
of recent criticisms of conditional approaches to cross-sectional pricing. Section 8 is about
economic interpretation through analysis of the model’s implied conditional betas and implied

conditional risk premia. Section 9 concludes.

2 Modern utility functions

The price of a claim to consumption can be expressed as PM = %Et [ ftoo WTCTdT], where
C} denotes consumption and 7; is the state-price density which discounts future consumption
streams. Consider the state price density m; = e ?*C; " H;, where H; is a slow-moving utility
adjustment. This is a fairly general specification in modern asset pricing theory including,
among other recent models, the external habit of Campbell and Cochrane (1999) and Santos
and Veronesi (2005) as well as broadly defined shocks to preferences or changes in sentiment
as in, e.g., Lettau and Wachter (2007). In the former case, H; = S, * with S; = (Cy — X;)/C%,
i.e., the surplus consumption ratio.

Importantly, the assumed state-price density implies that the conditional moments of mar-
ket returns are nonlinear functions of the utility adjustment H;. Differently put, focusing on
the first two conditional moments, Et[R%H} = fi(H;) and Vt[R%H] = fa(Hy), for generic
functions f1(.) and fa(.).



Importantly, the utility-adjustment H; is unobservable, in general. Hence, proper condi-
tioning on H; for the purpose of cross-sectional pricing cannot be conducted. We ask the
question: does pmuv correlate in important ways with the unobservable H;? Alternatively, is
pmv driving time-series variation in the conditional first and second moment of market re-
turns? Admittedly, these are hard questions to answer because of the unobservability of Hy
and that of the driving functions f1(.) and f3(.). They are also hard questions to answer in
light of the lack of theoretical implications about the horizon at which asset pricing models
should perform satisfactorily. Put it differently, at which frequency should we be evaluating the
forecasting performance (for market returns and future market variance) of pmuv? Similarly,
at which frequency should cross-sectional pricing exercises be conducted?

Addressing these fundamental issues satisfactorly is naturally beyond the scope of this pa-
per. However, by (i) reporting the outcomes of linear regressions of future market returns and
future market variances on to pmv and (7i) by doing so at a variety of alternative horizons,
the next section provides preliminary evidence about the viability of pmv as a proper condi-
tioning variable in cross-sectional pricing. The pricing performance of pmuv is the subject of

the following sections.

3 Data and time-series regressions

While our emphasis is on business-cycle frequencies, we report conditional pricing results at
various horizons ranging from 1 quarter to 10 years. To this extent, we use data between
the second quarter of 1952 and the last quarter of 2006 and aggregate it over the appropriate
horizon h (with h =1, ...,40), as we discuss below.

There are two reasons for employing the quarterly frequency as our highest data frequency.
First, quarterly consumption data to be used in implementations of the C-CAPM (and its
conditional variations) is available over a longer time span. Monthly consumption data only
starts in 1959." Second, we deem it informative to compare the cross-sectional pricing ability
of pmv to that of cay. The latter is obtained as the residual from a cointegrating regression
of logarithmic consumption on logarithmic financial wealth and logarithmic labor income (all
variables measured per-capita and in real terms) and is available at the quarterly frequency:.?

As is customary, we use the CRSP value-weighted index with dividends as our market
proxy. This series is available daily. This higher (daily) frequency is exploited for constructing

the pmv estimator, as outlined below.

! The consumption data is real per-capita consumption on nondurables and services. We use the modified
version of this series (which excludes clothing and shoes) available on Sidney Ludvigson’s web site.
2We also obtain it from Sydney Ludvigson’s web site.



Our test assets are the 25 Fama-French size- and value-sorted portfolios.> The Fama-French
portfolio returns are available at the monthly frequency. We convert them to quarterly data

(and data at lower frequencies) by aggregating appropriately.

3.1 Past market variance (pmv)

We employ realized variance to identify sample path variation in observed market returns and

compute pmwv. Consider a generic quarter ¢ with n; trading days. Denote by r the j-th

t4-L
nt
daily continuously-compounded return in quarter ¢. Realized variance in quarter ¢ is given by

Utt+1 = E THJ )

i.e., the sum of the (daily) squared continuously-compounded returns over the period. It is well-
known that, under assumptions, 8?7,5 11 Is a consistent estimate of (increments in) the quadratic
variation of the logarithmic price process in asymptotic designs allowing for n; T oo for all ¢
(i.e., as the number of observations in each quarter increases asymptotically without bound).
For instance, assume the logarithmic price process is expressed as log p; = @f + oL+ @{, where
@{ is a continuous finite variation component, q)f; = fo osdWy is a local martingale driven
by Brownian shocks dW;, <I>{ = fg (Jsts — uj)\sds) is a compensated, jump process with Z,
denoting a counting process with finite intensity A\, and J; is a random jump size with mean
p; and variance O' . Furthermore, assume the stochastic volatility process o is cadlag. This
specification readily accommodates small and large shocks in the price’s sample path as well
as fairly unrestricted spot volatility dynamics. The quadratic variation of the continuous-time

Markov process log p; between ¢t and ¢ + 1 is

t+1
[log plt 141 = [log pl,,; — [logp], = / olds+ Y (log(ps) —log(ps-))% (1)
t t<s<t+1

where log(ps—) = lim,|g ps—y, and is made up of two components, one associated with variation
in the local martingale and one deriving from the presence of infrequent jumps in the sample
path. Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2002) have recently pro-
vided empirical and theoretical justifications for the use of realized variance in the presence of
high-frequency asset price data under similar assumptions. As is traditional in low frequency

applications in finance, we do not take the asymptotics literally. Nevertheless, our use of daily

#As in Fama and French (1992, 1993), we work with portfolios constructed by value-weighing stock returns
(on the New York Stock Exchange, the American Stock Exchange, and the Nasdaq) at the intersection of five
size quintiles and five book-to-market quintiles. The portfolio’s raw returns were downloaded from Kenneth
French’s web site. We refer the reader to it for details on portfolio construction.



data in the computation of pmuv is bound to capture important variation in the market return’s

sample path. Thus, pmwv;_p,; is simply defined as Ef_ h.t» Where

h
~2 ~2
Ott+h = Z Otti—1,t44- (2)
i=1
for an aggregation level equal to h quarters.

3.2 Some preliminary evidence

Consistently with our discussion in Section 2, proper conditioning variables should have pre-
dictive ability for the moments of market returns. These moments may of course be highly
nonlinear functions of the predictor(s), in general.

Define market returns between ¢ and ¢t +h as Ry ;1 = H?Zl (1 + Rt+%) — 1, where Rt+%
is the j-th quarterly return on the market over horizon h. We regress R;; and ﬁit 4p, (or,
equivalently, pmuvy 14p,) on pmui_p .. We do so at various horizons and report results in Table
I. The regression of future market returns on pmuv largely replicates findings in Bandi and
Perron (2008) where risk premia (market returns in excess of the risk-free rate) are regressed
on pmuv: the predictive ability of pmv increases with the horizon. Not surprisingly, future
market variance is best predicted by pmwv at short horizons. This is an implication of the
autoregressive nature of variance.

In the context of a traditional (in the existing literature) linear specification, this evidence,
and the related evidence in Bandi and Perron (2008), are meant to be merely suggestive of

the informational content of pmuv for the market return moments at various horizons. In what

follows, we explore the cross-sectional pricing implications of this time-series predictability.

4 Fama-French portfolio returns and pmuv

In order to further motivate our approach, we now report the outcomes of regressions of the
25 Fama-French portfolio returns on pmv. In light of the countercyclical nature of financial
market variance, our interest is largely on business-cycle frequencies. To this extent, we focus

here on aggregation levels between 1 and 5 years. As earlier in the market case, we define

h

portfolio returns between ¢ and ¢t 4+ h as Rf,Hh = H?Zl 1+ RP > — 1, where Rf ; is the

j-th return on portfolio p over horizon h. We run the following regressions:

Ry o = K+ Brpmun + €74, h=4,812,16,20 p=1,2,...,25. (3)

Table II contains the results. The betas of the 25 Fama-French portfolio returns with respect

to pmuv decrease in the size dimension (when going from small firms to large firms) and increase



in the value dimension (when going from low book-to-market stocks to high book-to-market
stocks). In other words, at these frequencies, large firms generally yield returns that are less
correlated with pmwv than small firms. Similarly, value stocks yield returns that are more
correlated with pmuv than growth stocks. These patterns reflect similar patterns in average
returns. As is well-known, average returns increase with value and decrease with size. As
expected, they do so at all frequencies we consider. While these obvious structures in the
betas are sometimes not fully monotonic, they are somewhat striking. When paired with
the cross-sectional dispersion of average returns, they appear indicative of the cross-sectional
pricing potential of pmv. We now turn to a more formal discussion of this issue.

For a specific horizon h, write the fundamental pricing equation as

1 =E[Myn(1+ R, )], (4)

where E; denotes expectation conditional on time ¢t information, M, is the stochastic discount
factor, and RZ ++n 18, as earlier, the net return on the generic asset (portfolio, in our case) p.
Assume My, = ci4 + catfie+n, Where fi41p is a factor. Classical models are the CAPM
for which the factor f; ;45 is the market return over h and the C-CAPM for which f; ;4 is
consumption growth over the same horizon. Even though, for reasons of economic generality
and consistency with theory as laid out in Section 2, our interest in this paper is in the
consumption specification, in what follows we will report results pertaining to the CAPM
case as well. In general, ¢ and co; are time-varying coefficients whose dependence on time ¢
macro variables depends on the true, unknown utility function.* Write now c¢i; = a1 + agz;
and coy = by + boxy. In other words, assume that time-variation in the level and slope of
the stochastic discount factor is driven by a variable x measurable with respect to time ¢

information. This specification, which could be readily extended to multiple states x, leads to

1 =E[(a1 + a2t + b1 frppn + b2 (wefraen)) (L+ Ry ),

with no need for a subscript ¢ on the expectation operator. In other words, it leads to an

unconditional multifactor beta specification

3
E[Rf,t+h] = E[Rn] + Zﬁi,ﬁh,m

i=1
where E[Euh] is the expected return on the zero-beta portfolio uncorrelated with the stochastic

discount factor (as in Black, 1972), the fPs are multivariate betas of the returns on asset p on

‘In Campbell and Cochrane (1999), for example, c1; and co; are functions of the "surplus consumption ratio."



Zt, ft1+h, and the interaction variable x; f; ¢4, and the As are the corresponding cross-sectional
slopes.®

Assume now x; = pmuv;_p, ;. When combined with the observed pattern in average portfolio
returns E[Rﬁ ++nl, the reported structure in the estimated pmuv betas (obtained from Eq. (3)
above) is suggestive of the potential economic and statistical significance of the corresponding
X estimate. Neglecting, but only for the time being, the additional loadings associated with the
factor f; 45 and the interaction xy f; 44, this significance is, in turn, indicative of the pricing
potential of pmuv as a scaling variable.

In what follows, we evaluate the cross-sectional relation between average returns and gen-
uinely multivariate betas and its economic implications. Differently put, we evaluate whether

the level of historical market variance tracks meaningful predictable time-variation in the sto-

chastic discount factor.

5 Conditional (on pmv) pricing
5.1 Business-cycle frequencies

We employ a standard two-pass methodology for testing asset pricing models. For each asset
p and horizon h, we first run a time-series regression of returns (Rf ¢ +h) on E,Hh = (x4, friths
5Etft,t+h)T> namely

D _ D P\T ¢ p
Ry, = w5+ (B)) frien + € s

to estimate the loadings in the vector ,62. In the second step, for each horizon h, we run
cross-sectional regressions of the average returns on the portfolios on the estimated loadings

to evaluate the resulting pricing errors:

T—h
1 AP
<T 2 R?,Hh) = ap + AL By + e

t=1
For the time being, we focus on two unconditional models, the CAPM and the C-CAPM,
and their scaled versions (by pmwv). We report adjusted-R2?s (in Table III) and estimated
lambdas (in Table IV) from the second-step, cross-sectional regressions. The adjusted-R?
values associated with the static CAPM and the static C-CAPM are, respectively, 17.5%,
14.7%, —0.7%, —4.3% and 24.7%, 16.2%, 8.6%, —0.9%, at 2 to 5 years. Hence, market returns
and consumption growth perform similarly at these frequencies. Scaling by pmwv improves

the overall fit significantly. The coefficients of determination of the scaled models are 48.2%,

%Since x; is not a risk factor, in conditional models the lambdas do not have a direct economic interpretation
in terms of market prices of risk (see, e.g., the discussion in Cochrane, 1996, 2004, and Lettau and Ludvingson,
2001b). Similarly, of course, the betas do not have a direct interpretation in terms of quantities of risk. We
discuss these issues in Section 8.



61.3%, 43.6%, 33.2% and 55.6%, 70.9%, 69.2%, 54.5%, thereby yielding a greater improvement
in the C-CAPM case. Fig. 1 provides a graphical representation. The limitations of statistical
metrics, such as coefficients of determination, to evaluate pricing models are notorious. Section
8 focuses on economic significance.

As previously suggested, the betas associated with pmv play an important role (Table
IV). This is especially true in the CAPM case where the lambdas associated with these betas
have minimum t-statistics above 2.4 at business-cycle frequencies. In the C-CAPM case both
the beta on pmwv and the beta on the interaction matter at these frequencies. In particular,
the estimated lambdas on the interaction have all ¢{-statistics above 5.5. The lambdas on the
market are negative but statistically insignificant. This is a typical result in the literature (see,
e.g., the discussion in Lettau and Ludvigson, 2001b). The lambdas on consumption growth
are instead positive and more statistically significant. In spite of the lack of interpretability
of the lambdas in terms of market prices of risk in conditional models, this result is generally
more consistent with standard economic logic. Ignoring other terms, one would expect stocks
delivering higher average returns to be riskier, as implied by their higher return correlations
with consumption growth. This risk should be positively priced in equilibrium.

For a clearer graphical assessment, Figs. 2 through 5 report the pricing errors associated
with the static models (Fig. 2 and 4) and with the conditional models (Fig. 3 and 5). In
particular, the values on the vertical axis are realized average returns on the portfolios, whereas
the values on the horizontal axis are the corresponding fitted mean returns implied by each
model (i.e., using estimated lambdas and betas). Naturally, if a model priced the portfolios
exactly, the dots would sit on the 45 degree line. As always, for each value on the scatterplot,
the first digit refers to the size quintile (with 1 indicating the smallest firms and 5 indicating
the largest firms) and the second digit refers to the book-to-market quintile (with 1 indicating
growth stocks and 5 indicating value stocks). The reduction in pricing errors yielded by pmuv

scaling is apparent.

5.2 The long run

The adjusted-R? values of the static CAPM and C-CAPM at 9 and 10 years are 47.5%, 46.6%
and 28.4%, 36.0%, respectively. Therefore, the unconditional models perform somewhat better
at low frequencies. In particular, market returns explain a larger portion of the cross-sectional
variation of the Fama-French portfolios than consumption growth in the long run.

Scaling by pmv increases the R2-values to 65% and 70% in the CAPM case and to 69.5%
and 74.8% in the C-CAPM case. The lambdas associated with the interaction are always
positive and highly statistically significant (Table IV). The lambdas associated with the pmuv’s

10



loadings are also positive. They are significant in the CAPM case and fairly insignificant in
the C-CAPM case. While, in agreement with the static model, market returns play a more
important role than consumption growth if considered individually, the joint consideration of
the loadings with respect to the conditioning variable and the interaction yields smaller pricing
errors in the C-CAPM case than in the CAPM case.

When taking the theoretical implications of Section 2 seriously, since pmv strongly predicts
long-run market returns as reported earlier (and extensively illustrated in Bandi and Perron,
2008), the improved fit delivered by pmuv over the static C-CAPM should not be viewed as
surprising. More generally, our findings suggest that pmwv may contain meaningful information
about time-variation in the stochastic discount factor both at business-cycle frequencies and

at lower frequencies.

6 Alternative pricing models

It is now informative to evaluate the pricing performance of scaled models using pmv as
compared to existing successful alternatives, such as the classical Fama-French three-factor
model and scaled specifications using cay. We begin with the latter.

Lettau and Ludvigson (2001a) have shown that cay, coherently with its theoretical justifi-

6 is a strong predictor of excess market returns at business-cycle frequencies. Table V

cation,
supports this notion using our data. Consistent with its considerable predictive ability in the
time series, Lettau and Ludvigson (2001b) have also shown that cay is a useful conditioning
variable in scaled asset pricing models. We confirm this result. At business-cycle frequencies
the adjusted-R? values yielded by cay in the CAPM case are 39.3%, 50.5%, 65.2%, and 77.3%.
They are 46.3%, 35.9%, 33.1%, and 37.2% in the C-CAPM case. These values should of course
be compared to the adjusted R2-values of the static models in Table III and Fig. 1. When
doing so, models scaled by cay are found to clearly dominate their unconditional counterparts.

Interestingly, for our data, the pricing ability of pmv compares favorably to that of cay both
at business-cycle frequencies and in the long run. Importantly, this is particularly true in the C-
CAPM case. This finding may be appreciated by comparing adjusted-R2s. More interestingly
for our purposes, it may be appreciated by examining the nature of the conditional factor
loadings implied by alternative scaling factors. Needless to say, this is a more compelling
metric, for our purposes. Session 8 discusses conditional (on cay and pmuv) factor loadings
for the C-CAPM. We show that, for our data, pmv leads to conditional consumption betas

that are, in "bad states of the world," relatively more monotonically increasing with value and

®A high value of the consumption-to-wealth ratio implies either expectations of high returns on wealth or
expectations of low consumption growth.
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relatively more monotonically decreasing with size. Additionally, pmv leads to relatively larger
spreads in the conditional consumption loadings than cay. Because the relevant notion of risk
in conditional consumption models is covariation with consumption growth given the state of
the economy, pmv appears to perform satisfactorily at explaining differential average returns
on portfolios by delivering risk quantities (i.e., conditional betas) which align fairly effectively
with these average returns.

We conclude with the Fama-French three-factor model. As is well-known, the model uses
the market returns, the returns on a "small minus big" (SMB) portfolio, and the returns on
"high minus low" (HML) portfolio as the relevant factors.” Hence, this specification is genuinely
multivariate. We find that this classical model performs extremely well at all frequencies,
explaining over 70% of the cross-sectional variation of the returns on these portfolios. Table
IV suggests that HML has prices of risk that are highly statistically significant at virtually all
frequencies (with the sole exception of the 9 and 10 year horizon). The contribution of the
factor loadings associated with SMB and the market is instead reversed. SMB leads to prices
of risk which are significant (and positive) at high frequencies but are imprecisely estimated
(and, eventually, negative) in the long run. The market returns yield risk prices which follow
the opposite pattern. Hence, market risk plays a bigger role in the long run (as testified by
the higher value of the static CAPM at lower frequencies).

The interpretation of the Fama-French factors is, to these days, controversial. The relation
between Fama-French factors and undiversifiable macro risk has been the subject of some
empirical investigation (see, e.g., Liew and Vassalou, 2000, inter alia) but no consensus has
emerged. In light of the generally lower pricing errors delivered by the Fama-French model (at
least when pricing size- and value-sorted portfolios), the success of recent consumption-based
models® should partly be viewed as a by-product of the Fama-French three-factor model being
hard to interpret economically. Yet, arguably, this model represents an important benchmark.
While, as typically found, we show that all scaled models yield larger pricing errors than the

Fama-French model, scaling improves matters drastically.

7 Addressing the critics

Lewellen and Nagel (2006) and Lewellen et al. (2007) have recently criticized the above two-step

approach for testing pricing models on the 25 Fama-French portfolios. They claim that, since

"The SMB portfolio is the difference between the returns on small firm portfolios and large firm portfolios
with the same book-to-market values. The HML portfolio is the difference between the returns on high book-
to-market firm portfolios and low book-to-market firm portfolios with the same size. We refer the reader to
Kenneth French’s web site for details.

8The "ultimate consumption" model of Parker and Julliard (2005), for instance, represents a promising
alternative to scaled versions of the C-CAPM.
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these portfolios have a strong factor structure, the addition of factors, as effectively implied by
conditional models, is bound to spuriously inflate the explanatory power of the models being
tested. To circumvent this issue, they make two main suggestions: expanding the set of test
portfolios beyond the classical 25 Fama-French portfolios and using GLS, rather than OLS,
in the second step of the traditional two-pass methodology. These approaches will lead to a
more stringent test, but they remain subject to criticisms. For example, even if one takes the
view that all assets should be priced by a valid pricing model, it is unclear why portfolios
which do not have an obvious factor structure, like the industry portfolios, should provide a
more compelling test than the 25 Fama-French portfolios. In a similar vein, GLS reshuffles the
original portfolios and prices linear combinations of them, rather than the original portfolios,
which are arguably of particular interest.

Table VI contains the same information as in Table III, but instead of reporting adjusted-
R?s, we report R? values when using GLS in the second step. In the implementation of GLS,
we employ the inverse of the unconditional covariance matrix of returns as the weight matrix.
The first thing to notice is of course the much lower values of the R? in this environment. Even
the Fama-French three-factor model has a GLS R? of 22% at 1 quarter compared with 73% for
the OLS R?. Scaling models by pmuv leads to better fit than in the case of the unconditional
models. This is true at all horizons. Importantly, no clear pattern across horizons seems to
emerge relative to cay. Put it differently, pmov remains competitive under this metric relative
to a more sophisticated measure, such as cay.

To increase the universe of portfolios, we add to our original 25 portfolios the 30 indus-
try portfolios”. The corresponding results are in Table VII. Once again, we notice that pmuw
improves the explanatory power of both CAPM and C-CAPM across all horizons, and partic-
ularly at business cycle frequencies and in the long run. The usefulness of pmuv as a scaling
variable relative to cay is apparent when comparing adjusted-R?s.

When examined based on the statistical fit of constructed portfolios (GLS portfolios) or
portfolios with a mild factor structure (industry portfolios), well-known scaling variables, such
as cay, may perform considerably less well. While the sense in which these portfolios represent
a fully compelling test for conditional pricing models may be the object of some debate, pmuv
continues to fare well as compared to more-involved proxies even under alternative metrics.

In the following section we use economic criteria based on implied conditional betas and
conditional risk premia to assess the pricing relevance of pmv. We do so in the context of the

original 25 Fama-French portfolios.

9These are also available from Ken French’s web site.
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8 Conditional betas and risk premia

We focus on the C-CAPM. Table VIII reports betas on consumption growth, betas on pmu,
as well as betas on the interaction at 4 levels of aggregations, i.e., 2, 3, 4, and 5 years. At all
horizons, the average returns on the portfolios behave as described earlier, i.e., they decrease
in the size dimension and increase in the value dimension. Lettau and Ludvigson’s logic
justifies this pattern (Lettau and Ludvigson, 2001b, Section II). In our scaled specification,
the correlation between portfolio returns and consumption growth is a function of the scaling
factor. In other words, due to the interaction, the partial effect of consumption growth on
portfolio returns depends on the scaling variable, i.e., B? = ‘Z .t B‘Zcmmvpmvt_m. Table VIII

S+ 0 . .-
reports values of ﬁf =2 .t B . pmvpmv;r_ 5.t Where pmuv;”, , is the mean of pmv conditional

t—h,t
on it being larger than 1 standard deviation above its mean. We define B?_ in a similar fashion.
These definitions are the same as those in Lettau and Ludvigson (2001b). For small values of
pmu the correlation between consumption growth and portfolio returns is generally small and
often negative. It is large and positive for large values of pmwv. Importantly, for large values of
pmu, the correlation between portfolio returns and consumption growth increases in the value
dimension and decreases in the size dimension, often almost monotonically. The spread in
the conditional factor loadings is also substantial. Arguably, higher pmuv values are associated
with worse states of the world. Hence, value stocks require higher excess returns not because
their unconditional risk (as measured by their unconditional beta with respect to consumption
growth) is higher than for growth stocks. Rather, they appear to require higher excess returns
because their conditional risk is higher in bad states (i.e., when pmu is higher).

Lettau and Ludvigson (2001b) use this same logic to justify the role played by cay. Compar-
ing our findings to the pricing ability of cay at the same horizons, in the case of pmv we generally
find conditional (on bad states) consumption loadings that align more effectively with historical
average portfolio returns, more monotonicity in the conditional (on bad states) loadings, and
larger differences in the loadings between small/big firms and low /high book-to-market firms.
Consider the 3 year horizon, for instance. Figures 6 and 7 depict these betas conditional on high
and low pmuv respectively. The low book-to-market/high book-to-market loadings associated
with firms in the five size quintiles are 6.7/16.6, 4.9/16.07, 2.73/13.36, 0.16/11.51, —4.48/8.52
in the pmv case. They are 4.42/4.59, —1.61/3.14, —2.78/1.53, —2.88/5.22, 4.73/3.84 in the
case of cay. Similar figures occur at alternative horizons (c.f., Table VIII).

It is easy to show that, given conditional consumption loadings equal to Bf , the implied price
of consumption risk \; can be expressed as —ﬁt’hvaTt(AC)CQt7 where cg; = by +bapmu_p ;. As-

suming a constant Ry, (estimated from the cross-sectional regression) and a constant variance
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of consumption growth,'” we evaluate \; after estimating the coefficients in cg; as recommended
by Cochrane (1996) and Lettau and Ludvigson (2001b), i.e., using the estimated cross-sectional
AS.

9 Conclusions

In a world without risk, or with risk-neutral agents, prices are martingales and conditional
expectations of future prices only depend on current prices. When risk is meaningful, prices
are conditional expectations of future prices only after appropriate stochastic discounting.
We conjecture that this stochastic risk correction is correlated with the level of past market
variance (pmv). In other words, we conjecture that past financial market variability proxies for
more fundamental (and usually difficult to measure) variables that may drive time-variation
in the assessment of risk induced by macro factors, such as consumption growth. We test
this conjecture by investigating the cross-sectional pricing of classical test assets, namely the
Fama-French size- and value-sorted portfolios, using traditional asset pricing models scaled
by the level of past market variance. The pricing ability of pmv is found to be substantial,
particularly at business-cycle frequencies. When compared to variables that have been shown to

be successful in the same classes of models (such as cay), pmv is found to fare very satisfactorily.

10Both assumptions can be easily relaxed.
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Table 1. Slope of forecasting regressions of market returns and market variance using pmv at different
levels of aggregation h in quarters: 1952Q2-2006Q4 (t statistics in parentheses)

h= 1 2 4 24 28 32
'r\g?ur:(r?s:[ 3.62 421 4.66 9.46 10.52 11.31
(2.43) (2.39) (2.76) (6.53) (9.77) (9.23)
22 .25 .22 -13 -.08 .07
Variance (2.16) (2.35) (1.20) (-.13) (-.13) (.17)

R2 5.0 6.2 4.9 1.4 5 5
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Table I1. Betas for univariate regressions of the 25 FF portfolio returns on pmv at levels of aggregation h (in quarters)
1952Q2-2006Q4

h=4 Size h=8 Size
1 2 3 4 5 1 2 3 4 5
1244 225 123 167 072 1[-189 -026 -095 008 -122
20302 253 178 161 159 2| 009 011 082 075 006
HML 3313 195 128 156 0.33 HML 3| 129 110 013 012 -0.38
4292 170 205 274 1.02 4| 080 086 022 135 -081
5|2091 288 310 364 133 5| 041 054 144 240 -0.04
h=12 size h=16 Size
1 2 3 4 5 1 2 3 4 5
L (06697 690 636 —1a 1068 274 357 236 -186
2(369 210 363 310 163
2| 155 042 201 135 002
HML 3307 445 309 182 011
HML 3| 218 251 147 069 -0.63
4331 403 312 129 014
41210 252 145 145 -0.76 5|527 252 533 312 1.90
5| 261 121 303 240 0.09 : : : : :
h=20 Size
1 2 3 4 5
1147 615 753 605 130
2|705 583 694 640 562
HML 3 |597 747 652 445 3.11
4|59 796 58 231 327
5|871 544 847 539 584
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Business cycle

h= 1 2 4 24 28 32
Basic models
CAPM 07 -22 -18 24 180 278
C-CAPM 9.0 204 292 -43  -06 53
FF3-factor model 7309 737 733 824 812 749
Scaled models
) CAPM 49.0 558 70.1 276 623 567
With pmv C-CAPM
49 137 668 47 55 382
. CAPM 402 286 239 703 328 609
With cay C-CAPM
53.7 446 49.6 37.9 1.8 149

-20 -

Table I11. Adjusted-R? (%) from cross-sectional pricing regressions on the 25 FF size- and value-sorted portfolios at different
levels of aggregation h (in quarters): 1952Q2-2006Q4

Long run




Table IV: Lambdas from cross-sectional pricing regressions on the 25 FF size- and value-sorted portfolios at different
levels of aggregation h (in quarters): 19520Q2-2006Q4 (t-statistics in parentheses)

Fama-French 3-factor model

= | constant | market | SMB | HML |

1 506 -183 066 123
(B4)  (13) 4) (5.0)
2 554 225 088 118
(32) (-1.3) (26) (3.9
4 586 -247 067 170
(B1) (14 (4) (62)
8 197 133 016 193

@) () ) G
12 159 175 024 181
(23)  (1.8) (12) (4.8)
16 223 131 045 200
(25 (@15 (1) (1)
20 216 165 003 203
(23)  (1.8) (12) (4.8)
24 248 170 -0.11 210
@4) Q7)) (-5) (43)
28 241 211 -015 182
26) (4) (-5 (34)
32 184 309 -017 1.02
18) (33) (-5 (2.0)
36 126 401 -020 056
1) @7 (-6 (@11
102 465 -0.18 046

(9) (47 (-6 (11

40

-21 -



Scaled CAPM

Scaled by pmv Scaled by cay
= | constant | market | pmv | pmv x market | constant | market | Cay | cay x market |
1 5.13 -1.64  0.71 0.43 5.96 -2.35 -2.28 -3.02
(42) (-14) (29 (:2) (61 (-22) (-3.6) (-0.7)
2 2.59 0.74 0.78 3.12 4.97 -1.38 -0.98 -0.72
(15)  (5) 45) 16)| (@7 (L2 (2.1 -1)
4 3.07 033 041 1.01 7.36 -3.52 -0.68 -6.40
28  (3) (33) (4| @5 (18 (31 (-1.6)

-22 -



Scaled C-CAPM

Scaled by pmv Scaled by cay
h= | constant | consumption growth | pmv | interaction | constant | consumption growth | cay | interaction |
1 3.18 0.43 -0.10 0.22 4.85 0.21 -0.94 0.05
(5.9) 20) (-3) 6| (49 L7) (-13) (1)
2 2.70 0.25 0.06 0.26 3.93 0.24 -0.29 0.03
3.7) L3)  (2) 4| @4 22) (-7 (1)
4 4.29 -0.02 0.15 -0.41 4,78 0.27 -0.34 -0.44

(9.6) -1) (L0 (-1.1)

-23-

(4.0)

(2.8)

(-1.7)

(-1.2)




Table V. Forecasting regressions of excess market returns using pmv and cay at different
levels of aggregation h in quarters: 1952Q2-2006Q4

h= 1 2 4 24 28 32

pmv 161 1.35 82
(1.77) (1.29) (.54)

2.33 3.66 455
(1.86)  (4.15)*  (3.48)*

cay 1.43 2.67 4.83 12.73 9.88 6.88
(@421)*  (356)*  (3.14)* (G.O1)* (319  (1.75)

=24 -



Table VI. GLS R? (%) from cross-sectional pricing regressions on the FF 25 size- and value-sorted portfolios at different horizons:
1952Q2-2006Q4
Weights given by the variance of returns

Business cycle

h= 1 2 4 24 28 32
Basic models
CAPM 23 19 15 12 38 15
C-CAPM 14 03 26 13 1.1 1.0
FF 3-factor model 18 175 102 75 81 84
Scaled models
) CAPM 46 42 93 43 143 83
With pmv C-CAPM
36 41 112 21 22 2.0
. CAPM 34 20 51 71 42 1.7
With cay C-CAPM
47 15 35 19 122 75

-25-



Table VII. Adjusted-R? (%) from cross-sectional pricing regressions on the FF 25 size- and value-sorted portfolios and 30 industry
portfolios at different horizons: 1952Q2-2006Q4

Business cycle Long run

h= 1 2 4 24 28 32

Basic models
CAPM 06 14 -08 17 -19 -09
C-CAPM 12 -01 -17 96 174 214

FF 3-factor model 171 147 142 58.4 552 48.1

Scaled models

. CAPM 1.7 13.0 11.9 21.9 6.3 10.4
With pmv C-CAPM

38 144 107 121 28.0 332

With ca CAPM 40 75 112 42.6 29.9 45
y C-CAPM

02 -03 33 29.6 334 39.2

-26 -



Table VIII: C-CAPM betas and conditional betas (for low and high values of the state variable) with pmv and cay

pmv - 2 year horizon

Betas on consumption growth Betas on pmv
Size Size
1 2 3 4 5 1 2 3 4 5
1] 242 -272 -021 -0.12 473 1|-471 -502 -274 -163 1.02
2| 004 -273 -180 -258 -3.48 2| -433 -544 -430 -3.79 -487
HML 3 |-096 156 -1.22 -424 -2.08 HML 3| -338 -173 -479 -7.01 -4.90
41 111 -195 -021 -0.37 -0.37 4|-188 -448 -388 -4.06 -431
5| 024 -274 -214 -083 -1.34 5|-509 -758 -5.03 -3.88 -595
Betas on the interaction
Size
1 2 3 4 5
11084 130 050 048 -0.56
21125 152 142 124 134
HML 3| 130 083 137 195 125
41077 148 116 152 0.98
5| 156 225 180 176 165
Conditional betas — high pmv Conditional betas — low pmv
Size Size
1 2 3 4 5 1 2 3 4 5
1] 917 777 384 378 0.24 11320 -151 025 033 422
211012 955 962 744 730 21120 -132 -049 -143 -224
HML 3| 956 822 984 1147 796 HML 3025 233 005 -243 -093
4| 736 998 910 1191 756 4|18 -058 08 104 055
5] 1280 1541 1234 1338 11.97 51169 -065 -047 080 019

-27-



Betas on consumption growth

HML

abhwnNE

Size
3

4

3.62
-3.19
-5.46
-3.02
-4.85

-3.98
-7.80
-1.06
-6.94
-6.55

Betas on the interaction

HML

abwnNE

1

2

-3.13
-4.46
-5.65
-1.71
-5.28

Size

-0.26
-6.12
-7.60

1.38
-1.08

4 5

5.75
-5.74
-4.36
-2.77
-2.98

0.29
121
1.63
1.23
2.04

0.84
1.76
1.04
2.00
2.14

0.55
1.33
1.64
0.92
1.76

Conditional betas — pmv high

HML

abhownNE

Size
3

0.04 -0.97
126 0.99
171 097
0.67 0.82
119 1.09

4

6.71
9.60
11.78
10.02
16.68

4.91
10.75
9.90
14.21
16.07

273 0.16
9.60 7.19
11.63 10.45
8.04 843
1336 1151

-4.48
4.72
5.90
591
8.52

pmv - 3 year horizon

Betas on pmv

HML

HML

aprwnN -

Conditional betas — pmv low

-28 -

Size
1 2 3 4 5
1|-131 -344 -198 0.65 3.40
21-386 -8.17 -416 -494 -515
3(1-538 -171 -6.15 -7.68 -5.39
4| -334 -6.81 -249 -077 -457
5]-636 -856 -5.00 -2.42 -4.80
Size
1 2 3 4 5
418 -236 -2.06 -0.18 3.88
-0.86 -442 -190 -3.69 -3.83
-231 094 -250 -431 -2.48
-0.64 -3.08 0.07 267 -1.18
-093 -242 -188 1.22 -0.88



Betas on consumption growth

HML

Betas on interaction

HML

a b wnNE

abhwNE

Size

0.48
-1.82
-7.50
-4.24
-3.69

1

-2.53
-9.47
-2.02
-10.51
-6.86

2

-3.21
-5.63
-6.86
-3.43
-5.34

Size

0.01 2.24
-7.81 -10.10
-10.28  -8.37
035 -6.22
-352 531

4 5

-0.32
0.84
1.62
1.30
1.72

0.45
1.62
1.28
2.30
1.81

0.51
131
1.58
1.27
1.61

Conditional betas — pmv high

HML

apbrwnNE

1

2

Size
3

-0.02 -0.29

1.29
181
0.84
1.52

4

1.52
1.36
1.24
1.27

531
8.92
13.25
12.47
18.41

3.19
11.37
14.34
19.01
16.35

3.30
11.21
13.44
12.90
15.27

-0.29

8.71
12.91
11.12
16.04

-1.47
9.38
9.06
9.74

11.00

pmv - 4 year horizon

Betas on pmv

HML

abwnNE

Conditional betas - pmv low

HML

Size
1 2 3 4 5
6.09 -0.21 0.07 247 031
-0.60 -876 -429 -564 -9.05
-6.93 -1.77 -6.47 -10.15 -9.17
-3.97 -10.11 -3.68 -2.08 -7.73
-353 -801 -369 -478 -571
Size
1 2 3 4 5
1| 850 -1.19 -169 -0.06 1.37
2| 069 -460 -1.70 -3.95 -555
3|-265 180 -211 -486 -4.30
41-034 -361 039 287 -249
5| 148 -144 -052 105 -1.50

-29 -



Betas on consumption growth

HML

Betas on interaction

HML

HML

abwnNE

abhownNE

Size
1 2 3 4 5
16.12 345 215 221 -1.09
466 -536 -2.28 -6.85 -12.56
-414 330 -247 -879 -9.36
-020 -685 029 086 -7.57
507 -052 -2.83 -513 -507
Size
1 2 3 4 5
-0.85 -0.13 0.04 -0.01 047
0.00 103 089 117 1.83
093 075 095 149 147
069 166 100 086 141
057 090 117 173 1.32
Conditional betas — pmv high
Size
1 2 3 4 5
319 153 269 211 599
473 1020 11.15 10.88 15.14
9.99 1462 11.88 1383 12.88
10.18 1835 1545 1385 13.79
13.67 13.09 1495 21.11 14.98

apbrwnNE

pmv -5 year horizon

-30 -

Beta on pmv
Size
1 2 3 4 5
1]1476 876 866 740 -135
2| 982 -177 178 -270 -9.71
HML 3| -049 625 100 -7.20 -8.77
4| 290 -326 176 -0.84 -7.29
5] 932 129 175 -509 -2.85
Conditional betas — pmv low
Size
1 2 3 4 5
111270 294 229 219 0.78
2| 468 -125 127 -216 -523
HML 3| -040 630 133 -2.81 -348
4| 254 -018 430 430 -1.92
5| 734 308 187 181 0.23



Betas on consumption growth

HML

abhownNE

Betas on the interaction

HML

HML

apbrwnNE

Size
1 2 3 4 5
588 217 227 182 4.00
462 280 351 229 196
3.70 486 4.08 290 294
422 375 438 519 396
6.21 539 426 560 5.27
Size
1 2 3 4 5
042 -024 -045 -192 -0.36
-004 122 089 148 1.73
090 089 164 197 152
1.07 185 147 137 217
227 249 160 226 210
Conditional betas — cay high
Size
1 2 3 4 5
6.76 168 133 -216 325
454 532 535 536 553
556 6.70 7.47 6.98 6.10
6.43 758 743 8.03 8.6
1091 1056 7.58 10.28 9.62

abhwnNE

cay - 2 year horizon

Betas on cay

HML

g wnN R

1

2

Size
3

4

5

573
7.64
2.43
2.86
0.18

10.09
1.61
4.46
2.58

-1.68

Conditional betas — cay low

HML

abhownNE

1

2

12.40
5.59
2.52
3.26
0.73

Size

1556 1
3.72
0.36
242

-0.16

4.04
4.87
4.09
1.98
4.93

5.05
4.70
1.92
2.10
1.70

-31-

2.65
0.39
3.09
0.07
0.44

3.16
1.74
0.83
1.45
1.08

5.63
-0.64
-1.02

2.47

1.11

4.72
-1.47
-0.09
-0.35

1.10



Beta on consumption growth

HML

apbrwnNE

Betas on the interaction

HML

HML

abhwnNE

Size
1 2 3 4 5
550 048 0.13 054 272
242 068 171 001 -0.23
172 336 201 062 1.08
231 214 254 422 192
408 331 230 390 292
Size
1 2 3 4 5
-051 -097 -136 -1.60 094
-163 -0.13 -0.83 0.94 178
-0.02 -1.38 023 155 158
-0.33 -0.08 -059 047 164
0.24 -0.08 -0.36 0.62 0.43
Conditional betas — cay high
Size
1 2 3 4 5
442 -161 -2.78 -2.88 473
-1.07 040 -0.06 2.02 3.8
169 041 250 394 447
160 196 128 522 543
459 314 153 522 384

apbrwnNnE

cay - 3 years horizon

Betas on cay

HML

HML

O b wNE

Size
1 2 3 4 5
1143 16.46 20.87 21.63 13.98
1710 715 1501 6.21 5.38
6.12 16.28 888 056 4.74
8.15 11.25 12.04 6.38 4.12
796 7.70 934 525 1426
Conditional betas — cay low
Size
1 2 3 4 5
1|653 245 288 377 082
2572 093 337 -190 -3.82
3|17 614 154 -252 -212
41298 231 373 328 -1.39
5|360 346 303 265 2.05

-32 -



Betas on consumption growth

HML

apbrwnNE

Betas on the interaction

HML

HML

abhwnNE

Size
1 2 3 4 5
6.13 -056 -091 -039 220
133 -053 068 -124 -0.99
033 308 114 -031 0.11
136 128 236 391 142
318 229 138 332 197
Size
1 2 3 4 5
-049 -0.77 -173 -0.87 122
-095 038 -089 179 1.72
147 -195 -0.04 208 246
082 -057 -087 134 161
-0.13 015 -0.64 0.75 -0.55
Conditional betas — cay high
Size
1 2 3 4 5
506 -2.25 -469 -231 4386
-0.74 030 -128 268 278
354 -119 105 425 551
316 004 046 6.83 493
290 263 -0.03 496 0.76

apbrwnE

cay - 4 year horizon

Betas on cay

HML

1

2

Size

3

4

5

12.43
15.81
-5.27
-1.36

9.01

a b wNE

17.36
3.87
23.45
14.74
5.97

Conditional betas — cay low

HML

b wN -

27.73
17.37
11.49
14.28
13.35

Size

22.73 16.64
-0.10 6.36
-5.98 -1.91
-0.10  4.96

414 25.63

7.12
3.24
-2.63
-0.29
3.43

-33-

1.00
-1.29
7.00
2.42
1.98

2.56
2.48
1.22
411
2.68

1.37
-4.84
-4.51

121

181

-0.25
-4.45
-4.85
-1.82

3.09



Betas on consumption growth

Size
1 2 3 4 5
1| 568 -108 -148 -0.89 224
2|-062 -181 -062 -216 -174
HML 3| -208 217 -025 -1.09 -0.29
41-053 -067 217 352 0.66
5| 118 0.95 -0.67 206 121
Betas on the interaction
Size
1 2 3 4 5
1259 -010 -155 -0.30 0.58
21124 149 012 199 0.73
HML 3|361 -069 038 208 178
41302 058 -049 195 0.9
51170 117 032 165 -157
Conditional betas — cay high
Size
1 2 3 4 5
11142 -131 -492 -156 354
2| 214 148 -036 226 -0.12
HML 3| 593 064 060 353 3.65
4| 618 060 1.08 7.84 278
5| 495 355 0.04 572 -227

HML

HML

cay - 5 year horizon

Betas on cay

apbrwnN R

Size

1 2 3 4 5
-1458 16.17 3387 2517 27.82

-1.04 -6.14 1098 -3.14 16.15
-29.01 16.74 9.07 -10.09 2.96
-23.10 430 1298 -7.56 10.54

-846 -533 558 -543 4031

Conditional betas — cay low
Size

1 2 3 4 5

041 -087 169 -0.29 1.05
-3.16 -484 -0.86 -6.23 -3.23
-944 357 -1.02 -534 -3.92
-6.69 -1.85 317 -044 -1.28
-228 -145 -133 -131 4.40

abhwnNE

-34 -
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Figure 1. Adjusted R2 in cross-sectional regression
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Realized returns

Realized returns

Figure 2. Realized vs. fitted returns on FF portfolios - CAPM
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Realized returns

Realized returns
ual

Figure 3. Realized vs. fitted returns on FF portfolios - CAPM scaled by pmv
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Realized returns

Realized returns
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Figure 4. Realized vs. fitted returns on FF portfolios - C-CAPM
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Figure 5. Realized vs. fitted returns on FF portfolios - C-CAPM scaled by pmv
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Figure 6. Betas when pmv is high - 3 years




Figure 7. Betas when pmv is low - 3 years






