
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Montréal 

Cette version mars 2010 

This version March 2010 

(CIRANO publication : février 2011/February 2011) 

 

 

 

 
© 2011 Federico M. Bandi, Benoit Perron. Tous droits réservés. All rights reserved. Reproduction partielle 

permise avec citation du document source, incluant la notice ©. 

Short sections may be quoted without explicit permission, if full credit, including © notice, is given to the source. 

 

 

 

Série Scientifique 

Scientific Series 

 

  2011s-16 
 

Past Market Variance and Asset Prices 
 

Federico M. Bandi, Benoit Perron 



CIRANO 

Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le financement de 

son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-membres, d’une subvention 

d’infrastructure du Ministère du Développement économique et régional et de la Recherche, de même que des subventions et 

mandats obtenus par ses équipes de recherche. 

CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its infrastructure and research 

activities are funded through fees paid by member organizations, an infrastructure grant from the Ministère du 

Développement économique et régional et de la Recherche, and grants and research mandates obtained by its research 

teams. 

 

Les partenaires du CIRANO 
 

Partenaire majeur 

Ministère du Développement économique, de l’Innovation et de l’Exportation 
 

Partenaires corporatifs 

Banque de développement du Canada 

Banque du Canada 

Banque Laurentienne du Canada 

Banque Nationale du Canada 

Banque Royale du Canada 

Banque Scotia 

Bell Canada 

BMO Groupe financier 

Caisse de dépôt et placement du Québec 

Fédération des caisses Desjardins du Québec 

Financière Sun Life, Québec 

Gaz Métro 

Hydro-Québec 

Industrie Canada 

Investissements PSP 

Ministère des Finances du Québec 

Power Corporation du Canada 

Raymond Chabot Grant Thornton 

Rio Tinto 

State Street Global Advisors 

Transat A.T. 

Ville de Montréal 
 

Partenaires universitaires 

École Polytechnique de Montréal 

HEC Montréal 

McGill University 

Université Concordia 

Université de Montréal 

Université de Sherbrooke 

Université du Québec 

Université du Québec à Montréal 

Université Laval 
 

Le CIRANO collabore avec de nombreux centres et chaires de recherche universitaires dont on peut consulter la liste sur son 

site web. 

ISSN 1198-8177 

 

Les cahiers de la série scientifique (CS) visent à rendre accessibles des résultats de recherche effectuée au CIRANO 

afin de susciter échanges et commentaires. Ces cahiers sont écrits dans le style des publications scientifiques. Les idées 

et les opinions émises sont sous l’unique responsabilité des auteurs et ne représentent pas nécessairement les positions 

du CIRANO ou de ses partenaires. 

This paper presents research carried out at CIRANO and aims at encouraging discussion and comment. The 

observations and viewpoints expressed are the sole responsibility of the authors. They do not necessarily represent 

positions of CIRANO or its partners. 

Partenaire financier 



Past Market Variance and Asset Prices
 *

 
 

 

 

Federico M. Bandi
 †
, Benoit Perron

 ‡
 

 

 

 
 

 

Abstract 
 

Recent work in asset pricing has focused on market-wide variance as a systematic factor and 

on firm-specific variance as idiosyncratic risk. We study an alternative channel through which 

the variability of financial market returns may help our understanding of cross-sectional price 

formation in financial markets. Invoking the countercyclical nature of market variance, we 

allow the (stochastic) discounting of future cash-flows to depend on the level of past market 

variance (pmv). Employing pmv as a conditioning variable in a classical consumption-CAPM 

framework, we derive economically meaningful conditional factor loadings and conditional 

risk premia. We show that scaling by pmv may also yield more effective pricing results than 

scaling by successful, alternative variables (such as the consumption-to-wealth ratio) precisely 

at frequencies at which their predictive ability for excess market returns should be (in theory) 

and is (empirically) maximal, i.e., business-cycle frequencies. 

 

Keywords: Asset prices, financial markets. 

                                                 
*
 We thank Eric Jacquier, Pietro Veronesi, and participants in the Financial Econometrics Conference at Imperial 

College, London (May, 2008), and the Inaugural Meetings of the Society for Financial Econometrics (SoFiE) for 

helpful comments. Financial support from the William S. Fishman Faculty Research Fund at the Graduate 

School of Business of the University of Chicago (Bandi) and FQRSC, SSHRC, and MITACS (Perron) is 

gratefully acknowledged. Both authors also thank the Initiative on Global Markets at the Booth School of 

Business of the University of Chicago for providing further funding. We are grateful to Martin Lettau, Sydney 

Ludvigson, Gene Fama, and Ken French for making their data available. 
†
 Booth School of Business, University of Chicago. Address: 5807 South Woodlawn Avenue, Chicago, IL, 

60637, USA. Tel.: (773) 834-4352. E-mail: federico.bandi@chicagogsb.edu.  
‡
 Dépt. de sciences économiques, Université de Montréal, CIREQ and CIRANO, C.P. 6128, Succ. centre-ville, 

Montréal, Québec, H3C 3J7, Canada. Tel. (514) 343-2126. E-mail: benoit.perron@umontreal.ca.  

mailto:federico.bandi@chicagogsb.edu
mailto:benoit.perron@umontreal.ca


1 Introduction

We conjecture that the level of past �nancial market variance might have an important e¤ect

on the way market participants risk-adjust, or discount, future cash �ows for the purpose of

cross-sectional asset pricing. Speci�cally, the (stochastic) discounting of future pay-o¤s may

depend on the state of the economy, as summarized by the level of �nancial market variance.

Di¤erently put, it is often assumed that the relevant notion of cross-sectional risk is not the

unconditional beta of an asset but its conditional (on the state of the economy) counterpart.

We conjecture that past market variance may serve as an economically-meaningful su¢ cient

statistic when computing conditional (on the state of the economy) cross-sectional betas.

The macroeconomic determinants of �nancial market variance are rather uncontroversial.

Higher volatility of output growth, in�ation, and interest rates translate into higher market

variance. High in�ation and low output growth are also associated with high market variance

(see, e.g., Engle and Gonzalo, 2008). Hence, higher variance tends to be associated with weak

economic conditions. It may also be induced by related (to the prevailing economic conditions)

changes in risk-aversion as well as by changes in investor�s uncertainty about fundamentals

(when this uncertainty is priced in equilibrium). In other words, market-wide �nancial vari-

ance may correlate in important ways with the state of the economy, both in terms of macro

fundamentals and in terms of market participants�s sentiment about fundamentals. This said,

while consumption risk may be the relevant priced risk as postulated by classical cross-sectional

pricing paradigms, we conjecture that the impact of consumption risk on the cross-sectional

prices of �nancial assets (i.e., their consumption betas) might change depending on the pre-

vailing variance level. This is the sense in which market variance may serve, in terms of

cross-sectional pricing, as a su¢ cient statistic for the state of macro economic fundamentals as

well as for the state of agents�uncertainty about fundamentals and changes in risk preferences.

Using ubiquitous test assets, such as portfolios sorted on size and book-to-market, we con-

�rm this intuition. Di¤erently from much existing work in asset pricing, we evaluate equilibrium

pricing at alternative frequencies ranging from 1 quarter to 40 quarters (10 years) with a focus

on (roughly) business-cycle frequencies (2 to 5 years). Speci�cally, we show that the value and

size premium (i.e., the higher average returns delivered by high book-to-market/small capital-

ization stocks) may be the results of porfolios of small companies and value companies having

relatively higher risk (higher betas with respect to consumption growth) in less favorable times

(i.e., in times of high market variance).

Our approach and results relate to a broad recent literature on conditional or scaled pricing.

In the context of traditional pricing paradigms, such as the consumption-CAPM, meaningful

choices of the conditioning variable(s) have been shown to deliver smaller pricing errors than
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those implied by the corresponding unconditional models. These pricing errors often fare

satisfactorily when compared to the ones yielded by well-known benchmarks, such as the Fama-

French three-factor model. Implementing conditional models, however, is not an obvious task.

While economic theory places restrictions on the set of viable conditioning variables, time-

variation in the stochastic discount factor naturally depends on the agents�utility function

and its inputs. Hence, even though variables tracking predictable changes in the conditional

moments of market returns are natural candidates, the set of possible conditioning variables is

broad and, for obvious reasons, hard to completely pin down. Importantly, even when clearly

implied by a model, these variables may be unobservable, the surplus consumption ratio of

Campbell and Cochrane (1999) being a notorious example.

Relying on the countercyclical nature of variance, we show that past market variance (pmv)

may serve as an easily-computable proxy for macro variables driving state dependence in the

stochastic discount factor. Conditioning on pmv drastically improves on the performance

of the classical C-CAPM leading to pricing errors that are similar to those induced by the

Fama-French three-factor model and are often smaller than those implied by the successful

consumption-to-wealth ratio (cay) advocated by Lettau and Ludvingson (2003). Between 2

and 5 years, when conditioning on pmv, the scaled C-CAPM explains 55:6%, 70:9%, 69:2%,

and 54:5% of the variation in average retiurns. The corresponding values for the unconditional

C-CAPM and the C-CAPM conditional on cay are 24:7%, 16:2%, 8:6%, �0:9% and 46:3%;

35:9%; 33:1%, 37:2%, respectively. The limitations of using purely statistical metrics (such

as coe¢ cients of determinations) when evaluating unconditional and conditional asset pricing

models are of course well-known (for recent discussions, Lewellen and Nagel, 2006, and Lewellen

et al., 2007). The above �gures should therefore be interpreted as being merely suggestive.

The remainder of the paper places emphasis on the economic implications of our problem.

As said, proper conditioning of the stochastic discount factor should rely on variables that

have explanatory power for the conditional moments of market returns. Bandi and Perron

(2008) document that the predictive ability of pmv for excess market returns increases with the

aggregation horizon. In the long run, pmv is a much stronger predictor of excess market returns

than both the classical dividend-yield (dy) and cay. Admittedly, in conditional pricing models,

the dependence between conditional moments of market returns and conditioning variables is,

in general, nonlinear. However, the predictive ability of pmv in linear models for conditional

expected market returns (and conditional variances) makes pmv, as is the case for dy and cay

in the recent literature, a viable candidate for a theoretically-meaningful conditioning variable.

We evaluate the cross-sectional pricing implications of this time-series predictability and show

that pmv may lead to e¤ective time-variation in cross-sectional consumption risk.
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A vast amount of recent work has been devoted to the relevance of variance in asset pricing

tests. The existing work has focused on innovations in market variance employed as a system-

atic factor found to be priced cross-sectionally (see, e.g., Adrian and Rosenberg, 2008, Ang et

al., 2006, Bandi et al., 2008, and Moise, 2006) as well as on the residual cross-sectional pric-

ing of idiosyncratic variance beyond that provided by a variety of widely-employed systematic

factors (Ang et al., 2006, and Spiegel and Wang, 2005, among others). This paper suggests

an alternative channel (i.e., time-variation in the stochastic discount factor) through which

market variance may help our understanding of price formation in �nancial markets.

The remainder of the paper is structured as follows. Section 2 provides, in the context of

modern approaches to asset pricing, economic motivation for deriving easy-to-compute proxies

for variables driving state dependence in the stochastic discount factor. As previously pointed

out, our results suggest that pmv may be one such proxy. Section 3 introduces the data

and the pmv estimator in a fairly general continuous-time setting. In Section 4 we present

motivating �ndings about the cross-sectional relation between the returns on the size- and

value-sorted portfolios and pmv. Section 5 discusses conditional (on pmv) cross-sectional pric-

ing at business-cycle frequencies and in the long run. In Section 6 we compare our pricing

results to alternative, successful models, namely the classical Fama-French three-factor model

and scaled speci�cations relying on cay. Section 7 discusses issues of robustness in the context

of recent criticisms of conditional approaches to cross-sectional pricing. Section 8 is about

economic interpretation through analysis of the model�s implied conditional betas and implied

conditional risk premia. Section 9 concludes.

2 Modern utility functions

The price of a claim to consumption can be expressed as PMt = 1
�t
Et
�R1
t ��C�d�

�
, where

Ct denotes consumption and �t is the state-price density which discounts future consumption

streams. Consider the state price density �t = e��tC
�

t Ht, where Ht is a slow-moving utility

adjustment. This is a fairly general speci�cation in modern asset pricing theory including,

among other recent models, the external habit of Campbell and Cochrane (1999) and Santos

and Veronesi (2005) as well as broadly de�ned shocks to preferences or changes in sentiment

as in, e.g., Lettau and Wachter (2007). In the former case, Ht = S
�

t with St = (Ct �Xt)=Ct,

i.e., the surplus consumption ratio.

Importantly, the assumed state-price density implies that the conditional moments of mar-

ket returns are nonlinear functions of the utility adjustment Ht. Di¤erently put, focusing on

the �rst two conditional moments, Et[RMt;t+1] = f1(Ht) and Vt[RMt;t+1] = f2(Ht), for generic

functions f1(:) and f2(:).
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Importantly, the utility-adjustment Ht is unobservable, in general. Hence, proper condi-

tioning on Ht for the purpose of cross-sectional pricing cannot be conducted. We ask the

question: does pmv correlate in important ways with the unobservable Ht? Alternatively, is

pmv driving time-series variation in the conditional �rst and second moment of market re-

turns? Admittedly, these are hard questions to answer because of the unobservability of Ht

and that of the driving functions f1(:) and f2(:). They are also hard questions to answer in

light of the lack of theoretical implications about the horizon at which asset pricing models

should perform satisfactorily. Put it di¤erently, at which frequency should we be evaluating the

forecasting performance (for market returns and future market variance) of pmv? Similarly,

at which frequency should cross-sectional pricing exercises be conducted?

Addressing these fundamental issues satisfactorly is naturally beyond the scope of this pa-

per. However, by (i) reporting the outcomes of linear regressions of future market returns and

future market variances on to pmv and (ii) by doing so at a variety of alternative horizons,

the next section provides preliminary evidence about the viability of pmv as a proper condi-

tioning variable in cross-sectional pricing. The pricing performance of pmv is the subject of

the following sections.

3 Data and time-series regressions

While our emphasis is on business-cycle frequencies, we report conditional pricing results at

various horizons ranging from 1 quarter to 10 years. To this extent, we use data between

the second quarter of 1952 and the last quarter of 2006 and aggregate it over the appropriate

horizon h (with h = 1; :::; 40), as we discuss below.

There are two reasons for employing the quarterly frequency as our highest data frequency.

First, quarterly consumption data to be used in implementations of the C-CAPM (and its

conditional variations) is available over a longer time span. Monthly consumption data only

starts in 1959.1 Second, we deem it informative to compare the cross-sectional pricing ability

of pmv to that of cay. The latter is obtained as the residual from a cointegrating regression

of logarithmic consumption on logarithmic �nancial wealth and logarithmic labor income (all

variables measured per-capita and in real terms) and is available at the quarterly frequency.2

As is customary, we use the CRSP value-weighted index with dividends as our market

proxy. This series is available daily. This higher (daily) frequency is exploited for constructing

the pmv estimator, as outlined below.

1The consumption data is real per-capita consumption on nondurables and services. We use the modi�ed
version of this series (which excludes clothing and shoes) available on Sidney Ludvigson�s web site.

2We also obtain it from Sydney Ludvigson�s web site.
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Our test assets are the 25 Fama-French size- and value-sorted portfolios.3 The Fama-French

portfolio returns are available at the monthly frequency. We convert them to quarterly data

(and data at lower frequencies) by aggregating appropriately.

3.1 Past market variance (pmv)

We employ realized variance to identify sample path variation in observed market returns and

compute pmv. Consider a generic quarter t with nt trading days. Denote by rt+ j
nt

the j-th

daily continuously-compounded return in quarter t: Realized variance in quarter t is given by

b�2t;t+1 = ntX
j=1

r2
t+ j

nt

;

i.e., the sum of the (daily) squared continuously-compounded returns over the period. It is well-

known that, under assumptions, b�2t;t+1 is a consistent estimate of (increments in) the quadratic
variation of the logarithmic price process in asymptotic designs allowing for nt " 1 for all t

(i.e., as the number of observations in each quarter increases asymptotically without bound).

For instance, assume the logarithmic price process is expressed as log pt = �
f
t +�

l
t+�

j
t , where

�ft is a continuous �nite variation component, �
l
t =

R t
0 �sdWs is a local martingale driven

by Brownian shocks dWt, �
j
t =

R t
0

�
JsdZs � �j�sds

�
is a compensated, jump process with Zt

denoting a counting process with �nite intensity �t, and Jt is a random jump size with mean

�j and variance �
2
j . Furthermore, assume the stochastic volatility process �s is càdlàg. This

speci�cation readily accommodates small and large shocks in the price�s sample path as well

as fairly unrestricted spot volatility dynamics. The quadratic variation of the continuous-time

Markov process log pt between t and t+ 1 is

[log p]t;t+1 = [log p]t+1 � [log p]t =
Z t+1

t
�2sds+

X
t�s�t+1

(log(ps)� log(ps�))2, (1)

where log(ps�) = lim�#0 ps��; and is made up of two components, one associated with variation

in the local martingale and one deriving from the presence of infrequent jumps in the sample

path. Andersen et al. (2003) and Barndor¤-Nielsen and Shephard (2002) have recently pro-

vided empirical and theoretical justi�cations for the use of realized variance in the presence of

high-frequency asset price data under similar assumptions. As is traditional in low frequency

applications in �nance, we do not take the asymptotics literally. Nevertheless, our use of daily

3As in Fama and French (1992, 1993), we work with portfolios constructed by value-weighing stock returns
(on the New York Stock Exchange, the American Stock Exchange, and the Nasdaq) at the intersection of �ve
size quintiles and �ve book-to-market quintiles. The portfolio�s raw returns were downloaded from Kenneth
French�s web site. We refer the reader to it for details on portfolio construction.
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data in the computation of pmv is bound to capture important variation in the market return�s

sample path. Thus, pmvt�h;t is simply de�ned as b�2t�h;t, where
b�2t;t+h = hX

i=1

b�2t+i�1;t+i. (2)

for an aggregation level equal to h quarters.

3.2 Some preliminary evidence

Consistently with our discussion in Section 2, proper conditioning variables should have pre-

dictive ability for the moments of market returns. These moments may of course be highly

nonlinear functions of the predictor(s), in general.

De�ne market returns between t and t+ h as Rt;t+h = �hj=1
�
1 +Rt+ j

h

�
� 1, where Rt+ j

h

is the j-th quarterly return on the market over horizon h. We regress Rt;t+h and b�2t;t+h (or,
equivalently, pmvt;t+h) on pmvt�h;t. We do so at various horizons and report results in Table

I. The regression of future market returns on pmv largely replicates �ndings in Bandi and

Perron (2008) where risk premia (market returns in excess of the risk-free rate) are regressed

on pmv : the predictive ability of pmv increases with the horizon. Not surprisingly, future

market variance is best predicted by pmv at short horizons. This is an implication of the

autoregressive nature of variance.

In the context of a traditional (in the existing literature) linear speci�cation, this evidence,

and the related evidence in Bandi and Perron (2008), are meant to be merely suggestive of

the informational content of pmv for the market return moments at various horizons. In what

follows, we explore the cross-sectional pricing implications of this time-series predictability.

4 Fama-French portfolio returns and pmv

In order to further motivate our approach, we now report the outcomes of regressions of the

25 Fama-French portfolio returns on pmv. In light of the countercyclical nature of �nancial

market variance, our interest is largely on business-cycle frequencies. To this extent, we focus

here on aggregation levels between 1 and 5 years. As earlier in the market case, we de�ne

portfolio returns between t and t + h as Rpt;t+h = �hj=1

�
1 +Rp

t+ j
h

�
� 1, where Rp

t+ j
h

is the

j-th return on portfolio p over horizon h. We run the following regressions:

Rpt;t+h = �
p
h + �

p
hpmvt�h;t + "

p
t;t+h h = 4; 8; 12; 16; 20 p = 1; 2; :::; 25. (3)

Table II contains the results. The betas of the 25 Fama-French portfolio returns with respect

to pmv decrease in the size dimension (when going from small �rms to large �rms) and increase
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in the value dimension (when going from low book-to-market stocks to high book-to-market

stocks). In other words, at these frequencies, large �rms generally yield returns that are less

correlated with pmv than small �rms. Similarly, value stocks yield returns that are more

correlated with pmv than growth stocks. These patterns re�ect similar patterns in average

returns. As is well-known, average returns increase with value and decrease with size. As

expected, they do so at all frequencies we consider. While these obvious structures in the

betas are sometimes not fully monotonic, they are somewhat striking. When paired with

the cross-sectional dispersion of average returns, they appear indicative of the cross-sectional

pricing potential of pmv. We now turn to a more formal discussion of this issue.

For a speci�c horizon h, write the fundamental pricing equation as

1 = Et[Mt+h(1 +R
p
t;t+h)]; (4)

where Et denotes expectation conditional on time t information,Mt+h is the stochastic discount

factor, and Rpt;t+h is, as earlier, the net return on the generic asset (portfolio, in our case) p.

Assume Mt+h = c1t + c2tft;t+h, where ft;t+h is a factor. Classical models are the CAPM

for which the factor ft;t+h is the market return over h and the C-CAPM for which ft;t+h is

consumption growth over the same horizon. Even though, for reasons of economic generality

and consistency with theory as laid out in Section 2, our interest in this paper is in the

consumption speci�cation, in what follows we will report results pertaining to the CAPM

case as well. In general, c1t and c2t are time-varying coe¢ cients whose dependence on time t

macro variables depends on the true, unknown utility function.4 Write now c1t = a1 + a2xt

and c2t = b1 + b2xt. In other words, assume that time-variation in the level and slope of

the stochastic discount factor is driven by a variable x measurable with respect to time t

information. This speci�cation, which could be readily extended to multiple states x, leads to

1 = E[(a1 + a2xt + b1ft;t+h + b2 (xtft;t+h)) (1 +R
p
t;t+h)];

with no need for a subscript t on the expectation operator. In other words, it leads to an

unconditional multifactor beta speci�cation

E[Rpt;t+h] = E[
eRt;h] + 3X

i=1

�ph;i�h;i;

where E[ eRt;h] is the expected return on the zero-beta portfolio uncorrelated with the stochastic
discount factor (as in Black, 1972), the �ps are multivariate betas of the returns on asset p on

4 In Campbell and Cochrane (1999), for example, c1t and c2t are functions of the "surplus consumption ratio."
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xt, ft;t+h, and the interaction variable xtft;t+h, and the �s are the corresponding cross-sectional

slopes.5

Assume now xt = pmvt�h;t. When combined with the observed pattern in average portfolio

returns bE[Rpt;t+h], the reported structure in the estimated pmv betas (obtained from Eq. (3)

above) is suggestive of the potential economic and statistical signi�cance of the correspondingb� estimate. Neglecting, but only for the time being, the additional loadings associated with the
factor ft;t+h and the interaction xtft;t+h, this signi�cance is, in turn, indicative of the pricing

potential of pmv as a scaling variable.

In what follows, we evaluate the cross-sectional relation between average returns and gen-

uinely multivariate betas and its economic implications. Di¤erently put, we evaluate whether

the level of historical market variance tracks meaningful predictable time-variation in the sto-

chastic discount factor.

5 Conditional (on pmv) pricing

5.1 Business-cycle frequencies

We employ a standard two-pass methodology for testing asset pricing models. For each asset

p and horizon h, we �rst run a time-series regression of returns (Rpt;t+h) on f t;t+h = (xt; ft;t+h;

xtft;t+h)
|, namely

Rpt;t+h = �
p
h +

�
�ph
�|
f t;t+h + "

p
t;t+h;

to estimate the loadings in the vector �ph: In the second step, for each horizon h, we run

cross-sectional regressions of the average returns on the portfolios on the estimated loadings

to evaluate the resulting pricing errors: 
1

T � h

T�hX
t=1

Rpt;t+h

!
= �h + �

|
h�̂

p
h + "h:

For the time being, we focus on two unconditional models, the CAPM and the C-CAPM,

and their scaled versions (by pmv). We report adjusted-R2s (in Table III) and estimated

lambdas (in Table IV) from the second-step, cross-sectional regressions. The adjusted-R2

values associated with the static CAPM and the static C-CAPM are, respectively, 17:5%;

14:7%; �0:7%; �4:3% and 24:7%; 16:2%; 8:6%; �0:9%, at 2 to 5 years. Hence, market returns
and consumption growth perform similarly at these frequencies. Scaling by pmv improves

the overall �t signi�cantly. The coe¢ cients of determination of the scaled models are 48:2%;

5Since xt is not a risk factor, in conditional models the lambdas do not have a direct economic interpretation
in terms of market prices of risk (see, e.g., the discussion in Cochrane, 1996, 2004, and Lettau and Ludvingson,
2001b). Similarly, of course, the betas do not have a direct interpretation in terms of quantities of risk. We
discuss these issues in Section 8.
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61:3%; 43:6%; 33:2% and 55:6%, 70:9%, 69:2%, 54:5%, thereby yielding a greater improvement

in the C-CAPM case. Fig. 1 provides a graphical representation. The limitations of statistical

metrics, such as coe¢ cients of determination, to evaluate pricing models are notorious. Section

8 focuses on economic signi�cance.

As previously suggested, the betas associated with pmv play an important role (Table

IV). This is especially true in the CAPM case where the lambdas associated with these betas

have minimum t-statistics above 2:4 at business-cycle frequencies. In the C-CAPM case both

the beta on pmv and the beta on the interaction matter at these frequencies. In particular,

the estimated lambdas on the interaction have all t-statistics above 5:5. The lambdas on the

market are negative but statistically insigni�cant. This is a typical result in the literature (see,

e.g., the discussion in Lettau and Ludvigson, 2001b). The lambdas on consumption growth

are instead positive and more statistically signi�cant. In spite of the lack of interpretability

of the lambdas in terms of market prices of risk in conditional models, this result is generally

more consistent with standard economic logic. Ignoring other terms, one would expect stocks

delivering higher average returns to be riskier, as implied by their higher return correlations

with consumption growth. This risk should be positively priced in equilibrium.

For a clearer graphical assessment, Figs. 2 through 5 report the pricing errors associated

with the static models (Fig. 2 and 4) and with the conditional models (Fig. 3 and 5). In

particular, the values on the vertical axis are realized average returns on the portfolios, whereas

the values on the horizontal axis are the corresponding �tted mean returns implied by each

model (i.e., using estimated lambdas and betas). Naturally, if a model priced the portfolios

exactly, the dots would sit on the 45 degree line. As always, for each value on the scatterplot,

the �rst digit refers to the size quintile (with 1 indicating the smallest �rms and 5 indicating

the largest �rms) and the second digit refers to the book-to-market quintile (with 1 indicating

growth stocks and 5 indicating value stocks). The reduction in pricing errors yielded by pmv

scaling is apparent.

5.2 The long run

The adjusted-R2 values of the static CAPM and C-CAPM at 9 and 10 years are 47:5%, 46:6%

and 28:4%, 36:0%, respectively. Therefore, the unconditional models perform somewhat better

at low frequencies. In particular, market returns explain a larger portion of the cross-sectional

variation of the Fama-French portfolios than consumption growth in the long run.

Scaling by pmv increases the R2-values to 65% and 70% in the CAPM case and to 69:5%

and 74:8% in the C-CAPM case. The lambdas associated with the interaction are always

positive and highly statistically signi�cant (Table IV). The lambdas associated with the pmv�s
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loadings are also positive. They are signi�cant in the CAPM case and fairly insigni�cant in

the C-CAPM case. While, in agreement with the static model, market returns play a more

important role than consumption growth if considered individually, the joint consideration of

the loadings with respect to the conditioning variable and the interaction yields smaller pricing

errors in the C-CAPM case than in the CAPM case.

When taking the theoretical implications of Section 2 seriously, since pmv strongly predicts

long-run market returns as reported earlier (and extensively illustrated in Bandi and Perron,

2008), the improved �t delivered by pmv over the static C-CAPM should not be viewed as

surprising. More generally, our �ndings suggest that pmv may contain meaningful information

about time-variation in the stochastic discount factor both at business-cycle frequencies and

at lower frequencies.

6 Alternative pricing models

It is now informative to evaluate the pricing performance of scaled models using pmv as

compared to existing successful alternatives, such as the classical Fama-French three-factor

model and scaled speci�cations using cay. We begin with the latter.

Lettau and Ludvigson (2001a) have shown that cay, coherently with its theoretical justi�-

cation,6 is a strong predictor of excess market returns at business-cycle frequencies. Table V

supports this notion using our data. Consistent with its considerable predictive ability in the

time series, Lettau and Ludvigson (2001b) have also shown that cay is a useful conditioning

variable in scaled asset pricing models. We con�rm this result. At business-cycle frequencies

the adjusted-R2 values yielded by cay in the CAPM case are 39:3%, 50:5%, 65:2%, and 77:3%.

They are 46:3%, 35:9%, 33:1%, and 37:2% in the C-CAPM case. These values should of course

be compared to the adjusted R2-values of the static models in Table III and Fig. 1. When

doing so, models scaled by cay are found to clearly dominate their unconditional counterparts.

Interestingly, for our data, the pricing ability of pmv compares favorably to that of cay both

at business-cycle frequencies and in the long run. Importantly, this is particularly true in the C-

CAPM case. This �nding may be appreciated by comparing adjusted-R2s. More interestingly

for our purposes, it may be appreciated by examining the nature of the conditional factor

loadings implied by alternative scaling factors. Needless to say, this is a more compelling

metric, for our purposes. Session 8 discusses conditional (on cay and pmv) factor loadings

for the C-CAPM. We show that, for our data, pmv leads to conditional consumption betas

that are, in "bad states of the world," relatively more monotonically increasing with value and

6A high value of the consumption-to-wealth ratio implies either expectations of high returns on wealth or
expectations of low consumption growth.
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relatively more monotonically decreasing with size. Additionally, pmv leads to relatively larger

spreads in the conditional consumption loadings than cay. Because the relevant notion of risk

in conditional consumption models is covariation with consumption growth given the state of

the economy, pmv appears to perform satisfactorily at explaining di¤erential average returns

on portfolios by delivering risk quantities (i.e., conditional betas) which align fairly e¤ectively

with these average returns.

We conclude with the Fama-French three-factor model. As is well-known, the model uses

the market returns, the returns on a "small minus big" (SMB) portfolio, and the returns on

"high minus low" (HML) portfolio as the relevant factors.7 Hence, this speci�cation is genuinely

multivariate. We �nd that this classical model performs extremely well at all frequencies,

explaining over 70% of the cross-sectional variation of the returns on these portfolios. Table

IV suggests that HML has prices of risk that are highly statistically signi�cant at virtually all

frequencies (with the sole exception of the 9 and 10 year horizon). The contribution of the

factor loadings associated with SMB and the market is instead reversed. SMB leads to prices

of risk which are signi�cant (and positive) at high frequencies but are imprecisely estimated

(and, eventually, negative) in the long run. The market returns yield risk prices which follow

the opposite pattern. Hence, market risk plays a bigger role in the long run (as testi�ed by

the higher value of the static CAPM at lower frequencies).

The interpretation of the Fama-French factors is, to these days, controversial. The relation

between Fama-French factors and undiversi�able macro risk has been the subject of some

empirical investigation (see, e.g., Liew and Vassalou, 2000, inter alia) but no consensus has

emerged. In light of the generally lower pricing errors delivered by the Fama-French model (at

least when pricing size- and value-sorted portfolios), the success of recent consumption-based

models8 should partly be viewed as a by-product of the Fama-French three-factor model being

hard to interpret economically. Yet, arguably, this model represents an important benchmark.

While, as typically found, we show that all scaled models yield larger pricing errors than the

Fama-French model, scaling improves matters drastically.

7 Addressing the critics

Lewellen and Nagel (2006) and Lewellen et al. (2007) have recently criticized the above two-step

approach for testing pricing models on the 25 Fama-French portfolios. They claim that, since

7The SMB portfolio is the di¤erence between the returns on small �rm portfolios and large �rm portfolios
with the same book-to-market values. The HML portfolio is the di¤erence between the returns on high book-
to-market �rm portfolios and low book-to-market �rm portfolios with the same size. We refer the reader to
Kenneth French�s web site for details.

8The "ultimate consumption" model of Parker and Julliard (2005), for instance, represents a promising
alternative to scaled versions of the C-CAPM.
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these portfolios have a strong factor structure, the addition of factors, as e¤ectively implied by

conditional models, is bound to spuriously in�ate the explanatory power of the models being

tested. To circumvent this issue, they make two main suggestions: expanding the set of test

portfolios beyond the classical 25 Fama-French portfolios and using GLS, rather than OLS,

in the second step of the traditional two-pass methodology. These approaches will lead to a

more stringent test, but they remain subject to criticisms. For example, even if one takes the

view that all assets should be priced by a valid pricing model, it is unclear why portfolios

which do not have an obvious factor structure, like the industry portfolios, should provide a

more compelling test than the 25 Fama-French portfolios. In a similar vein, GLS reshu­ es the

original portfolios and prices linear combinations of them, rather than the original portfolios,

which are arguably of particular interest.

Table VI contains the same information as in Table III, but instead of reporting adjusted-

R2s; we report R2 values when using GLS in the second step. In the implementation of GLS,

we employ the inverse of the unconditional covariance matrix of returns as the weight matrix.

The �rst thing to notice is of course the much lower values of the R2 in this environment. Even

the Fama-French three-factor model has a GLS R2 of 22% at 1 quarter compared with 73% for

the OLS R2. Scaling models by pmv leads to better �t than in the case of the unconditional

models. This is true at all horizons. Importantly, no clear pattern across horizons seems to

emerge relative to cay. Put it di¤erently, pmv remains competitive under this metric relative

to a more sophisticated measure, such as cay.

To increase the universe of portfolios, we add to our original 25 portfolios the 30 indus-

try portfolios9. The corresponding results are in Table VII. Once again, we notice that pmv

improves the explanatory power of both CAPM and C-CAPM across all horizons, and partic-

ularly at business cycle frequencies and in the long run. The usefulness of pmv as a scaling

variable relative to cay is apparent when comparing adjusted-R2s:

When examined based on the statistical �t of constructed portfolios (GLS portfolios) or

portfolios with a mild factor structure (industry portfolios), well-known scaling variables, such

as cay, may perform considerably less well. While the sense in which these portfolios represent

a fully compelling test for conditional pricing models may be the object of some debate, pmv

continues to fare well as compared to more-involved proxies even under alternative metrics.

In the following section we use economic criteria based on implied conditional betas and

conditional risk premia to assess the pricing relevance of pmv. We do so in the context of the

original 25 Fama-French portfolios.

9These are also available from Ken French�s web site.
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8 Conditional betas and risk premia

We focus on the C-CAPM. Table VIII reports betas on consumption growth, betas on pmv,

as well as betas on the interaction at 4 levels of aggregations, i.e., 2, 3, 4, and 5 years. At all

horizons, the average returns on the portfolios behave as described earlier, i.e., they decrease

in the size dimension and increase in the value dimension. Lettau and Ludvigson�s logic

justi�es this pattern (Lettau and Ludvigson, 2001b, Section II). In our scaled speci�cation,

the correlation between portfolio returns and consumption growth is a function of the scaling

factor. In other words, due to the interaction, the partial e¤ect of consumption growth on

portfolio returns depends on the scaling variable, i.e., �
p
t = �

p
�c+�

p
�c;pmvpmvt�h;t. Table VIII

reports values of �
p+
t = �p�c+�

p
�c;pmvpmv

+
t�h;t where pmv

+
t�h;t is the mean of pmv conditional

on it being larger than 1 standard deviation above its mean. We de�ne �
p�
t in a similar fashion.

These de�nitions are the same as those in Lettau and Ludvigson (2001b). For small values of

pmv the correlation between consumption growth and portfolio returns is generally small and

often negative. It is large and positive for large values of pmv. Importantly, for large values of

pmv, the correlation between portfolio returns and consumption growth increases in the value

dimension and decreases in the size dimension, often almost monotonically. The spread in

the conditional factor loadings is also substantial. Arguably, higher pmv values are associated

with worse states of the world. Hence, value stocks require higher excess returns not because

their unconditional risk (as measured by their unconditional beta with respect to consumption

growth) is higher than for growth stocks. Rather, they appear to require higher excess returns

because their conditional risk is higher in bad states (i.e., when pmv is higher).

Lettau and Ludvigson (2001b) use this same logic to justify the role played by cay. Compar-

ing our �ndings to the pricing ability of cay at the same horizons, in the case of pmv we generally

�nd conditional (on bad states) consumption loadings that align more e¤ectively with historical

average portfolio returns, more monotonicity in the conditional (on bad states) loadings, and

larger di¤erences in the loadings between small/big �rms and low/high book-to-market �rms.

Consider the 3 year horizon, for instance. Figures 6 and 7 depict these betas conditional on high

and low pmv respectively. The low book-to-market/high book-to-market loadings associated

with �rms in the �ve size quintiles are 6:7=16:6, 4:9=16:07, 2:73=13:36, 0:16=11:51, �4:48=8:52
in the pmv case. They are 4:42=4:59, �1:61=3:14, �2:78=1:53, �2:88=5:22, 4:73=3:84 in the
case of cay. Similar �gures occur at alternative horizons (c.f., Table VIII).

It is easy to show that, given conditional consumption loadings equal to �
p
t , the implied price

of consumption risk �t can be expressed as � eRt;hV art(�c)c2t, where c2t = b1+b2pmvt�h;t. As-
suming a constant eRt;h (estimated from the cross-sectional regression) and a constant variance
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of consumption growth,10 we evaluate �t after estimating the coe¢ cients in c2t as recommended

by Cochrane (1996) and Lettau and Ludvigson (2001b), i.e., using the estimated cross-sectional

�s.

9 Conclusions

In a world without risk, or with risk-neutral agents, prices are martingales and conditional

expectations of future prices only depend on current prices. When risk is meaningful, prices

are conditional expectations of future prices only after appropriate stochastic discounting.

We conjecture that this stochastic risk correction is correlated with the level of past market

variance (pmv). In other words, we conjecture that past �nancial market variability proxies for

more fundamental (and usually di¢ cult to measure) variables that may drive time-variation

in the assessment of risk induced by macro factors, such as consumption growth. We test

this conjecture by investigating the cross-sectional pricing of classical test assets, namely the

Fama-French size- and value-sorted portfolios, using traditional asset pricing models scaled

by the level of past market variance. The pricing ability of pmv is found to be substantial,

particularly at business-cycle frequencies. When compared to variables that have been shown to

be successful in the same classes of models (such as cay), pmv is found to fare very satisfactorily.

10Both assumptions can be easily relaxed.
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Table I. Slope of forecasting regressions of market returns and market variance using pmv at different  

levels of aggregation h in quarters: 1952Q2-2006Q4 (t statistics in parentheses) 
 
 
 

h= 1 2 4 8 12 16 20 24 28 32 36 40 
            
3.62 4.21 4.66 4.90 5.58 6.63 8.04 9.46 10.52 11.31 12.14 13.08 Market 

returns (2.43) (2.39) (2.76) (3.25) (3.08) (3.40) (3.38) (6.53) (9.77) (9.23) (7.81) (6.88) 
             

.22 .25 .22 .11 .10 .07 -.03 -.13 -.08 .07 .19 .24 
(2.16) (2.35) (1.20) (.33) (.19) (.14) (-.04) (-.13) (-.13) (.17) (.38) (.46) Variance 
            

R2 5.0 6.2 4.9 1.3 1.0 .4 .1 1.4 .5 .5 4.0 9.1 
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Table II. Betas for univariate regressions of the 25 FF portfolio returns on pmv at levels of aggregation h (in quarters) 

 1952Q2-2006Q4 
 
 
 
 
 
h=4    Size   
  1 2 3 4 5 
 1 2.44 2.25 1.23 1.67 0.72 
 2 3.02 2.53 1.78 1.61 1.59 
HML 3 3.13 1.95 1.28 1.56 0.33 
 4 2.92 1.70 2.05 2.74 1.02 
 5 2.91 2.88 3.10 3.64 1.33 
 
 
 
h=12    Size   
  1 2 3 4 5 
 1 -1.06 0.74 0.90 0.86 -1.69 
 2 1.55 0.42 2.01 1.35 0.02 
HML 3 2.18 2.51 1.47 0.69 -0.63 
 4 2.10 2.52 1.45 1.45 -0.76 
 5 2.61 1.21 3.03 2.40 0.09 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

h=8    Size   
  1 2 3 4 5 
 1 -1.89 -0.26 -0.95 0.08 -1.22 
 2 0.09 0.11 0.82 0.75 0.06 
HML 3 1.29 1.10 0.13 0.12 -0.38 
 4 0.80 0.86 0.22 1.35 -0.81 
 5 0.41 0.54 1.44 2.40 -0.04 

h=16    Size   
  1 2 3 4 5 
 1 0.68 2.74 3.57 2.36 -1.86 
 2 3.69 2.10 3.63 3.10 1.63 
HML 3 3.07 4.45 3.09 1.82 0.11 
 4 3.31 4.03 3.12 1.29 0.14 
 5 5.27 2.52 5.33 3.12 1.90 

h=20    Size   
  1 2 3 4 5 
 1 1.47 6.15 7.53 6.05 1.30 
 2 7.05 5.83 6.94 6.40 5.62 
HML 3 5.97 7.47 6.52 4.45 3.11 
 4 5.96 7.96 5.88 2.31 3.27 
 5 8.71 5.44 8.47 5.39 5.84 
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Table III.  Adjusted-R2 (%) from cross-sectional pricing regressions on the 25 FF size- and value-sorted portfolios at different 

levels of aggregation h (in quarters): 1952Q2-2006Q4 
 

                   
                                                                                                                      Business cycle                                               Long run  

 h= 1 2 4 8 12 16 20 24 28 32 36 40 

Basic models             

              
 CAPM -0.7 -2.2 -1.8 17.5 14.7 -0.7 -4.3 2.4 18.0 27.8 47.5 46.6 
 C-CAPM 

9.0 20.4 29.2 24.7 16.2 8.6 -0.9 -4.3 -0.6 5.3 28.4 36.0 
 FF 3-factor model 73.0 73.7 73.3 77.2 83.7 85.6 86.0 82.4 81.2 74.9 71.7 77.1 
              

Scaled models             

              

CAPM 49.0 55.8 70.1 48.2 61.3 43.6 33.2 27.6 62.3 56.7 65.0 70.0 With pmv C-CAPM 4.9 13.7 66.8 55.6 70.9 69.2 54.5 -4.7 5.5 38.2 69.5 74.8 
              

CAPM 40.2 28.6 23.9 39.3 50.5 65.2 77.3 70.3 32.8 60.9 54.7 55.9 With cay C-CAPM 53.7 44.6 49.6 46.3 35.9 33.1 37.2 37.9 1.8 14.9 35.4 49.9 
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Table IV: Lambdas from cross-sectional pricing regressions on the 25 FF size- and value-sorted portfolios at different  

levels of aggregation h (in quarters): 1952Q2-2006Q4 (t-statistics in parentheses) 
 
  

Fama-French 3-factor model 
 
 

h= constant market SMB HML 
1 5.06 

(3.4) 
-1.83 
(-1.3) 

0.66 
(2.4) 

1.23 
(5.0) 

2 5.54 
(3.2) 

-2.25 
(-1.3) 

0.88 
(2.6) 

1.18 
(3.9) 

4 5.86 
(3.1) 

-2.47 
(-1.4) 

0.67 
(2.4) 

1.70 
(6.2) 

8 1.97 
(1.1) 

1.33 
(.7) 

0.16 
(.7) 

1.93 
(5.1) 

12 1.59 
(2.3) 

1.75 
(1.8) 

0.24 
(.12) 

1.81 
(4.8) 

16 2.23 
(2.5) 

1.31 
(1.5) 

0.15 
(.7) 

2.00 
(5.1) 

20 2.16 
(2.3) 

1.65 
(1.8) 

0.03 
(.12) 

2.03 
(4.8) 

24 2.48 
(2.4) 

1.70 
(1.7) 

-0.11 
(-.5) 

2.10 
(4.3) 

28 2.41 
(2.6) 

2.11 
(2.4) 

-0.15 
(-.5) 

1.82 
(3.4) 

32 1.84 
(1.8) 

3.09 
(3.3) 

-0.17 
(-.5) 

1.02 
(2.0) 

36 1.26 
(1.1) 

4.01 
(3.7) 

-0.20 
(-.6) 

0.56 
(1.1) 

40 1.02 
(.9) 

4.65 
(4.7) 

-0.18 
(-.6) 

0.46 
(1.1) 
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                                                                            Scaled CAPM 
 

 Scaled by pmv Scaled by cay 
         
h= constant market pmv pmv x market constant market Cay cay x market 
1 5.13 

(4.2) 
-1.64 
(-1.4) 

0.71 
(2.9) 

0.43 
(.2) 

5.96 
(5.1) 

-2.35 
(-2.2) 

-2.28 
(-3.6) 

-3.02 
(-0.7) 

2 2.59 
(1.5) 

0.74 
(.5) 

0.78 
4.5) 

3.12 
(1.6) 

4.97 
(3.7) 

-1.38 
(-1.2) 

-0.98 
(-2.1) 

-0.72 
(-.1) 

4 3.07 
(2.8) 

0.33 
(.3) 

0.41 
(3.3) 

1.01 
(.4) 

7.36 
(3.5) 

-3.52 
(-1.8) 

-0.68 
(-3.1) 

-6.40 
(-1.6) 

8 4.45 
(1.7) 

-0.75 
(-.3) 

0.55 
(3.4) 

7.06 
(.7) 

2.37 
(.7) 

1.25 
(.4) 

-0.29 
(-3.8) 

-2.81 
(-1.2) 

12 4.75 
(3.5) 

-1.37 
(-1.0) 

0.53 
(4.6) 

10.73 
(1.1) 

3.21 
(1.7) 

0.51 
(.3) 

-0.23 
(-4.7) 

-5.03 
(-2.7) 

16 3.67 
(2.7) 

-0.01 
(.0) 

0.39 
(3.4) 

14.69 
(1.2) 

2.78 
(2.3) 

1.03 
(.8) 

-0.18 
(-5.2) 

-5.43 
(-3.4) 

20 2.62 
(1.5) 

1.50 
(.8) 

0.28 
(2.4) 

17.52 
(1.0) 

2.73 
(2.7) 

1.25 
(1.2) 

-0.16 
(-6.1) 

-6.98 
(-4.4) 

24 0.00 
(.0) 

4.39 
(1.8) 

0.14 
(1.0) 

34.61 
(1.4) 

3.52 
(2.9) 

0.58 
(.5) 

-0.15 
(-4.4) 

-6.20 
(-2.5) 

28 0.00 
(.0) 

4.89 
(4.6) 

-0.05 
(-.6) 

44.44 
(2.4) 

2.10 
(1.3) 

3.01 
(1.8) 

-0.02 
(-.4) 

-4.69 
(-1.2) 

32 0.37 
(.3) 

4.53 
(4.0) 

0.13 
(1.9) 

67.51 
(3.1) 

1.90 
(1.7) 

3.63 
(3.3) 

0.06 
(2.5) 

-1.70 
(-.5) 

36 0.76 
(.6) 

4.43 
(3.8) 

0.18 
(3.3) 

79.36 
(3.0) 

1.83 
(1.1) 

4.51 
(3.2) 

0.04 
(1.9) 

-2.39 
(-.5) 

40 0.86 
(.7) 

4.85 
(4.3) 

0.16 
(3.3) 

92.16 
(3.4) 

2.44 
(1.5) 

4.58 
(3.0) 

0.02 
(1.3) 

-7.52 
(-1.4) 
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Scaled C-CAPM 
 

 Scaled by pmv Scaled by cay 
         
h= constant consumption growth pmv interaction constant consumption growth cay interaction 
1 3.18 

(5.9) 
0.43 
(2.0) 

-0.10 
(-.3) 

0.22 
(.6) 

4.85 
(4.9) 

0.21 
(1.7) 

-0.94 
(-1.3) 

0.05 
(.1) 

2 2.70 
(3.7) 

0.25 
(1.3) 

0.06 
(.2) 

0.26 
(.4) 

3.93 
(3.4) 

0.24 
(2.2) 

-0.29 
(-.7) 

0.03 
(.1) 

4 4.29 
(9.6) 

-0.02 
(-.1) 

0.15 
(1.0) 

-0.41 
(-1.1) 

4.78 
(4.0) 

0.27 
(2.8) 

-0.34 
(-1.7) 

-0.44 
(-1.2) 

8 2.81 
(6.8) 

0.26 
(2.6) 

0.47 
(3.0) 

2.80 
(5.5) 

4.63 
(5.4) 

0.20 
(1.7) 

-0.20 
(-2.6) 

-0.41 
(-1.3) 

12 2.89 
(11.9) 

0.14 
(1.6) 

0.31 
(2.5) 

2.74 
(6.9) 

5.84 
(8.2) 

0.17 
(1.4) 

-0.19 
(-3.3) 

-0.88 
(-2.9) 

16 2.48 
(7.9) 

0.18 
(2.0) 

0.13 
(1.2) 

2.92 
(6.9) 

6.02 
(10.8) 

0.12 
(1.0) 

-0.14 
(-3.4) 

-0.97 
(-3.0) 

20 1.35 
(1.9) 

0.15 
(1.5) 

0.26 
(2.6) 

4.25 
(5.6) 

6.88 
(10.8) 

0.02 
(.2) 

-0.14 
(-3.8) 

-1.37 
(-2.9) 

24 3.69 
(2.5) 

0.05 
(.3) 

0.12 
(.8) 

1.91 
(1.2) 

7.23 
(7.7) 

-0.06 
(-.6) 

-0.12 
(-3.1) 

-1.39 
(-2.4) 

28 6.62 
(5.5) 

-0.04 
(-.2) 

-0.13 
(-1.0) 

-1.06 
(-.8) 

6.12 
(5.1) 

-0.16 
(-1.2) 

-0.06 
(-1.3) 

-0.91 
(-1.2) 

32 5.82 
(6.3) 

0.08 
(.5) 

-0.12 
(-1.4) 

1.33 
(.8) 

3.97 
(3.5) 

-0.22 
(-1.7) 

0.02 
(.6) 

0.52 
(.8) 

36 3.94 
(4.6) 

0.09 
(.7) 

0.05 
(1.1) 

4.45 
(2.9) 

3.07 
(2.5) 

-0.34 
(-2.6) 

0.00 
(.1) 

0.21 
(.4) 

40 4.11 
(4.3) 

0.05 
(.4) 

0.12 
(2.8) 

4.44 
(2.9) 

2.61 
(2.0) 

-0.30 
(-2.4) 

0.00 
(.2) 

0.25 
(.5) 
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Table V. Forecasting regressions of excess market returns using pmv and cay at different  

levels of aggregation h in quarters: 1952Q2-2006Q4 
 
 
 

h= 1 2 4 8 12 16 20 24 28 32 36 40 
             

pmv 1.61 1.35 .82 .07 -.48 -.39 .75 2.33 3.66 4.55 5.80 6.22 
 (1.77) (1.29) (.54) (.06) (-.21) (-.29) (.69) (1.86) (4.15)* (3.48)* (4.99)* (4.76)* 
             

cay 1.43 2.67 4.83 8.24 10.50 11.86 12.87 12.73 9.88 6.88 3.19 1.00 
 (4.21)* (3.56)* (3.14)* (4.01) (3.00)* (6.14)* (6.43)* (5.01)* (3.19)* (1.75) (.94) (.28) 
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Table VI. GLS R2 (%) from cross-sectional pricing regressions on the FF 25 size- and value-sorted portfolios at different horizons:   

1952Q2-2006Q4 
Weights given by the variance of returns 

        
                                                                                                                      Business cycle                                           Long run  

 h= 1 2 4 8 12 16 20 24 28 32 36 40 

Basic models             

              
 CAPM 2.3 1.9 1.5 0.4 0.2 0.0 1.8 1.2 3.8 1.5 1.9 2.1 
 C-CAPM 

1.4 0.3 2.6 2.4 3.7 0.4 1.1 1.3 1.1 1.0 0.8 1.4 
 FF 3-factor model 21.8 17.5 10.2 4.4 4.1 4.3 9.5 7.5 8.1 8.4 6.0 5.5 
              

Scaled models              

              
CAPM 4.6 4.2 9.3 1.8 1.7 0.4 2.4 4.3 14.3 8.3 3.9 2.8 With pmv C-CAPM 3.6 4.1 11.2 4.4 9.3 1.3 1.9 2.1 2.2 2.0 3.3 4.0 

              
CAPM 3.4 2.0 5.1 3.1 5.6 9.9 11.5 7.1 4.2 1.7 2.6 3.8 With cay C-CAPM 4.7 1.5 3.5 5.0 7.4 7.5 3.1 1.9 12.2 7.5 5.5 8.5 

 



- 26 - 
 
 

Table VII.  Adjusted-R2 (%) from cross-sectional pricing regressions on the FF 25 size- and value-sorted portfolios and 30 industry 
portfolios at different horizons: 1952Q2-2006Q4 

 
 
                                                                                                                      Business cycle                                               Long run  

 h= 1 2 4 8 12 16 20 24 28 32 36 40 

Basic models             

              
 CAPM 0.6 1.4 -0.8 1.3 -0.3 -0.3 -1.0 -1.7 -1.9 -0.9 5.1 5.5 
 C-CAPM 

1.2 -0.1 -1.7 -1.2 0.5 1.4 4.0 9.6 17.4 21.4 32.9 31.7 
 FF 3-factor model 17.1 14.7 14.2 20.1 26.5 38.3 53.6 58.4 55.2 48.1 47.8 47.0 
              

Scaled models              

              
CAPM 1.7 13.0 11.9 9.2 27.0 36.3 34.5 21.9 6.3 10.4 20.9 28.3 With pmv C-CAPM 3.8 14.4 10.7 18.7 23.1 16.3 7.1 12.1 28.0 33.2 48.3 50.0 

              
CAPM 4.0 7.5 11.2 6.0 0.0 1.5 15.8 42.6 29.9 4.5 5.3 2.8 With cay C-CAPM 0.2 -0.3 3.3 5.0 2.6 4.8 14.0 29.6 33.4 39.2 43.8 44.3 
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Table VIII: C-CAPM betas and conditional betas (for low and high values of the state variable) with pmv and cay 

 
 

pmv  - 2 year horizon 
 
 
Betas on consumption growth                                                         Betas on pmv 
                                                                     
    Size   
  1 2 3 4 5 
 1 2.42 -2.72 -0.21 -0.12 4.73 
 2 0.04 -2.73 -1.80 -2.58 -3.48 
HML 3 -0.96 1.56 -1.22 -4.24 -2.08 
 4 1.11 -1.95 -0.21 -0.37 -0.37 
 5 0.24 -2.74 -2.14 -0.83 -1.34 
 
 
 
Betas on the interaction  
                                                                        
    Size   
  1 2 3 4 5 
 1 0.84 1.30 0.50 0.48 -0.56 
 2 1.25 1.52 1.42 1.24 1.34 
HML 3 1.30 0.83 1.37 1.95 1.25 
 4 0.77 1.48 1.16 1.52 0.98 
 5 1.56 2.25 1.80 1.76 1.65 
 
 
 
Conditional betas – high pmv                                                        Conditional betas – low pmv 

 
 
 
 
 

 
 

    Size   
  1 2 3 4 5 
 1 -4.71 -5.02 -2.74 -1.63 1.02 
 2 -4.33 -5.44 -4.30 -3.79 -4.87 
HML 3 -3.38 -1.73 -4.79 -7.01 -4.90 
 4 -1.88 -4.48 -3.88 -4.06 -4.31 
 5 -5.09 -7.58 -5.03 -3.88 -5.95 

    Size   
  1 2 3 4 5 
 1 9.17 7.77 3.84 3.78 0.24 
 2 10.12 9.55 9.62 7.44 7.30 
HML 3 9.56 8.22 9.84 11.47 7.96 
 4 7.36 9.98 9.10 11.91 7.56 
 5 12.80 15.41 12.34 13.38 11.97 

    Size   
  1 2 3 4 5 
 1 3.20 -1.51 0.25 0.33 4.22 
 2 1.20 -1.32 -0.49 -1.43 -2.24 
HML 3 0.25 2.33 0.05 -2.43 -0.93 
 4 1.83 -0.58 0.86 1.04 0.55 
 5 1.69 -0.65 -0.47 0.80 0.19 
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pmv  - 3 year horizon 

 
 
 
Betas on consumption growth                                                                     Betas on pmv 
 
    Size   
  1 2 3 4 5 
 1 3.62 -3.98 -3.13 -0.26 5.75 
 2 -3.19 -7.80 -4.46 -6.12 -5.74 
HML 3 -5.46 -1.06 -5.65 -7.60 -4.36 
 4 -3.02 -6.94 -1.71 1.38 -2.77 
 5 -4.85 -6.55 -5.28 -1.08 -2.98 
 
 
 
Betas on the interaction 
 
    Size   
  1 2 3 4 5 
 1 0.29 0.84 0.55 0.04 -0.97 
 2 1.21 1.76 1.33 1.26 0.99 
HML 3 1.63 1.04 1.64 1.71 0.97 
 4 1.23 2.00 0.92 0.67 0.82 
 5 2.04 2.14 1.76 1.19 1.09 
 
 
 
Conditional betas – pmv high                                                                Conditional betas – pmv low                                              
                                                                        
    Size   
  1 2 3 4 5 
 1 6.71 4.91 2.73 0.16 -4.48 
 2 9.60 10.75 9.60 7.19 4.72 
HML 3 11.78 9.90 11.63 10.45 5.90 
 4 10.02 14.21 8.04 8.43 5.91 
 5 16.68 16.07 13.36 11.51 8.52 

 
 

    Size   
  1 2 3 4 5 
 1 -1.31 -3.44 -1.98 0.65 3.40 
 2 -3.86 -8.17 -4.16 -4.94 -5.15 
HML 3 -5.38 -1.71 -6.15 -7.68 -5.39 
 4 -3.34 -6.81 -2.49 -0.77 -4.57 
 5 -6.36 -8.56 -5.00 -2.42 -4.80 

    Size   
  1 2 3 4 5 
 1 4.18 -2.36 -2.06 -0.18 3.88 
 2 -0.86 -4.42 -1.90 -3.69 -3.83 
HML 3 -2.31 0.94 -2.50 -4.31 -2.48 
 4 -0.64 -3.08 0.07 2.67 -1.18 
 5 -0.93 -2.42 -1.88 1.22 -0.88 
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pmv  - 4 year horizon 
 
 
Betas on consumption growth                                                                    Betas on pmv 
 
    Size   
  1 2 3 4 5 
 1 9.48 -2.53 -3.21 0.01 2.24 
 2 -1.82 -9.47 -5.63 -7.81 -10.10 
HML 3 -7.50 -2.02 -6.86 -10.28 -8.37 
 4 -4.24 -10.51 -3.43 0.35 -6.22 
 5 -3.69 -6.86 -5.34 -3.52 -5.31 
 
 
 
Betas on interaction 
 
    Size   
  1 2 3 4 5 
 1 -0.32 0.45 0.51 -0.02 -0.29 
 2 0.84 1.62 1.31 1.29 1.52 
HML 3 1.62 1.28 1.58 1.81 1.36 
 4 1.30 2.30 1.27 0.84 1.24 
 5 1.72 1.81 1.61 1.52 1.27 
 
 
 
Conditional betas – pmv high                                                                     Conditional betas  - pmv low 
 
 
    Size   
  1 2 3 4 5 
 1 5.31 3.19 3.30 -0.29 -1.47 
 2 8.92 11.37 11.21 8.71 9.38 
HML 3 13.25 14.34 13.44 12.91 9.06 
 4 12.47 19.01 12.90 11.12 9.74 
 5 18.41 16.35 15.27 16.04 11.00 

 
 

    Size   
  1 2 3 4 5 
 1 6.09 -0.21 0.07 2.47 0.31 
 2 -0.60 -8.76 -4.29 -5.64 -9.05 
HML 3 -6.93 -1.77 -6.47 -10.15 -9.17 
 4 -3.97 -10.11 -3.68 -2.08 -7.73 
 5 -3.53 -8.01 -3.69 -4.78 -5.71 

 
 

   Size   

  1 2 3 4 5 
 1 8.50 -1.19 -1.69 -0.06 1.37 
 2 0.69 -4.60 -1.70 -3.95 -5.55 
HML 3 -2.65 1.80 -2.11 -4.86 -4.30 
 4 -0.34 -3.61 0.39 2.87 -2.49 
 5 1.48 -1.44 -0.52 1.05 -1.50 
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pmv  - 5 year horizon 
 
 
 
Betas on consumption growth                                                                            Beta on pmv 
 
    Size   
  1 2 3 4 5 
 1 16.12 3.45 2.15 2.21 -1.09 
 2 4.66 -5.36 -2.28 -6.85 -12.56 
HML 3 -4.14 3.30 -2.47 -8.79 -9.36 
 4 -0.20 -6.85 0.29 0.86 -7.57 
 5 5.07 -0.52 -2.83 -5.13 -5.07 
 
 
 
Betas on interaction 
 
    Size   
  1 2 3 4 5 
 1 -0.85 -0.13 0.04 -0.01 0.47 
 2 0.00 1.03 0.89 1.17 1.83 
HML 3 0.93 0.75 0.95 1.49 1.47 
 4 0.69 1.66 1.00 0.86 1.41 
 5 0.57 0.90 1.17 1.73 1.32 
 
 
 
Conditional betas – pmv high                                                                        Conditional betas – pmv low 
 
    Size   
  1 2 3 4 5 
 1 3.19 1.53 2.69 2.11 5.99 
 2 4.73 10.20 11.15 10.88 15.14 
HML 3 9.99 14.62 11.88 13.83 12.88 
 4 10.18 18.35 15.45 13.85 13.79 
 5 13.67 13.09 14.95 21.11 14.98 

 
 

    Size   
  1 2 3 4 5 
 1 14.76 8.76 8.66 7.40 -1.35 
 2 9.82 -1.77 1.78 -2.70 -9.71 
HML 3 -0.49 6.25 1.00 -7.20 -8.77 
 4 2.90 -3.26 1.76 -0.84 -7.29 
 5 9.32 1.29 1.75 -5.09 -2.85 

    Size   
  1 2 3 4 5 
 1 12.70 2.94 2.29 2.19 0.78 
 2 4.68 -1.25 1.27 -2.16 -5.23 
HML 3 -0.40 6.30 1.33 -2.81 -3.48 
 4 2.54 -0.18 4.30 4.30 -1.92 
 5 7.34 3.08 1.87 1.81 0.23 
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cay - 2 year horizon 
 

 
Betas on consumption growth                                                                        Betas on cay 
 
    Size   
  1 2 3 4 5 
 1 5.88 2.17 2.27 1.82 4.00 
 2 4.62 2.80 3.51 2.29 1.96 
HML 3 3.70 4.86 4.08 2.90 2.94 
 4 4.22 3.75 4.38 5.19 3.96 
 5 6.21 5.39 4.26 5.60 5.27 
 
 
 
Betas on the interaction 
 
    Size   
  1 2 3 4 5 
 1 0.42 -0.24 -0.45 -1.92 -0.36 
 2 -0.04 1.22 0.89 1.48 1.73 
HML 3 0.90 0.89 1.64 1.97 1.52 
 4 1.07 1.85 1.47 1.37 2.17 
 5 2.27 2.49 1.60 2.26 2.10 
 
 
 
Conditional betas – cay high                                                                       Conditional betas – cay low 
 
    Size   
  1 2 3 4 5 
 1 6.76 1.68 1.33 -2.16 3.25 
 2 4.54 5.32 5.35 5.36 5.53 
HML 3 5.56 6.70 7.47 6.98 6.10 
 4 6.43 7.58 7.43 8.03 8.46 
 5 10.91 10.56 7.58 10.28 9.62 

 
 

    Size   
  1 2 3 4 5 
 1 5.73 10.09 12.40 15.56 14.04 
 2 7.64 1.61 5.59 3.72 4.87 
HML 3 2.43 4.46 2.52 0.36 4.09 
 4 2.86 2.58 3.26 2.42 1.98 
 5 0.18 -1.68 0.73 -0.16 4.93 

    Size   
  1 2 3 4 5 
 1 5.05 2.65 3.16 5.63 4.72 
 2 4.70 0.39 1.74 -0.64 -1.47 
HML 3 1.92 3.09 0.83 -1.02 -0.09 
 4 2.10 0.07 1.45 2.47 -0.35 
 5 1.70 0.44 1.08 1.11 1.10 
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cay - 3 years horizon 
 
 
 
Beta on consumption growth                                                                                 Betas on cay 
 
    Size   
  1 2 3 4 5 
 1 5.50 0.48 0.13 0.54 2.72 
 2 2.42 0.68 1.71 0.01 -0.23 
HML 3 1.72 3.36 2.01 0.62 1.08 
 4 2.31 2.14 2.54 4.22 1.92 
 5 4.08 3.31 2.30 3.90 2.92 
 
 
 
Betas on the interaction 
 
    Size   
  1 2 3 4 5 
 1 -0.51 -0.97 -1.36 -1.60 0.94 
 2 -1.63 -0.13 -0.83 0.94 1.78 
HML 3 -0.02 -1.38 0.23 1.55 1.58 
 4 -0.33 -0.08 -0.59 0.47 1.64 
 5 0.24 -0.08 -0.36 0.62 0.43 
 
 
 
Conditional betas – cay high                                                                            Conditional betas – cay low 
 
    Size   
  1 2 3 4 5 
 1 4.42 -1.61 -2.78 -2.88 4.73 
 2 -1.07 0.40 -0.06 2.02 3.58 
HML 3 1.69 0.41 2.50 3.94 4.47 
 4 1.60 1.96 1.28 5.22 5.43 
 5 4.59 3.14 1.53 5.22 3.84 

 

    Size   
  1 2 3 4 5 
 1 11.43 16.46 20.87 21.63 13.98 
 2 17.10 7.15 15.01 6.21 5.38 
HML 3 6.12 16.28 8.88 0.56 4.74 
 4 8.15 11.25 12.04 6.38 4.12 
 5 7.96 7.70 9.34 5.25 14.26 

    Size   
  1 2 3 4 5 
 1 6.53 2.45 2.88 3.77 0.82 
 2 5.72 0.93 3.37 -1.90 -3.82 
HML 3 1.75 6.14 1.54 -2.52 -2.12 
 4 2.98 2.31 3.73 3.28 -1.39 
 5 3.60 3.46 3.03 2.65 2.05 
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cay - 4 year horizon 
 
 
 
Betas on consumption growth                                                                            Betas on cay 
 
    Size   
  1 2 3 4 5 
 1 6.13 -0.56 -0.91 -0.39 2.20 
 2 1.33 -0.53 0.68 -1.24 -0.99 
HML 3 0.33 3.08 1.14 -0.31 0.11 
 4 1.36 1.28 2.36 3.91 1.42 
 5 3.18 2.29 1.38 3.32 1.97 
 
 
 
Betas on the interaction 
 
    Size   
  1 2 3 4 5 
 1 -0.49 -0.77 -1.73 -0.87 1.22 
 2 -0.95 0.38 -0.89 1.79 1.72 
HML 3 1.47 -1.95 -0.04 2.08 2.46 
 4 0.82 -0.57 -0.87 1.34 1.61 
 5 -0.13 0.15 -0.64 0.75 -0.55 
 
 
 
Conditional betas – cay high                                                                            Conditional betas – cay low 
 
    Size   
  1 2 3 4 5 
 1 5.06 -2.25 -4.69 -2.31 4.86 
 2 -0.74 0.30 -1.28 2.68 2.78 
HML 3 3.54 -1.19 1.05 4.25 5.51 
 4 3.16 0.04 0.46 6.83 4.93 
 5 2.90 2.63 -0.03 4.96 0.76 

 

    Size   
  1 2 3 4 5 
 1 12.43 17.36 27.73 22.73 16.64 
 2 15.81 3.87 17.37 -0.10 6.36 
HML 3 -5.27 23.45 11.49 -5.98 -1.91 
 4 -1.36 14.74 14.28 -0.10 4.96 
 5 9.01 5.97 13.35 4.14 25.63 

    Size   
  1 2 3 4 5 
 1 7.12 1.00 2.56 1.37 -0.25 
 2 3.24 -1.29 2.48 -4.84 -4.45 
HML 3 -2.63 7.00 1.22 -4.51 -4.85 
 4 -0.29 2.42 4.11 1.21 -1.82 
 5 3.43 1.98 2.68 1.81 3.09 
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cay - 5 year horizon 
 
 
 
Betas on consumption growth                                                                 Betas on cay 
 
    Size   
  1 2 3 4 5 
 1 5.68 -1.08 -1.48 -0.89 2.24 
 2 -0.62 -1.81 -0.62 -2.16 -1.74 
HML 3 -2.08 2.17 -0.25 -1.09 -0.29 
 4 -0.53 -0.67 2.17 3.52 0.66 
 5 1.18 0.95 -0.67 2.06 1.21 
 
 
 
Betas on the interaction 
 
    Size   
  1 2 3 4 5 
 1 2.59 -0.10 -1.55 -0.30 0.58 
 2 1.24 1.49 0.12 1.99 0.73 
HML 3 3.61 -0.69 0.38 2.08 1.78 
 4 3.02 0.58 -0.49 1.95 0.95 
 5 1.70 1.17 0.32 1.65 -1.57 
 
 
 
Conditional betas – cay high                                                                      Conditional betas – cay low 
 
    Size   
  1 2 3 4 5 
 1 11.42 -1.31 -4.92 -1.56 3.54 
 2 2.14 1.48 -0.36 2.26 -0.12 
HML 3 5.93 0.64 0.60 3.53 3.65 
 4 6.18 0.60 1.08 7.84 2.78 
 5 4.95 3.55 0.04 5.72 -2.27 
 

    Size   
  1 2 3 4 5 
 1 -14.58 16.17 33.87 25.17 27.82 
 2 -1.04 -6.14 10.98 -3.14 16.15 
HML 3 -29.01 16.74 9.07 -10.09 2.96 
 4 -23.10 4.30 12.98 -7.56 10.54 
 5 -8.46 -5.33 5.58 -5.43 40.31 

    Size   
  1 2 3 4 5 
 1 0.41 -0.87 1.69 -0.29 1.05 
 2 -3.16 -4.84 -0.86 -6.23 -3.23 
HML 3 -9.44 3.57 -1.02 -5.34 -3.92 
 4 -6.69 -1.85 3.17 -0.44 -1.28 
 5 -2.28 -1.45 -1.33 -1.31 4.40 



Figure 1. Adjusted R2 in cross-sectional regression
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Figure 2. Realized vs. fitted returns on FF portfolios - CAPM 
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Figure 3. Realized vs. fitted returns on FF portfolios - CAPM scaled by pmv 
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Figure 4. Realized vs. fitted returns on FF portfolios - C-CAPM 
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Figure 5. Realized vs. fitted returns on FF portfolios - C-CAPM scaled by pmv 
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Figure 6. Betas when pmv is high - 3 years
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Figure 7. Betas when pmv is low - 3 years




