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Résumé / Abstract 

 
Cet article propose un test pour la détection de caractéristiques communes d’hétéroscédasticité 

conditionnelle (HC) dans des rendements d’actifs financiers. Conformément à Engle et Kozicki 

(1993), l’existence de caractéristiques communes HC est exprimée en termes de conditions de 

moment sur-identifiantes testables. Cependant nous montrons que ces conditions de moment ne sont 

pas localement linéairement indépendantes; la matrice Jacobienne est nulle à la vraie valeur des 

paramètres et, par conséquent, la théorie asymptotique de Hansen (1982) ne s’applique pas. Nous 

montrons dans ce contexte que la statistique de J-test de Hansen (1982) est distribuée 

asymptotiquement comme le minimum de la limite d’un processus empirique avec une distribution 

non standard. Quand on considère deux actifs, cette distribution asymptotique est un mélange à parts 

égales de     
  et   

 , où H est le nombre de conditions de moment, par opposition à     
 . Avec plus 

de deux actifs, cette distribution est comprise entre     
  et   

  (p, le nombre de paramètres). Ces 

résultats montrent que l’ignorance du défaut d’identification au premier ordre dans ce modèle de 

conditions de moments conduit à des tests qui rejettent trop souvent l’hypothèse nulle, le degré de 

sur-rejet étant croissant avec le nombre d’actifs. Une étude de Monte-Carlo illustre ces résultats.. 

 

This paper proposes a test for common conditionally heteroskedastic (CH) features in asset returns. 

Following Engle and Kozicki (1993), the common CH features property is expressed in terms of 

testable overidentifying moment restrictions. However, as we show, these moment conditions have a 

degenerate Jacobian matrix at the true parameter value and therefore the standard asymptotic results 

of Hansen (1982) do not apply. We show in this context that the Hansen’s (1982) J-test statistic is 

asymptotically distributed as the minimum of the limit of a certain empirical process with a markedly 

nonstandard distribution. If two assets are considered, this asymptotic distribution is a half-half 

mixture of     
 and   

 , where H is the number of moment conditions, as opposed to a     
 . With 

more than two assets, this distribution lies between the     
  and   

  (p, the number of parameters). 

These results show that ignoring the lack of first order identification of the moment condition model 

leads to oversized tests with possibly increasing over-rejection rate with the number of assets. A 

Monte Carlo study illustrates these findings. 

 

Mots clés : Common features, GARCH factors, Nonstandard asymptotics, 

GMM, GMM overidentification test, identification, first order identification 
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1 Introduction

Engle and Kozicki (1993) have given many examples of the following interesting question: are some

features that are detected in several single economic time series actually common to all of them?

Following their definition, “a feature will be said to be common if a linear combination of the series

fails to have the feature even though each of the series individually has the feature”. They propose

testing procedures to determine whether features are common. The null hypothesis under test is the

existence of common features. As nicely exemplified by Engle and Kozicki (1993), an unified testing

framework is provided by the Hansen (1982) J-test for overidentification in the context of Generalized

Method of Moments (GMM). Under the null, the J-test statistic is supposed to have a limiting chi-

square distribution with degrees of freedom equal to the number of overidentifying restrictions. After

normalization, a common feature to n individual time series is defined by a vector of (n− 1) unknown

parameters and the limiting distribution under the null will be χ2(H − n+1) where H stands for the

number of moment restrictions deduced from the common features property. Engle and Kozicki (1993)

successfully apply this testing strategy to several common features of interest (regression common fea-

ture, cofeature rank, Granger causality and cointegration). When they come to the common GARCH

features, they acknowledge that it is their first non-linear example. Unfortunately, they do not realize

that, as already pointed out by Sargan (1983) in the context of Instrumental Variables (IV) estima-

tion, non-linearities may give rise to non-standard asymptotic behavior of GMM estimators when an

estimating equation, seen as function of the unknown parameters, may have a zero derivative at the

true value, although this function is never flat. It turns out that, as shown in the next section, this is

precisely the case in the “Test for Common GARCH Factors” which motivates the test for common

GARCH features.

While Sargan (1983) focuses on non-standard asymptotic distributions of GMM estimators in the

context of linear instrumental variables estimation with some non-linearities (and associated singular-

ities) with respect to the parameters, we rather set the focus in this paper on the testing procedure

for common GARCH features. The reason why it is important is twofold.

First, detecting a factor structure is a key issue for multivariate modeling of volatility of financial

asset returns. Without such a structure (or alternatively ad hoc assumptions about the correlations

dynamics) there is an inflation of the number of parameters to estimate and nobody can provide

reliable estimators of joint conditional heteroskedasticity of a vector of more than a few (10 or even 5)

asset returns. Many factor models of conditional heteroskedasticity have been studied in the literature

since the seminal paper of Diebold and Nerlove (1989). Let us mention among others Engle, Ng and

Rothschild (1990), Fiorentini, Sentana and Shephard (2004) and Doz and Renault (2006). In all these

models, it is assumed that the factors have conditional heteroskedasticity but the idiosyncracies do

not. The test for common GARCH features is then a universal tool for detecting any of these factor

structures.

Second, the singularity issue a la Sargan (1983) that we point out for the estimation of common
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features parameters has perverse consequences for testing for the factor structure. We show that

the test computed with the standard critical value provided by a χ2(H − n + 1) will be significantly

oversized. In other words, the mechanical application of Hansen (1982) J-testing procedure will lead

the empirical researcher to throw away too often hypothetical factor structures that are actually valid.

The main purpose of this paper is to characterize the degree of over-rejection and give ways to compute

correct critical values, or at least valid bounds for a conservative testing approach.

The issue addressed in this paper, albeit seemingly related to the recent literature on weak iden-

tification, is not redundant with extant results. By contrast with the common weak identification

setting (Staiger and Stock (1997), Stock and Wright (2000)), we share with the setting of Andrews

and Cheng (2012) the fact that “in the present paper, the potential source of weak identification is

an explicit part of the model”. Irrespective of the choice of instruments and regardless of any finite

sample issue, the valid asymptotic distribution of the J-test statistic under the null involves a mixture

of chi-squares with fewer degrees of freedom than the standard χ2(H − n+ 1). As a result, the rank

deficiency leads to an oversized test when the J-test setting is compared to standard critical values.

This is in sharp contrast with the common intuition (see e.g. Cragg and Donald (1993, 1996)) that

rank deficiency should lead to conservative tests, since the restrictions under test would be less binding

than they seem to be. In our case, all the parameters are actually identified and, due to the rank

deficiency of the Jacobian matrix, the J-test statistic may not be as sensitive to parameter variation

as it is in standard settings; chi-square distributions with fewer degrees of freedom show up as if some

parameter were actually known.

The fact that the parameters of interest are always identified also implies that our setting, and the

setting of Sargan (1983) as well, do not naturally fit into the general framework for identification put

forward by Andrews and Cheng (2012). It would take a quite convoluted re-parameterization of our

model to handle it with Andrews and Cheng’s (2012) toolbox of models for which some parameters are

unidentified in some parts of the parameter space. In the context of maximum likelihood estimation

(MLE), several authors have met a situation of local singularity similar to ours. Melino (1982), Lee

and Chesher (1986) and Rotnitzky, Cox, Bottai and Robins (2000) have documented the non-standard

rates of convergence of MLE implied by the singularity of the Fisher information matrix. Of course,

the issue of singularity of the Jacobian matrix in GMM is germane to singularity of Fisher information

matrix in MLE context, and, following Sargan (1983), we get non-standard rates of convergence of

GMM estimators for quite similar reasons. We actually provide an interpretation in terms of random

Fisher information matrix closely related to the analysis proposed by Andrews and Mikusheva (2012).

However, our main focus of interest is not the asymptotic distribution of GMM estimators but the

impact of it for the distribution of the J-test statistic for overidentification. This issue could not

be addressed in the MLE context since the first order conditions of likelihood maximization are by

definition just identified estimating equations. Moreover, our asymptotic result is new since it gives

a well-defined asymptotic distribution for a test statistic while extant results could only acknowledge
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that there is no such thing as a well-defined rate of convergence for estimators.

The paper is organized as follows. The issue of testing for factor GARCH and the intrinsic singu-

larity which comes with it is analyzed in Section 2. Section 3 provides the relevant asymptotic theory

for the J-test statistic of the null of common GARCH features. Since we will show that the standard

J-test is oversized, our focus of interest is more on size than power. We show why the right asymptotic

distribution for the J-test statistic under the null involves some χ2(H − q) for q < n− 1 and thus why

the use of the critical value based on χ2(H−n+1) leads to over-rejection. By contrast, the distribution

χ2(H) always provides a conservative upper bound. Since the correct asymptotic distribution involves

some χ2(H − q) for q < n − 1, very large samples (as often available in finance) are not a solution

to the problem pointed out in this paper, quite the contrary indeed. This prediction is confirmed by

the small Monte Carlo study provided in Section 4. This Monte Carlo study also indicates that the

asymptotic results are helpful in evaluating likely finite-sample performance and in providing more

correct critical values. It is in particular worth realizing that the size of the test is related to the tail

behavior of the distribution of the test statistic under the null. In this respect, even a relatively small

mistake on the number of degrees of freedom of the chi-square at play may make a big difference in

terms of probability of rejection. Section 5 concludes and sketch other possible contexts of application

of the general testing methodology put forward in this paper. Technical proofs are included in an

appendix.

Throughout the paper ∥ · ∥ denotes not only the usual Euclidean norm but also a matrix norm

∥A∥ = (tr(AA′))1/2, where tr is the usual trace function of square matrices. By the Cauchy-Schwarz

inequality, it has the useful property that, for any vector x and any conformable matrix A, ∥Ax∥ ≤
∥A∥∥x∥.

2 Testing for common CH features

A n-dimensional stochastic process (Yt)t≥0 is said to have (n − K) time-invariant (Conditionnally

Heteroskedastic) CH common features, K < N , if it has a conditional covariance matrix given by:

Var (Yt+1|Ft) = ΛDtΛ
′ +Ω, (1)

where:

(i) Dt is a diagonal matrix of size K with diagonal coefficients σ2kt, k = 1, . . . ,K.

(ii) Λ is a n×K matrix and Ω is an n× n symmetric positive semi-definite matrix.

(iii) The stochastic processes (Yt)t≥0 and (σ2kt)1≤k≤K,t≥0 are adapted with respect to the increasing

filtration (Ft)t≥0.

In this context, CH common features are by definition any vector θ in Rn such that Var (θ′Yt+1|Ft)
is constant. The decomposition (1) clearly warrants the existence of at least (n − K) directions of
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common features since the vectors θ such that θ′Λ = 0 fulfill the required condition. Moreover, we will

see that the dimension (n−K) can be defined without ambiguity thanks to the following maintained

assumption:

Assumption 1. (i) Rank(Λ) = K. (ii) Var(Diag(Dt)) is non-singular, where Diag(Dt) is the K-

dimensional vector with coefficients Dkk,t(= σ2kt), k = 1, . . . ,K.

Remark 2.1. A common intuition about the variance decomposition (1) is a (GAR)CH factor model

with K factors and constant factor loadings:

Yt+1 = µt +BFt+1 + ut+1,

Var (Ft+1|Ft) = Vt, E (Ft+1|Ft) = 0, Var (ut+1|Ft) = Ω, E (ut+1|Ft) = 0, and Cov (Ft+1, ut+1|Ft) = 0.

As recently developed by Hecq, Laurent and Palm (2012), this CH factor model can be tightly related

to CH common features by a simple diagonalization of the conditional variance matrix of the factors:

Vt = PtDtP
′
t ,

with Dt a diagonal matrix and Pt an orthogonal matrix. Then

Var(Yt+1|Ft) = BPtDtP
′
tB

′ +Ω. (2)

One may then see (2) as a convenient generalization of our model (1) by considering time varying

factor loadings

Λt = BPt.

However, this more general framework (where Vt and thus Pt are not diagonal) does not fit into our

model of CH common features for the following reason. Our focus of interest is the set of portfolio

returns θ′Yt+1, θ ̸= 0 with constant conditional variance. However, in the framework (2), since:

Var
(
θ′Yt+1|Ft

)
= θ′BPtDtP

′
tB

′θ + θ′Ωθ

we see that it amounts to eliciting θ such that the vector D
1/2
t P ′

tB
′θ has a constant norm. We want to

characterize the CH common feature as a simple algebraic property of the vector θ of portfolio weights.

It would clearly take in general some highly convoluted assumptions about the joint dynamics of the

coefficients of the matrix D
1/2
t P ′

t to deduce the required property of θ from the condition that the norm

of D
1/2
t P ′

tB
′θ is constant. The only natural way to characterize easily the time-invariance of the above

norm as an algebraic property of the vector θ of common features is to assume that D
1/2
t P ′

t is diagonal,

that is Pt (and in turn Vt) is diagonal1. In other words, we need to preclude conditional correlations

between the latent GARCH factors. Then the change of basis Pt is immaterial and from now on,

1All the results of this paper could be generalized to the case where no linear combination of Vech(PtDtP
′
t ) is constant.

However, beyond the diagonal case with the maintained Assumption 1, such a restriction seems hard to interpret.
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we can interpret the CH features as possibly (but not necessarily) underpinned by a (GAR)CH factor

model with uncorrelated factors and constant factor loadings:

Yt+1 = µt + ΛFt+1 + ut+1, (3)

Var (Ft+1|Ft) = Dt, E (Ft+1|Ft) = 0, Var (ut+1|Ft) = Ω, E (ut+1|Ft) = 0, and Cov (Ft+1, ut+1|Ft) = 0.

Then CH common features are vectors θ such that θ′Yt+1 = θ′ut+1.

Remark 2.2. In the context of factor model (3), restricting Λ to be full column rank basically means

that one cannot reduce the dimension K of the vector Ft of factors. However, since the testable impli-

cations of our model are encapsulated in the decomposition of conditional variance (1), irrespective of

the latent factors Ft, we need to maintain instead that the conditional variances σ2kt, k = 1, 2, . . . ,K,

cannot be linearly combined to erase conditional heteroskedasticity. Hence Assumption 1. Irrespec-

tive of its specific interpretation, our general framework (1) along with Assumption 1 allows us to

characterize the CH-common features as the null space of the matrix Λ′:

Lemma 2.1. Under Assumption 1, the CH common features are the vectors θ, solution in Rn, θ ̸= 0,

of

Λ′θ = 0.

Proof: See Appendix B.

The key idea of this paper is to test for the existence of CH-common features through the unpre-

dictability of squared returns (θ′Yt+1)
2, that is the null hypothesis:

H0: There exists θ ∈ Rn, θ ̸= 0 such that E
(
(θ′Yt+1)

2|Ft
)
is constant.

Remark 2.3. It is worth noting that H0 is equivalent to θ CH-common feature only if one assumes that

E(θ′Yt+1|Ft) is constant. This assumption does not preclude predictability of returns. It only main-

tains, in line with GARCH-in-mean modeling, that predictability of returns goes through conditional

variance so that (see Doz and Renault (2006) for more discussion):

Yt+1 = α+ Λξt + ΛFt+1 + ut+1,

where ξt is a vector of risk premiums associated to the common factors. Then when θ is a CH-common

feature, E(θ′Yt+1|Ft) = θ′α is constant.

As usual, the null hypothesis H0 will be tested through a test of its consequence H0(z) for a given

choice of a H-dimensional vector zt of instruments:
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H0(z) : There exists θ ∈ Rn, θ ̸= 0, such that : E
(
zt[(θ

′Yt+1)
2 − c(θ)]

)
= 0,

where c(θ) = E((θ′Yt+1)
2).

H0(z) is implied by H0 insofar as the variables zt are valid instruments, i.e. are Ft-measurable.

Besides validity, the instruments zt must identify the CH common features θ in order to devise a test

H0(z) from Hansen (1982) theory of the J-test for overidentification.

By the law of iterated expectations, the CH common features model (1) gives:

E
(
zt((θ

′Yt+1)
2 − c(θ))

)
= E

(
(zt − Ezt)θ

′(ΛDtΛ
′ +Ω)θ

)
and then, by a simple matrix manipulation,

E
(
zt((θ

′Yt+1)
2 − c(θ))

)
= Cov (zt, tr(θ

′ΛDtΛ
′θ)) = Cov (zt,Diag′(Λ′θθ′Λ)Diag(Dt))

= Cov(zt,Diag(Dt))Diag(Λ′θθ′Λ).
(4)

The convenient identification assumption about the vector zt of instruments is then:

Assumption 2. (i) zt is Ft-measurable and Var(zt) is non-singular, (ii) Rank [Cov(zt,Diag(Dt))] =

K.

Assumption 2-(i) is standard. Assumption 2-(ii) is non-restrictive, by virtue of Assumption 1-(ii),

insofar as we choose a sufficiently rich set of H instruments, H ≥ K. Sufficiently rich means here

that, for any linear combination of K volatility factors σ2kt, k = 1, . . . ,K, there exists at least one

instrument zht, h = 1, . . . ,H correlated with this combination.

From (4), we see that under Assumptions 1 and 2, H0(z) amounts to:

Diag(Λ′θθ′Λ) = 0

and then implies that ∥Λ′θ∥2 = tr(Λ′θθ′Λ) = 0 that is θ is a common feature. Conversely, any common

feature clearly fulfills the condition of H0(z). We have thus proved:

Lemma 2.2. Under Assumptions 1 and 2, the common features are the solutions θ in Rn, θ ̸= 0, of

the moment restrictions:

ρ(θ) ≡ E
(
zt((θ

′Yt+1)
2 − c(θ))

)
= 0,

where c(θ) = E((θ′Yt+1)
2).

As in Engle and Kozicki (1993), CH common features are thus identified by moment restrictions

H0(z). H0(z) will then be considered as the null hypothesis under test in order to test for common

features.

Following Hansen (1982) as well as Engle and Kozicki (1993), we aim in this paper at testing the

CH common features model through a J-test of overidentification applied to the moment conditions

H0(z). In line with Hansen (1982), we will maintain the following assumption:

7



Assumption 3. (zt, Yt) is a stationary and ergodic process such that E
(
∥zt∥2

)
<∞ and E

(
∥Yt∥4

)
<

∞. Moreover, both zt and vec(YtY
′
t ) fulfill a central limit theorem.

Engle and Kozicki (1993) focus on the particular case K = n − 1 in order to be sure that the

moment restrictions of H0(z) (under the null hypothesis that they are valid) define a unique true

unknown value θ0 of the common feature θ, up to a normalization condition (such as
∑n

i=1 θi = 1).

Irrespective of a choice of such exclusion/normalization condition to identify a true unknown value θ0,

we show that the standard GMM inference theory will not work for moment restrictions H0(z). This

issue comes from the nullity of the moment Jacobian at the true value, that is at any common feature.

To see this, note that by virtue of the square integrability conditions in Assumption 3, we can change

the order of expectation and differentiation in the following and write:

Γ(θ) = ∂
∂θ′E

(
zt((θ

′Yt+1)
2 − c(θ))

)
= E

[
zt
{
2(θ′Yt+1)Y

′
t+1 − 2E[(θ′Yt+1)Y

′
t+1]

}]
= 2Cov

(
zt, [Yt+1Y

′
t+1]θ

)
.

Then by the law of iterated expectations,

Γ(θ) = 2E
(
(zt − E(zt))θ

′(ΛDtΛ
′ +Ω)

)
= 0

when θ′Λ = 0, that is when θ is a common cofeature:

Proposition 2.1. Under Assumption 3, for any common feature θ,

Γ(θ) ≡ ∂

∂θ′
E
(
zt((θ

′Yt+1)
2 − c(θ))

)
= 0.

For the application of the GMM asymptotic theory, we then face a singularity issue that is, as

announced in the introduction, an intrinsic property of the common GARCH factor model. Irrespective

of the quality of the instruments, the sample size and/or the identification restrictions about the

common features θ, any choice of a true unknown value θ0 will lead to a zero Jacobian matrix at

θ0. The rank condition fails by definition. Our main focus of interest will then be the impact of this

rank failure on the behavior of the J-test statistic for H0(z), both asymptotically and in finite sample.

However, it is worth stressing that, as discussed in Appendix A, a test for the CH common features

model based on a more standard regression-based approach of testing for GARCH effects would not

allow to circumvent the problem of the rank failure.

For the purpose of any asymptotic theory of estimators and testing procedures local identification

must then be provided by higher order derivatives. Since our moment conditions of interest H0(z)

are second order polynomials in the parameter θ, the only non-zero higher order derivatives are of

order two. Let us assume that exclusion restrictions characterize a set Θ∗ ⊂ Rn of parameters which

contains at most only one unknown common feature θ0, up to a normalization condition N :

Assumption 4. θ ∈ Θ∗ ⊂ Rn such that Θ∗ = Θ∗
∩

N is a compact set and(
θ ∈ Θ∗ and θ′Λ = 0

)
⇔ (θ = θ0).
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Remark 2.4. A typical normalization condition would be the unit cost condition to interpret θ′Yt+1

as a return per $ invested:

N =

{
θ ∈ Rn,

n∑
i=1

θi = 1

}
.

This normalization can be maintained without loss of generality except if one wants to consider arbi-

trage portfolios for which
∑n

i=1 θi = 0. Then, an alternative normalization condition would be:

N = {θ ∈ Rn, θ1 = 1} .

Note that the latter choice implies that we know one particular asset, e.g. Asset 1, entering the common

feature. To avoid this assumption, an alternative would be:

N =

{
θ ∈ Rn,

n∑
i=1

θ2i = 1

}
.

This latter, albeit feasible, will not be explicitly considered to keep the simplicity of linear normalization.

In this context, assumption 4 will be fulfilled with Θ∗ = Θ, that is Θ∗ = Θ
∩

N in the setting of

Engle and Kozicki (1993), that is K = n − 1. If more than one dimension of common features exist

(K < n− 1), a practitioner may typically write some exclusion restrictions (like zero weight for some

particular assets) to define a proper subset Θ∗ of Θ such that Assumption 4 is fulfilled. Note that

in this latter case, we are formally back to the particular case K = n − 1 by excluding the assets

that do not enter into the definition of a given common feature. More precisely, if the time varying

conditional heteroskedasticity of n assets can be captured with K factors, K = n − 1 − q, q > 0, a

natural parsimonious approach leads to look for q + 1 linearly independent common features, each of

them involving only n− q assets. Then a normalization condition N is sufficient for identification.

Under Assumptions 1, 2 and 4, global identification amounts to second-order identification:

Lemma 2.3. Under Assumptions 1, 2 and 4, with

ρh(θ) ≡ E
(
zht((θ

′Yt+1)
2 − c(θ))

)
, h = 1, . . . , H,

we have, ∀θ ∈ Θ∗, (
(θ − θ0)′

∂2ρh
∂θ∂θ′

(θ0)(θ − θ0)

)
1≤h≤H

= 0 ⇔ (θ = θ0).

Note that Lemma 2.3 is a direct consequence of Lemmas 2.1, 2.2 and Proposition 2.1 thanks to

the following polynomial identity:

ρ(θ) = ρ(θ0) +
∂ρ

∂θ′
(θ0)(θ − θ0) +

1

2

(
(θ − θ0)′

∂2ρh
∂θ∂θ′

(θ0)(θ − θ0)

)
1≤h≤H

,

where ρ(θ) = (ρh(θ))1≤h≤H .

Of course, since ρ(θ) is a polynomial of degree 2 in θ, the Hessian matrix does not depend on θ0.

However, we maintain the general notation since we refer to a concept of second order identification
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which may be useful in more general settings (see Dovonon and Renault (2009)). Moreover, the

interest of revisiting global identification in terms of second order identification is to point out the rate

of convergence we can expect for GMM estimators. The nullity of the Jacobian matrix implies that

the square-root-T rate of convergence is not warranted. However, since second order identification is

ensured by Lemma 2.3, we expect the GMM estimators not to converge at a slower rate than T 1/4.

We will actually show in Section 3 that T 1/4 is only a lower bound while faster rates may sometimes

occur.

3 Asymptotic theory

The key idea of Engle and Kozicki (1993) was to apply the theory of J-test for overidentification to

the moment conditions defined by H0(z):

E (ψt(θ)) = 0; ψt(θ) = zt
(
(θ′Yt+1)

2 − c(θ)
)
; θ ∈ Θ∗.

As already announced, the main point of this paper is that the standard asymptotic theory as derived

by Hansen (1982) will not work due to failure of the rank condition (see Proposition 2.1):

E

(
∂ψt(θ)

∂θ′

∣∣∣∣
θ=θ0

)
= 0.

An additional issue worth addressing, albeit much simpler, is the need to replace, as Engle and

Kozicki (1993) do, the above unknown function c(θ) by a feasible sample counterpart. We first sketch

the relevant asymptotic theory for these two issues before focusing on the overidentification test of

interest.

3.1 Feasible moment conditions

Throughout, we will rather work with the following feasible moment conditions:

E (ϕt,T (θ)) = 0; ϕt,T (θ) = (zt − z̄T )
(
(θ′Yt+1)

2 − c̄T (θ)
)
; θ ∈ Θ∗, (5)

where z̄T = 1
T

∑T
t=1 zt and c̄T (θ) =

1
T

∑T
t=1(θ

′Yt+1)
2.

As a result, the moment conditions have now a structure of double array and the GMM asymptotic

distributional theory will then follow from a central-limit theorem applied to the sample mean of this

double array:

ϕ̄T (θ) =
1

T

T∑
t=1

ϕt,T (θ).

Then, for any given θ, we can relate the sample mean ϕ̄T (θ) of feasible moments to two sample

means without any double array:

√
T ϕ̄T (θ) =

√
T ψ̄T (θ) +

√
T v̄T (θ) + oP (1), (6)
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where v̄T (θ) =
1
T

∑T
t=1 vt(θ), vt(θ) = µz

(
c(θ)− (θ′Yt+1)

2
)
and µz = E(zt). (See the explicit derivation

of (6) as part of the proof of Corollary 3.1.)

Note in addition that it follows from Lemma 2.2 and Proposition 2.1 that, under the null H0,

both
(
ψ′
t(θ

0), v′t(θ
0)
)′

and ∂ψt

∂θ′ (θ)
∣∣∣
θ=θ0

are martingale difference sequences. Then, the central limit

theorem of Billingsley (1961) for stationary ergodic martingale difference sequences implies that
√
T
(
ψ̄′
T (θ

0), v̄′T (θ
0)
)′

and
√
T ψ̄T
∂θ′ (θ)

∣∣∣
θ=θ0

are asymptotically normal. Note that
√
T ∂v̄T
∂θ′ (θ)

∣∣∣
θ=θ0

=

µz ·
√
T
(
∂c
∂θ′ (θ)

∣∣
θ=θ0

− 2θ0
′ 1
T

∑T
t=1 YtY

′
t

)
is also asymptotically normal.

Overall, we will use the fact that, first
√
T
(
ψ̄′
T (θ

0), v̄′T (θ
0)
)′
is asymptotically normal by the central

limit theorem for martingale difference sequences and second
√
T
(
∂ψ̄T
∂θ′ (θ)

∣∣∣
θ=θ0

, ∂v̄T∂θ′ (θ)
∣∣∣
θ=θ0

)
= OP (1)

to conclude:

Corollary 3.1. If Assumptions 1, 2, 3 and 4 hold, then
√
T ϕ̄T (θ

0) is asymptotically normal with

asymptotic variance Σ(θ0) given by:

E

[
(zt − µz)(zt − µz)

′
((

θ0
′
Yt+1

)2
− c

(
θ0
))2

]

and
√
T ∂ϕ̄T

∂θ′ (θ)
∣∣∣
θ=θ0

= OP (1).

Proof: See Appendix B.

Remark 3.1. Note that if one interprets the null hypothesis H0 as stemming from the GAR(CH)

factor model (3) and one assumes in addition that the idiosyncratic terms ut are independent from

instruments zt, then, by the law of iterative expectations, one can use an even simpler formula for the

asymptotic variance matrix under H0:

Σ(θ0) = Var
((
θ0′Yt+1

)2)
V ar(zt).

It is worth noting that, by contrast with the weak identification literature (Stock and Wright

(2000)), we do not need a functional central limit theorem for the empirical process
(
ϕ̄T (θ)

)
θ∈Θ.

Moreover, we assume throughout that the stationary and ergodic process (zt, Yt) fulfills the integrability

conditions needed for all the laws of large numbers of interest. Thanks to the polynomial form of the

moment restrictions, they will ensure the relevant uniform laws of large numbers for ϕ̄T (θ) and its

derivatives. In particular, any GMM estimator will be consistent under Assumptions 1, 2 and 4 if we

define a GMM estimator as

θ̂T ≡ arg min
θ∈Θ∗

ϕ̄′T (θ)WT ϕ̄T (θ),

where WT is a sequence of positive definite random matrices such that plim(WT ) = W is positive

definite.

For the purpose of identification, we consider in the rest of the paper K = n − 1 along with the

normalization N = {θ ∈ Rn :
∑n

i=1 θi = 1}. In the light of Remark 2.4, setting K to n − 1 is not
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overly restrictive2. We shall also mention that our results do not depend upon our particular choice

of linear normalization as long as the identification of θ0 along Assumption 4 is guaranteed.

Writing θn = 1 −
∑n−1

i=1 θi, the effective parameter set is given by the projection of Θ∗ on its

n − 1 first components. For economy of notation, we keep Θ to denote this parameter set and

θ = (θi)1≤i≤n−1 ∈ Θ ⊂ Rn−1 the parameter of interest. We shall consider the functions ϕt(θ), ϕ̄T (θ)

and ρ(θ) as defined on Θ ⊂ Rn−1.

Thus, from now on, we define the GMM estimator θ̂T as

θ̂T ≡ arg min
θ∈Θ⊂Rn−1

ϕ̄′T (θ)WT ϕ̄T (θ). (7)

For sake of notational simplicity, we will often denote by p (= n − 1) the dimension of the unknown

vector θ of parameters of interest. We can now be more precise about the rate of convergence of this

estimator.

3.2 Rates of convergence

Following Chamberlain (1986), it could be deduced from Proposition 2.1 that the partial information

matrix for θ is zero. Therefore (see Chamberlain’s Theorem 2) there is no (regular) T 1/2 consistent

estimator for θ. The intuition of this result is quite simple. In the Taylor expansion of the sample

average of ϕt,T (θ), the first order term (∂ϕ̄T (θ
0)/∂θ′)(θ̂T − θ0), has a smaller order of magnitude than

ϕ̄T (θ
0) (the intercept term) and disappears in front of the curvature (quadratic) terms which then

determine the asymptotic order of magnitude of θ̂T − θ0. Because these quadratic terms are of order

T 1/2, we can only extract an order T 1/2 for ∥θ̂T − θ0∥2. Hence the following result:

Proposition 3.1. Under Assumptions 1, 2, 3, 4, if θ̂T is the GMM estimator as defined by Equation

(7),

∥θ̂T − θ0∥ = OP (T
−1/4).

Proof: See Appendix B.

Proposition 3.1 ensures a convergence rate for the GMM estimator θ̂T at least as fast as T 1/4 but

possibly less than the standard T 1/2. The next Proposition 3.2 will complete this statement as follows.

On the one hand, it will prove directly that, as expected from the Chamberlain’s impossibility result,

T 1/4(θ̂T − θ0) does not converge to zero in probability and thus the slow rate T 1/4 may prevail. On

the other hand, it also proves that T 1/4(θ̂T − θ0) does converge to zero with a positive probability. In

other words, depending on what part of the sample space the infinite “observed” sample lies in, the

rate of convergence may be either T 1/4 or faster, possibly T 1/2.

Remark 3.2. It is worth interpreting the heterogeneity of rates of convergence across the sample space

in terms of randomness of a (population) matrix that may be seen as a Fisher information matrix.

2It is worth mentioning that all of our results remain valid for K < n − 1 with a suitable definition of Θ∗. In this
instance, the degrees of freedom derived in Theorem 3.2 need to be carefully adapted.
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While randomness of the information matrix is known to occur in some non-ergodic settings, it has

been recently considered as a possibility in the context of weak identification by Andrews and Mikusheva

(2012), even though they eventually preclude this possibility by their maintained Assumption 1(b). By

a slight abuse of language, we will use here their information theoretic terminology, even though we

are in a GMM context more general than Maximum Likelihood for which Fisher information matrices

are usually defined. The GMM analogs of the score vector and of the Hessian of the log-likelihood will

be defined form the criterion function:

QWT (θ) =
T

2
ϕ̄′T (θ)WT ϕ̄T (θ).

The GMM analog of the outer product of the score is then:

IWT (θ) =
1

T

∂QWT (θ)

∂θ
.
∂QWT (θ)

∂θ′
=
∂ϕ̄′T (θ)

∂θ
WT

(√
T ϕ̄T (θ)

)(√
T ϕ̄′T (θ)

)
WT

∂ϕ̄T (θ)

∂θ′

such that, under regularity conditions, we have at true value θ = θ0:

IW (θ0) = lim
T→∞

E
(
IWT (θ0)

)
= Γ′(θ0)WΣ(θ0)WΓ(θ0).

The GMM analog of the Hessian matrix of the log-likelihood is:

HW
T (θ) =

1

T

∂2QWT (θ)

∂θ∂θ′
=
∂ϕ̄′T (θ)

∂θ
WT

∂ϕ̄T (θ)

∂θ′
+
(
h′ijT (θ)WT ϕ̄T (θ)

)
1≤i,j≤p , (8)

where:

hijT (θ) =
∂2ϕ̄T (θ)

∂θi∂θj
.

In particular, under regularity conditions, we have at true value θ = θ0:

HW (θ0) = plimT→∞H
W
T (θ0) = Γ′(θ0)WΣ(θ0)WΓ(θ0).

In the (standard) strong identification case, Γ(θ0) is full column rank. Then for large T , both the

expected outer product matrix E
(
IWT (θ0)

)
and the Hessian matrix HW

T (θ0) are positive definite with

probability one. Moreover, for the efficient choice W = Σ−1(θ0) of the weighting matrix, the difference(
E
(
IWT (θ0)

)
−HW

T (θ0)
)
converges to zero in probability. This generalization to non-maximum likeli-

hood contexts of the so-called second informational equality has been put forward by Gourieroux and

Monfort (1989) as the necessary and sufficient condition to keep the asymptotic equivalence between

the standard asymptotic tests.

The situation is much different in the context of weak identification (drifting DGP such that Γ(θ0) =

O(1/
√
T ), see e.g. Kleibergen (2005)) or in our context (Γ(θ0) = 0). Then, as stressed by Andrews

and Mikusheva (2012), “the difference between the two information matrices is asymptotically non-

negligible compared with the information measure” itself. While they point this out in a maximum

likelihood context, this statement remains true in a GMM context, regardless of the choice of the

weighting matrix W . There is however an important difference between our setting and the common

weak identification framework:
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In the common “GMM with weak identification” asymptotics as developed by Stock and Wright

(2000), the drifting DGP introduces a perverse factor (1/
√
T ) at the level of the moment condition

itself and this factor will go through all derivatives of moment conditions. Then, both E
(
IWT (θ0)

)
,

HW
T (θ0) and their difference as well are all of order 1/T .

In our framework, while E
(
IWT (θ0)

)
is still of order 1/T , the Hessian matrix HW

T (θ0) is now

dominating since we can deduce from (8) that

√
THW

T (θ0)
d→ Z(X),

where:

Z(X) =
(
h′ij(θ

0)WX
)
1≤i,j≤p , h′ij(θ

0) = plimT→∞h
′
ijT (θ

0),

and X is defined by the Gaussian limit in distribution of
√
T ϕ̄T (θ

0):

√
T ϕ̄T (θ

0)
d→ X ∼ N(0,Σ(θ0)).

Note that since the variance matrix Σ(θ0) is non-singular, Z(X) is a non-degenerate random matrix,

the coefficients of which are all Gaussian with zero mean. In particular, the matrix Z(X) is positive

semi-definite if and only if Vec(Z(X)) fulfills p multilinear inequalities corresponding to the non-

negativity of the p leading principal minors of the matrix Z(X) (see e.g. Horn and Johnson (1985),

p 404). Therefore the random event “Z(X) positive semi-definite” denoted (Z(X) ≥ 0) throughout,

will occur with a probability q, 0 < q < 1. In particular when Z(X) is positive definite, the rescaled

Hessian matrix
√
THW

T (θ0) is, for T sufficiently large (with probability 1) a positive definite matrix

(with a random positive definite limit in distribution) while information measured by the outer product

matrix E
(
IWT (θ0)

)
is negligible in front of the Hessian matrix. This property explains that we may

get a root-T consistent estimator on this part of the sample space, by contrast with a common weak

identification setting.

Proposition 3.2 below makes explicit the conclusion of Remark 3.2 above, with the same notations

and the notation (Z(X) ≥ 0) for the complement of the event (Z(X) ≥ 0) :

Proposition 3.2. If Assumptions 1, 2, 3 hold, K = n− 1, and θ0 is an interior point of Θ, then, the

sequence
(
T 1/4(θ̂T − θ0)′,Vec′(ZT (θ

0))
)′

has at least one subsequence that converges in distribution

and for any such subsequence with limit distribution (V ′,Vec′(Z(X)))′, we have:

Prob (V = 0|Z(X) ≥ 0) = 1 and Prob
(
V = 0

∣∣∣(Z(X) ≥ 0)
)
= 0.

Proof: See Appendix B.

Proposition 3.2 gives the asymptotic distribution of the GMM estimator as a mixture of two

distributions, coming with two different rates of convergence. Up to the heterogeneity in rates of
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convergence, the fact that the asymptotic distribution of an estimator may depend on the location

of the (asymptotically) observed sample in the sample space is reminiscent of situations met in the

context of pretest estimators. Typically, when the event of probability q defined by (Z(X) ≥ 0) occurs,

all the component of θ̂T converge towards the true value θ0 at a rate faster than T 1/4. For instance,

this occurs with probability q = 1/2 in the case of only one parameter θ (case of a common feature in

two asset returns as studied by Engle and Kozicki (1993)), since in this case Z(X) is a real Gaussian

variable with zero-mean. By contrast, when the event (Z(X) ≥ 0) does not occur, at least some linear

combinations of θ̂T cannot converge faster than the slowest possible rate T 1/4. This classification of

rates of convergence extends the one described by Sargan (1983) in the context of linear instrumental

variables (with non-linearities with respect to parameters). Similar results have been derived by

Rotnitzky et al. (2000) for maximum likelihood estimation with singularities in the information matrix.

However, our main focus of interest here, specific to GMM, is the non-standard asymptotic distribution

of the J-test statistic for overidentification induced by the non-standard asymptotic behavior of the

GMM estimator.

Let us first consider a GMM estimator θ̂T associated to an arbitrary, albeit positive definite asymp-

totic weighting matrix W . The value function of the minimization problem (7) is then:

JWT = T ϕ̄′T (θ̂T )WT ϕ̄T (θ̂T ).

The key intuition is that, due to zero Jacobian and nonstandard rates of convergence derived in

Propositions 3.1 and 3.2, a Taylor expansion of JWT around θ0 will no longer depend primarily on

first order terms (terms that are linear w.r.t. (θ̂T − θ0)) but rather on second order terms. More

precisely, if v̂T = T 1/4(θ̂T − θ0) and G is a (H, p2) matrix gathering the second derivatives of the

moment conditions with respect to the p components of θ (see Appendix B), we have:

JWT = T ϕ̄′T (θ
0)Wϕ̄T (θ

0) + T 1/2ϕ̄′T (θ
0)WGVec(v̂T v̂

′
T ) +

1

4
Vec′(v̂T v̂

′
T )G

′WGVec(v̂T v̂
′
T ) + oP (1),

It is useful to introduce the Rp-indexed empirical process

ĴW (v) = T ϕ̄′T

(
θ0 + T−1/4v

)
WT ϕ̄T

(
θ0 + T−1/4v

)
,

where v ∈ Rp is implicitly defined as v = T 1/4(θ−θ0). By definition, JWT = ĴW (v̂T ) = minv∈HT
ĴW (v),

where HT =
{
v ∈ Rp : v = T 1/4(θ − θ0), θ ∈ Θ

}
. Let JW (v) be the Rp-indexed random process defined

by:

JW (v) = X ′WX +X ′WGVec(vv′) +
1

4
Vec′(vv′)G′WGVec(vv′), v ∈ Rp,

where X ∼ N(0,Σ(θ0)). Note that X ′WGVec(vv′) = v′Z(X)v so that JW (v) can also be written:

JW (v) = X ′WX + v′Z(X)v +
1

4
Vec′(vv′)G′WGVec(vv′), v ∈ Rp. (9)

By construction, for each v ∈ Rp, ĴW (v) converges in distribution towards JW (v). Lemma B.5 in

Appendix B shows that this convergence in distribution actually occurs uniformly on any compact
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subset of Rp. Upon the tightness of their respective minimizers, the minimum of ĴW (v) converges in

distribution towards the minimum of JW (v). This is formally stated in the following theorem:

Theorem 3.1. If Assumptions 1, 2, 3 hold, K = n − 1 and θ0 is an interior point of Θ, then

JWT = minv∈HT
ĴW (v) converges in distribution towards JW = minv∈Rp JW (v).

Proof: See Appendix B.

Theorem 3.1 gives the asymptotic distribution of JWT as the minimum of the limiting process

JW (v). This distribution is rather unusual since JW (v) is an even multivariate polynomial function

of degree 4. In general, the minimum value of JW (v) does not have a close form expression. In

usual cases polynomial of degree 2 are often derived as limiting process yielding the usual chi-square

distribution. (See e.g. Koul (2002) for the treatment of minimum distance estimators derived from

Locally Asymptotically Normal Quadratic dispersions that include the Locally Asymptotically Normal

models as particular case as well as the usual GMM framework when the local identification condition

holds.) This peculiarity of JW (v) makes the determination of critical values for asymptotic inferences

involving JWT rather difficult.

One possible way may consist on simulating a large number of realizations ofX and get an empirical

distribution of the minimum value of JW (v). However, a brute force simulation approach is not trivial

since it would involve plugging in first step estimators of nuisance parameters such as Σ(θ0), W and

G. Dovonon and Gonçalves (2012) have recently developed a bootstrap based alternative technique.

For the purpose of a non-simulation based asymptotic inference strategy, the next subsection

shows that the standard choice of W = Σ−1(θ0) allows us to get an asymptotic distribution for JWT

still tightly related to chi-square, albeit mixing several distributions, not only χ2(H−p) but also χ2(H)

(and possibly some intermediate degrees). Note that our focus on the case W = Σ−1(θ0) is motivated

by the search for close form formulas for the distribution of JW and not by efficiency considerations.

Since rates of convergence of any GMM estimator are heterogeneous depending on the occurrence of

the event (Z(X) ≥ 0) (occurrence which itself depends upon the choice of W ) there is no such thing

as an efficient GMM estimator.

3.3 Overidentification test

The GMM overidentification test statistic based on the moment condition E(ϕt,T (θ)) = 0 is given by:

JT = T ϕ̄′T (θ̂T )WT ϕ̄T (θ̂T ).

JT is the minimum value of the GMM objective function using the so-called optimal weighting matrix

defined as a consistent estimate of the inverse of the moment conditions’ long run variance, i.e. W−1 =

Σ(θ0) ≡ limT→∞Var
(√

T ϕ̄T (θ
0)
)
. From Corollary 3.1, one will typically take:

W−1
T =

1

T

T−1∑
t=1

(zt − z̄T )(zt − z̄T )
′
((

θ̃′TYt+1

)2
− c̄T (θ̃T )

)2

, (10)
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where θ̃T denotes any consistent estimator of θ0, for instance a GMM estimator obtained with identity

matrix asWT . Note that, as far as controlling for the size of the test is concerned, we actually only need

to estimate consistently the variance matrix Σ(θ0) under the null. Then, a much simpler estimator is

available in the context of Remark 3.1 by replacing population variances by sample counterparts.

Note that JT stands for above JWT , while we erase for simplicity the upper indexW for all quantities

J when W is the limit of the above optimal choice of WT . Recall that this specific choice of weighting

matrix does not deserve anymore to be called optimal. However, it will allow us a direct comparison

with two chi-square distributions, namely χ2(H) and χ2(H − p). First, we have by definition:

JT ≤ JT (0) = T ϕ̄′T (θ
0)WT ϕ̄T (θ

0)
d→ J(0) ∼ χ2(H)

However, due to the nullity of the Jacobian matrix, the common asymptotic theory stating that

JT behave in large samples as a chi-square random variable with H − p degrees of freedom (Hansen

(1982)) is no longer valid. From the general result (3.1), we know that the limiting distribution of JT

is the distribution of:

J = min
v∈Rp

{
X ′WX +X ′WGVec(vv′) +

1

4
Vec′(vv′)G′WGVec(vv′)

}
.

Obviously:

J ≥ L = min
u∈Rp2

{
X ′WX +X ′WGu+

1

4
u′G′WGu

}
(11)

We will actually see below that J > L with a positive probability while L will always follow a

distribution χ2(H−p). This is the key intuition of the reason why the standard J-test for identification,

based on the statistic JT converging to J but using critical values computed from χ2(H − p) will be

asymptotically oversized. To be more precise, it is first useful to get the following lemma:

Lemma 3.1. With L defined in (11) (and W = Σ−1(θ0) ), we have the decomposition:

J(0) = L+ S,

L stochastically independent of (S,Z(X)) and: L ∼ χ2(H − p), S ∼ χ2(p), J(0) ∼ χ2(H), where :

H = dim(ϕ̄T (θ)), and p = dim(θ).

Proof: See Appendix B.

Lemma 3.1 is a key input to prove our main result as given by Theorem 3.2 below:

Theorem 3.2. Under the same conditions as Theorem 3.1 with W = Σ−1(θ0), the overidentification

test statistic JT is asymptotically distributed as J which is such that:

L ≤ J ≤ J(0),

with:
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(i) Z(X) ≥ 0 ⇒ J = J(0)

(ii) ∀c > 0,

Prob (L > c) < Prob (J > c) .

Proof: See Appendix B.

Remark 3.3. The proof of Theorem 3.2 actually shows that:

Prob (L > c, Z(X) ≥ 0) < Prob (J > c, Z(X) ≥ 0) , ∀c > 0.

This obviously implies the inequality given in Theorem 3.2(ii) above, since by virtue of the always valid

inequality L ≤ J, we have on any measurable part B of the sample space:

Prob ((L > c) ∩B) ≤ Prob ((J > c) ∩B) .

However, it is worth realizing that the part of the sample space where Z(X) ≥ 0 is actually responsible

for the strict inequality and, as a consequence (see Remark 3.4 below) for over-rejection of the J-test.

When Z(X) ≥ 0, all the components of θ are estimated at a rate faster than T 1/4. Then, since the

Jacobian matrix is nil at the true value and only higher order terms matter in Taylor expansions, it

is as if the parameters were actually known. This is the reason why the asymptotic distribution of

the J-test statistics coincides in this case with J(0), following χ2(H). When the event (Z(X) ≥ 0)

does not occur, depending on the part of the sample space, only a number p1 < p of components of θ

are estimated at a rate faster than T 1/4. Then, we may expect in such cases that the J-test statistic

asymptotically behaves as a χ2(H−q), q = p−p1. In other words, the eventual asymptotic distribution

under the null of JT should be a mixture of distributions χ2(H − q), q = 0, 1, . . . , p. Then, it is not

surprising that critical values computed from χ2(H − p) lead to over-rejection as formally proved in

Remark 3.4 below.

Remark 3.4. By application of the Portmanteau lemma (see e.g. van der Vaart, Lemma 2.2.(v) page

6), the convergence in distribution of JT towards J implies that:

lim inf
T→∞

Prob
(
JT > χ2

1−α(H − p)
)
≥ Prob

(
J > χ2

1−α(H − p)
)
> Prob

(
L > χ2

1−α(H − p)
)
= α.

Hence, the standard J-test will be oversized, regardless of the nominal level.

The particular case p = n − 1 = 1 allows us to prove results that are even more explicit for two

reasons:

First, there is no intermediate distribution χ2(H − q), q = 0, 1, . . . , p to consider between χ2(H)

and χ2(H − 1).

Second, Z(X) is now a univariate Gaussian variable, and thanks to the symmetry of the normal

distribution with zero mean, conditioning by the event (Z(X) ≥ 0) has no impact on the distributions

of interest and the conditioning event has always a probability one half.

In other words, we can show:
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Corollary 3.2. Under the same conditions as Theorem 3.2, if p = 1, the J-test statistic follows

asymptotically under the null a half-half mixture of χ2
H and χ2

H−1. More precisely,

J = I(z ≥ 0)J(0) + I(z < 0)L,

where z is standard normal such that I(z ≥ 0) is independent of J(0) and L, respectively; I(A) denotes

the usual indicator function.

Proof: See Appendix B.

Note that the case p = 1 is precisely the one studied by Engle and Kozicki (1993): out of two

asset returns Y1t and Y2t, is it possible to find an homoskedastic portfolio return (1 − θ)Y1t + θY2t?

The standard J-test based on quantiles of χ2(H − 1) will over-reject this null hypothesis because an

(asymptotically) exact test should use instead quantiles of the mixture 1
2χ

2(H − 1) + 1
2χ

2(H). It is

worth keeping in mind that, even though these two distributions may not be so different, their tails

are different and thus the impact on corresponding critical values will be non negligible. Of course,

this impact will be even more dramatic with large p (a large number n = p+1 of assets at stake) since

then, common critical values are based on while as shown above, the bound χ2(H) is sharp. Note that

this upper bound always allows us to define an asymptotically conservative test.

At this stage, it is worth reiterating that the asymptotic results obtained by Propositions 3.1

and 3.2 and Theorems 3.1 and 3.2 stand regardless of the choice of linear exclusion/normalization

condition imposed to identify the true common feature vector. Our derivations are based upon a

portfolio weights constraint that sets the sum of weights to one. But these results are also valid for

the types of normalization that set a certain component of the cofeature vector to one as in Engle and

Kozicki (1993).

4 Monte Carlo evidence

The Monte Carlo experiments in this section investigate the finite sample performance of the GMM

overidentification test proposed in this paper for testing for common GARCH factors. However, it

is worth keeping in mind that the non-standard behaviours of the GMM usual statistics are not

alleviated by large samples. It is then also important to simulate large samples to assess at what stage

non-standard behaviours are prevalent.

We simulate an asset return vector process Yt+1 as:

Yt+1 = ΛFt+1 + Ut+1

according to five designs.

Design D1 generates a bivariate vector of two asset returns Yt+1 with a single conditionally het-

eroskedastic factor f1,t+1 (Ft+1 = f1,t+1) following a Gaussian GARCH(1,1) dynamic, i.e.

f1,t+1 = σtεt+1, σ2t = ω1 + α1f
2
1,t + β1σ

2
t−1,
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where εt+1 ∼ NID(0, 1). We choose ω1 = 0.2, α1 = 0.2, and β1 = 0.6. The factor loading vector is set

to Λ = (1, 0.5)′ and the bivariate vector of idiosyncratic shocks Ut+1 ∼ NID(0, 0.5Id2). Ft+1 and Ut+1

are independent throughout.

Design D2 also simulates a bivariate vector of two asset returns Yt+1 but with two independent

GARCH factors. The vector of conditionally heteroskedastic factors is Ft+1 = (f1,t+1, f2,t+1)
′ where

f1,t+1 is independent of f2,t+1, a GARCH process with ω2 = 0.2, α2 = 0.4, and β2 = 0.4. The factor

loading Λ = Id2 and the idiosyncratic shocks Ut+1 ∼ NID(0, 0.5Id2).

Designs D3, D4 and D5 all generate trivariate vector of three asset returns Yt+1 with one, two and

three GARCH factors, respectively. For all of them, the idiosyncratic shocks Ut+1 ∼ NID(0, 0.5Id3).

The single factor in Design D3 has the same GARCH dynamics as the factor in Design D1 with

factor loading λ1 = (1, 1, 0.5)′.

In Design D4, the dynamics of the two GARCH factors are the same as those in D2 with factor

loading matrix Λ = (λ1|λ2); λ1 = (1, 1, 0.5)′ and λ2 = (0, 1, 0.5)′.

The return process in Design D5 is generated by the GARCH factors Ft+1 = (f1,t+1, f2,t+1, f3,t+1)
′;

these factors are mutually independent and ω3 = 0.1, α3 = 0.1, and β3 = 0.8 for f3,t+1. The factor

loading matrix is set to Id3.

Thanks to their respective parameter configurations, the GARCH factors fi,t : i = 1, 2, 3 considered

in these experiments are stationary ergodic with finite fourth moments so that the returns processes

inherit the same properties. The sets of instruments z1t and z2t that we introduce below are also

stationary and ergodic with finite second moment and the conditions in Assumption 3 are essentially

fulfilled. (We refer to Bollerslev (1986) and Lindner (2009) for the conditions that guarantee these

probabilistic properties for GARCH processes.)

Designs D1 and D4 correspond to the null hypothesis to be tested (with p = n − 1) including

the parameter identification requirement. Designs D2 and D5 correspond to the alternative where

the GARCH features in the simulated asset returns are not common. In Design D3, where the three

simulated returns share one common GARCH factor, the parameters of one candidate common feature

are globally unidentified since the space of CH common features is of dimension two.

The parameters values considered in these designs match those found in empirical applications for

monthly returns and are also used by Fiorentini, Sentana and Shephard (2004) in their Monte Carlo

experiments. Each design is replicated 10,000 times for each sample size T . The sample sizes that we

consider are 50, 100, 1,000, 2,000, 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 100,000 and 200,000.

We include such large sample sizes in our experiments because of the slower rate of convergence of the

GMM estimator. Since the unconditional rate of convergence of this estimator is T 1/4 and not
√
T as

usual, we expect the asymptotic behaviours of interest to be confirmed for larger samples than those

commonly relied upon.

For each simulated sample, we evaluate the GMM estimator according to (7). The weighting

matrix WT is set to the inverse of Σ̂ given by (10) computed at the first stage GMM estimator of θ
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associated to the identity weighting matrix. We use a set of two instruments z1t =
(
Y 2
1t, Y

2
2t

)′
to test

for common GARCH factors for the bivariate simulated returns and z2t =
(
Y 2
1t, Y

2
2t, Y

2
3t

)′
to test for

common GARCH factors for the trivariate simulated returns. While Engle and Susmel (1993) suggest

to use as instruments, not only lagged squared returns but also lagged cross products, the latter ones

do not appear to be needed to get the evidence we want to illustrate: over-rejection of the standard

test under the null and excellent power of the conservative χ2(H) test under the alternative.

The rate of convergence as derived in Propositions 3.1 and 3.2 will be illustrated by the GMM

estimator from Design D1. From Theorem 3.2, the J-test statistic from this design is expected to

follow asymptotically a half-half mixture of χ2
1 and χ

2
2 instead of a χ2

1 as one would get under standard

settings where there is first order local identification. The J-test statistic from Design D4 is expected

to lead to substantial over-rejection if the critical values of χ2
1 (the usual asymptotic distribution of

JT ) are used while the critical values of χ2
3 would control the size of the test. Design D3 will give

an idea about the behaviour of the J-test when the moment condition model is well-specified but

non-identified, even globally. Designs D2 and D5 will illustrate the power of the test to detect the lack

of factor structure.

The results are summarized in Tables I and II and Figures 1 and 2. The T 1/4 rate of convergence of

the GMM estimator is confirmed by the fact that the simulated standard deviation of T 1/4θ̂ is stable

around 2.5 as the sample size grows (see Table I and Figure 1). Evidence that the estimator cannot be
√
T -consistent lies in the fact that the standard deviation of

√
T θ̂ increases with the sample size. The

rejection rate of the J-test for design D1 confirms that the half-half mixture of chi-squares derived as

asymptotic distribution provides a quite accurate approximation (actual rejection rate between 4.5%

and 5% for a nominal rate of 5%) for sample sizes larger or equal to 2,000. By contrast, for these

sample sizes, the usual critical values computed from the standard χ2(1) distribution lead to rejection

rates that exceed the nominal one by 70% or more.

The rejection rate of the true model in Design D4 also confirms the results of Theorem 3.2. The

rejection rate from the standard χ2
1 almost triples (at about 13%) the nominal rate (5%) while the

critical values from a χ2
3 offer a conservative test.

Designs D2 and D5 highlight the power of our test for common conditionally heteroskedastic

features. Under the alternative, as the sample size grows, the null is rejected even with the conservative

bound in 100% of the cases. It is worth mentioning that this test converges slowly since sharp rejection

rates are not obtained before T = 2, 000.

In Design D3 where there is no-parameter-identification at all, the asymptotic distribution of the

J-test seems to significantly squeeze to the left making both χ2
1 and χ2

3 useful to carry out tests with a

correct size. An asymptotically correct critical value for the J-test (even one accounting for first order

underidentification) would therefore under-reject. This suggests that the results of Cragg and Donald

(1996) and Staiger and Stock (1997), namely that the GMM overidentification test is undersized in

case of global identification failure, also hold in our context.
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Table I: Simulated bias and standard deviation of the GMM estimator θ̂ in Design D1 and

simulated rejection rate of the J-test for Designs D1 (2A-1F) and D2 (2A-2F) using critical values

from χ2
1, χ

2
2 and the mixture 1

2χ
2
1 +

1
2χ

2
2; 5%-nominal level.

Design D1 (2A:1F) Design D2 (2A:2F)
Rejection rate (in %) using
5%-critical value from:

Bias sd(T
1
4 θ̂) sd(T

1
2 θ̂) χ2

1 χ2
2 Mixt. χ2

1 χ2
2 Mixt.

50 1.21 2.00 5.32 3.05 0.41 0.85 3.6 0.4 1.1
100 1.16 2.33 7.36 3.38 0.67 1.44 4.2 1.1 1.8
500 0.88 3.23 15.29 4.90 1.29 2.30 31.9 13.7 19.8
1000 0.73 3.64 20.48 7.11 2.35 3.48 68.3 45.3 54.4
2000 0.57 2.67 17.82 8.90 3.15 4.87 94.9 86.3 90.3
5000 0.44 2.25 18.89 9.15 3.33 4.97 100.0 99.8 99.9

10000 0.36 2.34 23.41 9.04 3.13 4.65 100.0 100.0 100.0
20000 0.30 2.34 27.87 8.89 3.00 4.58 100.0 100.0 100.0
30000 0.26 2.41 31.78 9.16 3.34 4.95 100.0 100.0 100.0
40000 0.25 2.40 33.98 9.63 3.26 4.81 100.0 100.0 100.0
50000 0.23 2.42 36.18 9.18 3.18 4.80 100.0 100.0 100.0
100000 0.19 2.50 44.51 9.31 3.22 4.97 100.0 100.0 100.0
200000 0.15 2.54 53.81 10.05 3.39 5.10 100.0 100.0 100.0

‘Mixt.’ stands for 1
2
χ2
1 +

1
2
χ2
2; the critical values of which are: 5.14(8.28) for a nominal level of 0.05(0.01).

‘sd’ for standard deviation, ‘A’ for Assets and ‘F’ for factor(s). The true value of θ in Design D1 is -1.0.

Table II: Simulated rejection rate of the J-test for Designs D3 (3A-1F), D4 (3A-2F) and D5

(3A-3F) using critical values from χ2
1 and χ2

3; 5%-nominal level.

Rejection rate (in %) using
5%-critical value from:

χ2
1 χ2

3 χ2
1 χ2

3 χ2
1 χ2

3

T Design D4 Design D3 Design D5
3A-2F 3A-1F 3A-3F

50 2.06 0.06 2.16 0.05 2.5 0.1
100 2.04 0.07 1.87 0.03 2.6 0.1
500 3.69 0.29 2.17 0.09 9.6 1.0
1000 6.80 0.61 2.56 0.30 23.7 4.8
2000 9.25 1.16 3.08 0.20 52.1 20.4
5000 10.24 1.77 3.66 0.25 92.3 72.9
10000 11.06 2.08 3.79 0.35 99.8 98.2
20000 11.80 2.05 3.86 0.33 100.0 100.0
30000 12.61 2.25 4.17 0.26 100.0 100.0
40000 13.56 1.95 3.99 0.38 100.0 100.0
50000 13.04 2.50 4.53 0.41 100.0 100.0

100000 13.13 2.25 4.61 0.34 100.0 100.0
200000 13.57 2.16 4.52 0.38 100.0 100.0

‘A’ stands for Assets and ‘F’ for factor(s).
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Figure 1: Simulated bias and standard deviation of the GMM estimator θ̂ in Design D1 (2A-1F) and
simulated rejection rate of the J-test using critical values from χ2

1, χ
2
2 and the mixture

1
2χ

2
1 +

1
2χ

2
2. Nominal levels 5% and 1% for Design D1 and 5% for D2 (2A-2F).
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Figure 2: Simulated rejection rate of the J-test using critical values from χ2
1 and χ2

3 for Designs D3
(3A-1F), D4 (3A-2F) and D5 (3A-3F). Nominal levels 5% and 1%.

0 0.5 1 1.5 2

x 10
5

0

0.05

0.1

0.15

0.2
D4: Rej. rate (α =0.05)

0 0.5 1 1.5 2

x 10
5

0

0.01

0.02

0.03

0.04

0.05
D3: Rej. rate (α =0.05)

0 1 2 3 4

x 10
4

0

0.2

0.4

0.6

0.8

1
D5: Rej. rate (α =0.05)

0 0.5 1 1.5 2

x 10
5

0

0.01

0.02

0.03

0.04
D4: Rej. rate (α =0.01)

0 0.5 1 1.5 2

x 10
5

0

0.002

0.004

0.006

0.008

0.01
D3: Rej. rate (α =0.01)

0 1 2 3 4

x 10
4

0

0.2

0.4

0.6

0.8

1
D5: Rej. rate (α =0.01)

χ2
1

χ2
3 Nominal

23



5 Conclusion

This paper sets the focus on an important albeit simple case of non-standard behaviour of the J-

test statistic for overidentification. This is important because the detection of CH common features,

or equivalently, of (GARCH) factor structures with fixed factor loadings, is crucial for modeling of

multivariate conditional heteroskedasticity. However, the case considered in this paper is the simplest

possible since second-order identification is addressed with quadratic functions. As documented at least

in the MLE literature (see e.g. Rotnitzky et al. (2000) and Lee and Chesher (1986)), second-order

identification, while first-order identification fails is at stake with more complicated non-quadratic

settings.

Extensions of these results to a GMM framework is worthwhile for at least two reasons. First,

as exemplified in the present paper, non-standard non-Gaussian asymptotic distribution of estimators

may not prevent us from recovering asymptotic (mixtures) of chi-squares for the J-test of overidentifi-

cation. This overidentification issue could not be addressed in the MLE context. Second, as mentioned

in the paper, there is no such thing as an obvious efficiency argument to elicit a specific weighting

matrix for GMM when first order identification fails. For these reasons, further work is warranted.

Non-quadratic moment conditions with possible local singularities are actually pervasive in financial

econometrics. An important example is inference about risk premium in equilibrium when investors

have preferences for higher order moments.

Appendix A: Testing for GARCH effects on common features

A regression-based approach is akin to consider an instrumental heteroskedasticity model that can be written:

ξt+1 = a+ bzt + εt+1, (A.1)

where ξt+1 is a m-dimensional vector that gathers some coefficients of the matrix Yt+1Y
′
t+1, zt is again a vector

of H Ft-measurable instruments, E(εt+1) = 0, Cov(εt+1, zt) = 0 and a ∈ Rm and b ∈ Rm×H are vectors of
unknown parameters. It will be possible to check from this regression model that the portfolio θ′Yt+1 is a CH
common feature insofar as:

(θ′Yt+1)
2
= θ′Yt+1Y

′
t+1θ = γ′(θ)ξt+1

for some known function γ from Θ to RmH . In other words, the regression model (1) must be rich enough to
be such that the vector ξt+1 gathers in particular the coefficients of Yt+1Y

′
t+1 that show up in θ′Yt+1Y

′
t+1θ. In

these circumstances, the null hypothesis of interest for the test of CH common features will be:

H0 : ∃θ : γ′(θ) b = 0.

Irrespective of the preferred test chosen in the trinity of asymptotic tests to test such a composite hypothesis
(see Gourieroux and Monfort (1989)), the standard asymptotic chi-square distribution under the null will be
warranted only if:

∂[γ′(θ)b0]

∂θ

∣∣∣∣
θ=θ0

is full rank. However, from the regression model:

(θ′Yt+1)
2 = γ′(θ)a0 + γ′(θ)b0zt + γ′(θ)εt+1

and thus:
∂(θ′Yt+1)

2

∂θ
=
∂γ′(θ)

∂θ
a0 +

∂γ′(θ)

∂θ
b0zt +

∂γ′(θ)

∂θ
εt+1
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and

Cov

(
∂(θ′Yt+1)

2

∂θ
, zt

)
=
∂γ′(θ)

∂θ
Cov(b0zt, zt).

therefore,
∂γ′(θ)

∂θ
b0
∣∣∣∣
θ=θ0

= Cov

(
∂(θ′Yt+1)

2

∂θ
, zt

)∣∣∣∣
θ=θ0

(Var(zt))
−1

= 0

by Proposition 2.1 when θ0 is a common feature.

Appendix B: Proofs

Throughout this appendix, we denote ∆ and ∆̄ the RH -valued functions defined by

∆(v) =

(
v′
∂2ρh
∂θ∂θ′

(θ0)v

)
1≤h≤H

and ∆̄(v) =

(
v′
∂2ϕ̄h,T
∂θ∂θ′

(θ0)v

)
1≤h≤H

, ∀v ∈ Rp,

p = n− 1 and n = dim(Yt). We let G and Ḡ be two (H, p2) matrices defined such that ∆(v) = GVec(vv′) and
∆̄(v) = ḠVec(vv′), for all v ∈ Rp. By definition,

G =

(
Vec

(
∂2ρ1
∂θ∂θ′

(θ0)

)
, Vec

(
∂2ρ2
∂θ∂θ′

(θ0)

)
, · · · , Vec

(
∂2ρH
∂θ∂θ′

(θ0)

))′

and Ḡ has the same expression but with ϕ̄h,T instead of ρh, h = 1, . . . , H.

Lemmas B.1-B.5 below connect as follows in proving the main results in the paper. Lemma B.1 is relevant
thanks to lemma 2.3 and is useful to derive the rate of convergence as stated in Propositions 3.1 and 3.2. This
lemma is also useful to establish part of Lemma B.5. Lemma B.2 is useful to establish Proposition 3.2. Lemma
B.4 is useful to establish Lemma B.5; the part (iii) of which essentially proves Theorem 3.1, while Lemma B.3
is used in the proof of Theorem 3.2.

Lemma B.1. If (∆(v) = 0) ⇒ (v = 0)), then there exists γ > 0 such that for any v ∈ Rp,

∥∆(v)∥ ≥ γ∥v∥2.

Proof of Lemma B.1. ∆(v) is an homogeneous function of degree 2 with respect to v. Therefore, for all
v ∈ Rp,

∥∆(v)∥ = ∥v∥2
∥∥∥∥∆( v

∥v∥

)∥∥∥∥ .
Define γ = inf∥v∥=1 ∥∆(v)∥. From the compactness of {v ∈ Rp : ∥v∥ = 1} and the continuity of ∆(v), there
exists v∗ such that ∥v∗∥ = 1 and γ = ∥∆(v∗)∥. ∆(v∗) ̸= 0 since v∗ ̸= 0 and this shows the expected result.�

Lemma B.2. Let {XT : T ∈ N} and {εT : T ∈ N} be two sequences of real valued random variables such that
εT converges in probability towards 0 and for all T , XT ≤ εT , a.s. Then,

lim sup
T→∞

Prob (XT ≤ ϵ) = 1, ∀ϵ > 0.

Proof of Lemma B.2. Let ϵ > 0. We have

lim sup
T→∞

Prob (XT ≤ ϵ) = 1− lim inf
T→∞

Prob (XT > ϵ) .

But
inf
n≥T

Prob (Xn > ϵ) ≤ Prob (XT > ϵ) ≤ Prob (εT > ϵ) → 0

as T → ∞. This establishes the result�

25



Lemma B.3. Under the same conditions as Theorem 3.2, there exists an (H, p) matrix G1 (p = n− 1) and a
(p, p2) matrix G2 such that

G = G1G2 and Rank(G) = Rank(G1) = Rank(G2) = p.

Proof of Lemma B.3. Let θ∗ =
(
θ′, 1−

∑n−1
i=1 θi

)′
, θ ∈ Rn−1. We recall that ρ(θ) = E

[
zt
(
(θ′∗Yt+1)

2 − c(θ∗)
)]
.

We have
ρ(θ) = E[(zt − E(zt))(θ

′
∗Yt+1)

2] = E[(zt − E(zt))(θ
′
∗Yt+1Y

′
t+1θ∗)]

= E[(zt − E(zt))E(θ′∗Yt+1Y
′
t+1θ∗|Ft)] = E[(zt − E(zt))θ

′
∗ΛDtΛ

′θ∗]

= E[(zt − E(zt))tr(DtΛ
′θ∗θ

′
∗Λ)] = E[(zt − E(zt))Diag′(Dt)]Diag(Λ′θ∗θ

′
∗Λ)

= Cov(zt,Diag(Dt))Diag(Λ′θ∗θ
′
∗Λ)

≡ G1Diag(Λ′θ∗θ
′
∗Λ)

(B.1)

where G1 = Cov(zt,Diag(Dt)) is a (H, p) matrix of rank p by Assumption 2.
Then, by computing the second order derivatives at θ0, we deduce that

G = G1G2

for some (p, p2) matrix G2. We now show that G2 has full row rank p. We proceed by contradiction. If G2 does
not have full row rank, G itself would be of rank smaller than p and the null space of G would be of dimension
larger than p2 − p. This cannot be true since, by Lemma 2.3.,

GVec(vv′) = 0 ⇒ v = 0

and clearly, none of the p linearly independent vectors: Vec(eie
′
i), i = 1, . . . , p, where {ei : i = 1, . . . , p} is the

canonical basis of Rp (all the components of ei are zero except the i-th one equal to 1), belongs to the null space
of G�

Lemma B.4. Let M̂T (v) and M(v) be two real-valued stochastic processes with continuous sample paths indexed
by Rp and {VT : T ∈ N} a non-decreasing sequence of subsets of Rp such that

∪
T≥0 VT = Rp. If

(i) M̂T (·) converges in distribution towards M(·) in ℓ∞(K) for every compact K ⊂ Rp, where ℓ∞(K) is the
set of all bounded real-valued functions on K, endowed with the sup-norm,

(ii) there exists v̂T ∈ argminv∈VT M̂T (v) which is uniformly tight and

(iii) there exists v̂ ∈ argminv∈Rp M(v) which is tight,

then,

M̂T (v̂T )
d→M(v̂).

Proof of Lemma B.4. We show that Prob(M̂T (v̂T ) ≤ x) → Prob(M(v̂) ≤ x) as T → ∞ for any continuity
point x of the cumulative distribution of M(v̂). Let x ∈ R be such a point and ϵ > 0. Since v̂T is uniformly
tight and v̂ is tight, there exists mϵ > 0 such that

sup
T

Prob(∥v̂T ∥ > mϵ) <
ϵ

3
and Prob(∥v̂∥ > mϵ) <

ϵ

3

and from Condition (i) of the Lemma, M̂T (·) converges towards M(·) in distribution in ℓ∞({v : ∥v∥ ≤ mϵ}).
Since the function inf is continuous on ℓ∞(K), for any nonempty compact K, we can apply the continuous
mapping theorem and deduce that

inf
∥v∥≤mϵ

M̂T (v)
d→ inf

∥v∥≤mϵ

M(v).
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Hence, from sample path continuity of M̂T (·) and M(·), we have:

min
∥v∥≤mϵ

M̂T (v)
d→ min

∥v∥≤mϵ

M(v).

Considering x as a continuity point for the cumulative distribution function of min∥v∥≤mϵ
M(v) (if not, consid-

ering that v̂ is tight, we can make mϵ large enough so that this is true), we can write that there exists Tϵ such
that for all T > Tϵ, {v : ∥v∥ < mϵ} ⊂ VT and∣∣∣∣Prob( min

∥v∥≤mϵ

M̂T (v) ≤ x

)
− Prob

(
min

∥v∥≤mϵ

M(v) ≤ x

)∣∣∣∣ < ϵ

3
.

Clearly,

(M̂T (v̂T ) ≤ x) =
(
M̂T (v̂T ) ≤ x; ∥v̂T ∥ ≤ mϵ

)∪(
M̂T (v̂T ) ≤ x; ∥v̂T ∥ > mϵ

)
=

(
min∥v∥≤mϵ

M̂T (v) ≤ x; ∥v̂T ∥ ≤ mϵ

)∪(
M̂T (v̂T ) ≤ x; ∥v̂T ∥ > mϵ

)
=

[(
min

∥v∥≤mϵ

M̂T (v) ≤ x

)
\
(

min
∥v∥≤mϵ

M̂T (v) ≤ x; ∥v̂T ∥ > mϵ

)]∪(
M̂T (v̂T ) ≤ x; ∥v̂T ∥ > mϵ

)
thus,

Prob
(
M̂T (v̂T ) ≤ x

)
− Prob

(
min

∥v∥≤mϵ

M̂T (v) ≤ x

)
≤ Prob(∥v̂T ∥ > mϵ).

We can actually replace M̂T (v̂T ) by min∥v∥≤mϵ
M̂T (v) in the previous set operations and deduce that

Prob

(
min

∥v∥≤mϵ

M̂T (v) ≤ x

)
− Prob

(
M̂T (v̂T ) ≤ x

)
≤ Prob(∥v̂T ∥ > mϵ).

Therefore, ∣∣∣∣Prob(M̂T (v̂T ) ≤ x)− Prob

(
min

∥v∥≤mϵ

M̂T (v) ≤ x

)∣∣∣∣ ≤ Prob(∥v̂T ∥ > mϵ) <
ϵ

3
.

By the same way, we also have∣∣∣∣Prob(M(v̂) ≤ x)− Prob

(
min

∥v∥≤mϵ

M(v) ≤ x

)∣∣∣∣ ≤ Prob(∥v̂∥ > mϵ) <
ϵ

3
.

Now, we observe that∣∣∣Prob(M̂T (v̂T ) ≤ x)− Prob(M(v̂) ≤ x)
∣∣∣ ≤

∣∣∣∣Prob(M̂T (v̂T ) ≤ x)− Prob

(
min

∥v∥≤mϵ

M̂T (v) ≤ x

)∣∣∣∣
+

∣∣∣∣Prob( min
∥v∥≤mϵ

M̂T (v) ≤ x

)
− Prob

(
min

∥v∥≤mϵ

M(v) ≤ x

)∣∣∣∣
+

∣∣∣∣Prob( min
∥v∥≤mϵ

M(v) ≤ x

)
− Prob(M(v̂) ≤ x)

∣∣∣∣ .
Hence, for any T > Tϵ,

∣∣∣Prob(M̂T (v̂T ) ≤ x)− Prob(M(v̂) ≤ x)
∣∣∣ < 3ϵ/3. This completes the proof�

Lemma B.5. Under the same conditions as Theorem 3.1, we have

(i) The stochastic process ĴW (·) converges in distribution towards JW (·) in ℓ∞(K) for every compact K ⊂ Rp,

(ii) v̂T ≡ argminv∈HT
ĴW (v) is uniformly tight and any v̂ ∈ argminv∈Rp JW (v) is tight.
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(iii) In particular, ĴW (v̂T )
d→ JW (v̂).

Proof of Lemma B.5. We have

ϕ̄T

(
θ + T−1/4v

)
= ϕ̄T (θ

0) + T−1/4 ∂ϕ̄T
∂θ′

(θ0)v +
1

2
T−1/2∆̄(v)

and
ĴW (v) = T ϕ̄′T

(
θ + T−1/4v

)
WT ϕ̄T

(
θ + T−1/4v

)
= T ϕ̄′T (θ

0)WT ϕ̄T (θ
0) + 2T 1/2ϕ̄′T (θ

0)WTT
1/4 ∂ϕ̄T

∂θ′ (θ
0)v

+T 1/2ϕ̄′T (θ
0)WT ḠVec(vv

′) + T 1/2v′
∂ϕ̄′

T

∂θ (θ0)WT
∂ϕ̄T

∂θ′ (θ
0)v

+T 1/4v′
∂ϕ̄′

T

∂θ (θ0)WT ḠVec(vv
′) + 1

4Vec
′(vv′)Ḡ′WT ḠVec(vv

′).

Hence

ĴW (v) = T ϕ̄′T (θ
0)Wϕ̄T (θ

0) + T 1/2ϕ̄′T (θ
0)WGVec(vv′) +

1

4
Vec′(vv′)G′WGVec(vv′) + oP (1), (B.2)

where the oP (1) term is in fact uniformly negligible over any compact subset of Rp.
(i) We apply Theorem 1.5.4 of van der Vaart and Wellner (1996). To deduce that the stochastic process

ĴW (·) converges in distribution towards JW (·) in ℓ∞(K), this theorem requires that:

(a) The marginals (ĴW (v1), . . . , Ĵ
W (vk)) converge in distribution towards (JW (v1), . . . , J

W (vk)) for every
finite subset {v1, . . . , vk} of K.

(b) The empirical process ĴW (·) is asymptotically tight.

To show (a), we observe that, since the oP (1) terms in (B.2) is uniformly negligible over any compact,
(ĴW (v1), . . . , Ĵ

W (vk)) is asymptotically equivalent to a continuous function of
√
T ϕ̄T (θ

0) whose components
are

T ϕ̄′T (θ
0)Wϕ̄T (θ

0) + T 1/2ϕ̄′T (θ
0)WGVec(viv

′
i) +

1

4
Vec′(viv

′
i)G

′WGVec(viv
′
i), i = 1, . . . , k.

By the continuous mapping theorem, this latter converges in distribution towards (JW (v1), . . . , J
W (vk)). This

establishes (a).
To establish (b), we rely on Theorem 1.5.7 of van der Vaart and Wellner (1996). This theorem gives some

sufficient conditions for the empirical process ĴW (·) to be asymptotically tight. From (a), ĴW (v) converges
in distribution towards JW (v), for any v ∈ K. In addition, as a compact subset, K equipped with the usual
metric on Rp is totally bounded. It remains to show that ĴW (·) is asymptotically uniformly equicontinuous in
probability. That is for any ϵ, η > 0, there exists δ > 0 such that

lim sup
T

Prob

(
sup

v1,v2∈K:∥v1−v2∥<δ

∣∣∣ĴW (v1)− ĴW (v2)
∣∣∣ > ϵ

)
< η.

From (B.2), ĴW (v) is essentially a polynomial function of v and since K is bounded, we can write

|ĴW (v1)− ĴW (v2)| = XT ∥v1 − v2∥+ oP (1), (B.3)

where XT = OP (1). Let ϵ, η > 0. Since XT = OP (1), there exists mη > 0 such that supT Prob(|XT | > mη) < η.

Let δ = ϵ/(2mη) and AT =
(
supv1,v2∈K:∥v1−v2∥<δ

∣∣∣ĴW (v1)− ĴW (v2)
∣∣∣ > ϵ

)
. We have

AT = (AT , |XT | > mη)
∪

(AT , |XT | ≤ mη) .

We can safely ignore the oP (1) term in (B.3) and write

(AT , |XT | ≤ mη) ⊂

(
sup

∥v1−v2∥<δ
|XT |∥v1 − v2∥ > ϵ, |XT | ≤ mη

)
⊂ (|XT | > 2mη, |XT | ≤ mη) = ∅.
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Thus
Prob(AT ) ≤ Prob(|XT | > mη) < η.

As a result, lim supT Prob(AT ) < η and this completes the proof of (b); thus (i).

(ii) By definition, v̂T = T 1/4(θ̂T − θ0) and the uniform tightness of v̂T follows from Proposition 3.1. Next,
consider v̂ ∈ argminv∈Rp JW (v). Let ϵ > 0. We have 0 ≤ minv∈Rp JW (v) ≤ JW (0) = OP (1), hence, there exists
m1 > 0 such that

Prob

(
min
v∈Rp

JW (v) > m1

)
<
ϵ

2
.

Note that the leading term in JW (v) is Vec′(vv′)G′WGVec(vv′) and we know from Lemma B.1 that γ∥v∥4 ≤
Vec′(vv′)G′WGVec(vv′), γ > 0. Therefore, for ∥v∥ large enough, we can make JW (v) as large as desired with
arbitrary large probability. That is:

∀α, β > 0, ∃m2 > 0 : Prob

(
inf

∥v∥>m2

JW (v) > α

)
> 1− β.

We apply this with α = m1 and β = ϵ
2 and observe that

(∥v̂∥ > m2) =
(
∥v̂∥ > m2, J

W (v̂) > m1

)∪(
∥v̂∥ > m2, J

W (v̂) ≤ m1

)
.

Thus

Prob(∥v̂∥ > m2) ≤ Prob(JW (v̂) > m1) + Prob

(
inf

∥v∥>m2

JW (v) ≤ m1

)
≤ ϵ

2
+
ϵ

2
= ϵ.

This shows that v̂ is tight.
(iii) This last point follows from Lemma B.4 since θ0 is an interior point for Θ, the sequence HT verifies

the condition of this lemma�

Proof of Lemma 2.1. Let θ ∈ Rn, θ ̸= 0. We know that

Var(θ′Yt+1|Ft) = θ′ΛDtΛ
′θ + θ′Ωθ.

If Λ′θ = 0, then Var(θ′Yt+1|Ft) = cst and θ is a common feature. Conversely, if θ′ΛDtΛ
′θ+ θ′Ωθ = cst, writing

c = Λ′θ, we have
K∑
k=1

c2kDkk,t = cst,

Hence, we have a linear combination of the terms in Diag(Dt) that is constant. From Assumption 1-(ii), we
necessarily have c2k = 0; k = 1, . . . ,K. Thus Λ′θ = 0.�

Proof of Corollary 3.1. Note that:

ψt(θ) = zt
(
(θ′Yt+1)

2 − c(θ)
)
= (zt − z̄T )

(
(θ′Yt+1)

2 − c̄T (θ)
)
+ (zt − z̄T )(c̄T (θ)− c(θ)) + z̄T

(
(θ′Yt+1)

2 − c(θ)
)

and thus,

√
T ψ̄T (θ) =

√
T ϕ̄T (θ) + z̄T ·

(√
T
T

∑T
t=1[(θ

′Yt+1)
2 − c(θ)]

)
=

√
T ϕ̄T (θ) + µz ·

(
1√
T

∑T
t=1[(θ

′Yt+1)
2 − c(θ)]

)
+ (z̄T − µz)

(
1√
T

∑T
t=1[(θ

′Yt+1)
2 − c(θ)]

)
=

√
T ϕ̄T (θ)−

√
T v̄T (θ) + oP (1),

since
√
T (z̄T − µz) = OP (1) by Assumption 3. Hence,

√
T ϕ̄T (θ) =

√
T ψ̄T (θ) +

√
T v̄T (θ) + oP (1)

√
T ∂ψ̄T

∂θ′ (θ) =
√
T ∂ϕ̄T

∂θ′ (θ) +
√
T ∂v̄T
∂θ′ (θ) + oP (1).

(B.4)
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The second equation in (B.4) is obtained similarly to the first one. For θ = θ0, ψt(θ
0) = zt

(
(θ0

′
Yt+1)

2 − c(θ0)
)

and vt(θ
0) = −µz

(
(θ0

′
Yt+1)

2 − c(θ0)
)
are two martingale difference sequences with respect to Ft. Hence, the

asymptotic variance, Σ, of
√
T ϕ̄T (θ

0) is equal to:

Σ = Var
(
ψt(θ

0) + vt(θ
0)
)

= Var
(
ψt(θ

0)
)
+Var

(
vt(θ

0)
)
+Covar

(
vt(θ

0), ψt(θ
0)
)
+Covar

(
ψt(θ

0), vt(θ
0)
)

= E
(
ψt(θ

0)ψ′
t(θ

0)
)
+ E

(
vt(θ

0)v′t(θ
0)
)
+ E

(
vt(θ

0)ψ′
t(θ

0)
)
+ E

(
ψt(θ

0)v′t(θ
0)
)

= E

(
ztz

′
t

(
(θ0

′
Yt+1)

2 − c(θ0)
)2)

+ µzµ
′
zE
(
(θ0

′
Yt+1)

2 − c(θ0)
)2

−E
((

(θ0
′
Yt+1)

2 − c(θ0)
)2
zt

)
µ′
z − µzE

((
(θ0

′
Yt+1)

2 − c(θ0)
)2
z′t

)
= E

(
(zt − µz)(zt − µz)

′
(
(θ0

′
Yt+1)

2 − c(θ0)
)2)

.

Regarding the Jacobian, we mention that, under the conditions of the Corollary,

∂ψt
∂θ′

(θ0) = zt

(
(θ0

′
Yt+1)Y

′
t+1 − E((θ0

′
Yt+1)Y

′
t+1)

)
is a martingale difference sequence and, thanks to Assumption 3, the central limit theorem of Billingsley (1961)

for stationary and ergodic martingale difference sequences applies to
√
T ∂ψ̄T

∂θ′ (θ
0) which is asymptotically nor-

mal, therefore
√
T ∂ψ̄T

∂θ′ (θ
0) = OP (1). �

Proof of Proposition 3.1. We want to show that v̂T = T 1/4(θ̂T − θ0) is bounded in probability. We observe
that as a second order polynomial,

√
T ϕ̄T (θ̂T ) =

√
T ϕ̄T (θ

0) +
√
T
∂ϕ̄T
∂θ′

(θ0)(θ̂T − θ0) +
1

2

√
T ∆̄(θ̂T − θ0).

From Corollary 3.1,
√
T ϕ̄T (θ

0) and
√
T∂ϕ̄T (θ

0)/∂θ′ are bounded in probability. Hence,

√
T ϕ̄T (θ̂T ) =

√
T ϕ̄T (θ

0) +
1

2

√
T ∆̄(θ̂T − θ0) + oP (1)

and
T ϕ̄′T (θ̂T )WT ϕ̄T (θ̂T ) = T ϕ̄′T (θ

0)WT ϕ̄T (θ
0) + T

4 ∆̄
′(θ̂T − θ0)WT ∆̄(θ̂T − θ0)+

+T ∆̄′(θ̂T − θ0)WT ϕ̄T (θ
0) + oP

(
∥
√
T ∆̄(θ̂T − θ0)∥

)
+ oP (1).

By definition,
T ϕ̄′T (θ

0)WT ϕ̄T (θ
0)− T ϕ̄′T (θ̂T )WT ϕ̄T (θ̂T ) ≥ 0

and we can write:

T

4
∆̄′(θ̂T − θ0)WT ∆̄(θ̂T − θ0) ≤ −T ∆̄′(θ̂T − θ0)WT ϕ̄T (θ

0) + oP

(
∥
√
T ∆̄(θ̂T − θ0)∥

)
+ oP (1). (B.5)

Let δ̂ ≡ Vec((θ̂T − θ0)(θ̂T − θ0)′). By definition, ∆̄(θ̂T − θ0) = Ḡδ̂ and we have

∆̄′(θ̂T − θ0)WT ∆̄(θ̂T − θ0) = δ̂′Ḡ′WT Ḡδ̂

= δ̂′G′WGδ̂ + δ̂′(Ḡ−G)′WT Ḡδ̂ + δ̂′G′(WT −W )Ḡδ̂ + δ̂′G′W (Ḡ−G)δ̂

and from (B.5), we can write

T
4 δ̂

′G′WGδ̂ ≤ −T δ̂′(Ḡ−G)′WT ϕ̄T (θ
0)− T δ̂′G′(WT −W )ϕ̄T (θ

0)− T δ̂′G′Wϕ̄T (θ
0)

−T
4 δ̂

′(Ḡ−G)′WT Ḡδ̂ − T
4 δ̂

′G′(WT −W )Ḡδ̂ − T
4 δ̂

′G′W (Ḡ−G)δ̂ + oP (∥
√
TḠδ̂∥) + oP (1).
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By the Cauchy-Schwarz inequality,

T
4 δ̂

′G′WGδ̂ ≤
√
T∥δ̂∥∥Ḡ−G∥∥WT ∥∥

√
T ϕ̄T (θ

0)∥+
√
T∥δ̂∥∥G∥∥WT −W∥∥

√
T ϕ̄T (θ

0)∥

+
√
T∥δ̂∥∥G∥∥W∥∥

√
T ϕ̄T (θ

0)∥+ T
4 ∥δ̂∥

2∥Ḡ′ −G′∥
[
∥WT ∥∥Ḡ∥+ ∥W∥∥G∥

]
+T

4 ∥δ̂∥
2∥G∥∥WT −W∥∥Ḡ∥+

√
T∥δ̂∥∥Ḡ∥oP (1) + oP (1).

Noting that ∥δ̂∥ = ∥θ̂T − θ0∥2, and W is symmetric positive definite and also using Lemma B.1, we can write

δ̂′G′WGδ̂ ≥ γ0∥δ̂′G′Gδ̂∥ = γ0∥∆(θ̂T − θ0)∥2 ≥ γ∥θ̂T − θ0∥4,

for some γ0, γ > 0. Hence

γ∥v̂T ∥4 ≤ 4∥v̂T ∥2∥G∥∥W∥∥
√
T ϕ̄T (θ

0)∥+ ∥v̂T ∥2oP (1) + ∥v̂T ∥4oP (1) + oP (1).

Dividing each side by ∥v̂T ∥2 and after some re-arrangements, we have

∥v̂T ∥2(γ + oP (1)) ≤ 4∥G∥∥W∥∥
√
T ϕ̄T (θ

0)∥+ oP (1)

∥v̂T ∥2
+ oP (1)

and, for T large enough we can write

∥v̂T ∥2 ≤ 4

γ
∥G∥∥W∥∥

√
T ϕ̄T (θ

0)∥+ oP (1)

∥v̂T ∥2
+ oP (1).

Hence, for large values of ∥v̂T ∥2, the term oP (1)/∥v̂T ∥2 stays asymptotically negligible in probability. There-
fore, ∥v̂T ∥2 is at most of the same asymptotic order of magnitude as ∥

√
T ϕ̄T (θ

0)∥. This establishes that
∥v̂T ∥2 = OP (1) or equivalently ∥v̂T ∥ = OP (1) �

Proof of Proposition 3.2. Since ZT is a continuous function of
√
T ϕ̄T (θ

0) it suffices to show that the se-

quence
(
T 1/4(θ̂T − θ0)′,

√
T ϕ̄T (θ

0)′
)′

has a subsequence that converges in distribution. From Proposition 3.1,

T 1/4(θ̂T − θ0) is uniformly tight and
√
T ϕ̄T (θ

0) is also uniformly tight following Assumption 3. Thus, these

two random vectors, measurable (we implicitly assume θ̂T measurable–this is a common assumption in the
literature on extremum estimators) on the same probability space, are jointly uniformly tight. Therefore, from
the Prohorov’s theorem (see Theorem 2.4 of van der Vaart (1998)), the joint sequence has a subsequence that
converges in distribution. This establishes the first part of the Proposition.

Next, we show that Prob (V = 0|Z(X) ≥ 0) = 1. Since θ̂T − θ0 = OP (T
−1/4), we have

√
T ϕ̄T (θ̂T ) =

√
T ϕ̄T (θ

0) +
1

2

√
T

(
(θ̂T − θ0)′

∂2ρh
∂θ∂θ′

(θ0)(θ̂T − θ0)

)
1≤h≤H

+ oP (1) (B.6)

In particular
√
T ϕ̄T (θ̂T ) = OP (1) and thus:

JT = T ϕ̄′T (θ̂T )Wϕ̄T (θ̂T ) + oP (1).

For the sake of expositional simplicity, we will consider W = IdH . This is not restrictive as it amounts to
rescaling ϕt,T (θ) by W 1/2. We keep ϕt,T (θ) for W 1/2ϕt,T (θ) in the rest of this proof for economy of notation.
Thus

JT = T ϕ̄′T (θ̂T )ϕ̄T (θ̂T ) + oP (1)

= T ϕ̄′T (θ
0)ϕ̄T (θ

0) + ∆′
(
T 1/4(θ̂T − θ0)

)√
T ϕ̄T (θ

0) + 1
4∆

′
(
T 1/4(θ̂T − θ0)

)
∆
(
T 1/4(θ̂T − θ0)

)
+ oP (1).
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By definition, JT ≤ T ϕ̄′T (θ
0)ϕ̄T (θ

0). Hence

∆′
(
T 1/4(θ̂T − θ0)

)√
T ϕ̄T (θ

0) +
1

4
∆′
(
T 1/4(θ̂T − θ0)

)
∆
(
T 1/4(θ̂T − θ0)

)
≤ oP (1) (B.7)

It is worth noting that

∆′
(
T 1/4(θ̂T − θ0)

)√
T ϕ̄T (θ

0) =
(
T 1/4(θ̂T − θ0)

)′
ZT

(
T 1/4(θ̂T − θ0)

)
. (B.8)

Actually, each hand side of (B.8) is equal to
∑p
i,j=1

∑H
h=1

(
∂2ρh(θ

0)
∂θi∂θj

√
T ϕ̄T,h(θ

0)
)
(T 1/4(θ̂T,i − θ0i ))(T

1/4(θ̂T,j −

θ0j )). Considering a subsequence of
(
T 1/4(θ̂T − θ0)′,Vec′(ZT )

)′
that converges in distribution towards a certain

random vector (V ′,Vec′(Z(X)))′, we can write (for the sake of simplicity, we do not make explicit the notation
for a subsequence):

∆′
(
T 1/4(θ̂T − θ0)

)√
T ϕ̄T (θ

0)
d→ V ′Z(X)V.

From (B.7) and by Lemma B.2, we deduce that

lim supT→∞ Prob
(
∆′
(
T 1/4(θ̂T − θ0)

)√
T ϕ̄T (θ

0)+

+1
4∆

′
(
T 1/4(θ̂T − θ0)

)
∆
(
T 1/4(θ̂T − θ0)

)
≤ ϵ
)
= 1,

for any ϵ > 0. And, by the Portmanteau Lemma (Lemma 2.2(vi) of van der Vaart (1998)), we have

Prob

(
V ′Z(X)V +

1

4
∆′(V )∆(V ) ≤ ϵ

)
= 1, ∀ϵ > 0.

We deduce, by right continuity of cumulative distribution functions, that

Prob

(
V ′Z(X)V +

1

4
∆′(V )∆(V ) ≤ 0

)
= 1.

In particular if Z(X) is positive semi-definite

∆′(V )∆(V ) = 0, almost surely.

and thus
∥∆(V )∥ = 0, almost surely.

But, by Lemma B.1,
∥∆(V )∥ ≥ γ∥V ∥2.

Thus V = 0, almost surely. In other words, we have shown that

Prob (V = 0|Z(X) ≥ 0) = 1.

Now, let us establish that Prob
(
V = 0

∣∣∣(Z(X) ≥ 0)
)
= 0.

The necessary second order condition for an interior solution for a minimization problem implies that for
any vector e ∈ Rp :

e′
(

∂2

∂θ∂θ′

(
ϕ̄′T (θ)ϕ̄T (θ)

)∣∣∣
θ=θ̂T

)
e ≥ 0.

This can be written
e′
(
Z̃T +NT

)
e ≥ 0, (B.9)

where
Z̃T =

(
∂2ϕ̄′

T

∂θi∂θj
(θ̂T )

√
T ϕ̄T (θ̂T )

)
1≤i,j≤p
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and

NT =
√
T
∂ϕ̄′T
∂θ

(θ̂T )
∂ϕ̄T
∂θ′

(θ̂T ).

By a mean value expansion, we have

∂ϕ̄T
∂θi

(θ̂T ) =
∂2ϕ̄T
∂θi∂θ′

(θ̄)(θ̂T − θ0) +OP (T
−1/2), (B.10)

with θ̄ ∈ (θ0, θ̂T ) and may differ from row to row and i = 1, . . . , p. On the other hand, thanks to Equation
(B.6), we have

∂2ϕ̄′T
∂θi∂θj

(θ̂T ) ϕ̄T (θ̂T ) =
∂2ρ′

∂θi∂θj
(θ0)

(
ϕ̄T (θ

0) +
1

2
∆(θ̂T − θ0))

)
+ oP (T

−1/2).

Hence, with hij =
∂2ρ

∂θi∂θj
(θ0),

∂2ϕ̄′T
∂θi∂θj

(θ̂T )
√
T ϕ̄T (θ̂T ) = h′ij

√
T ϕ̄T (θ

0) +
1

2
h′ij∆

(
T 1/4(θ̂T − θ0)

)
+ oP (1).

Thus

Z̃T = ZT +
1

2

(
h′ij∆(T 1/4(θ̂T − θ0))

)
1≤i,j≤p

+ oP (1)

and
NT =

(
T 1/4(θ̂T − θ0)′ ∂

2ρ′

∂θi∂θ
(θ0) ∂2ρ

∂θj∂θ′
(θ0)T 1/4(θ̂T − θ0)

)
1≤i,j≤p

+ oP (1).

From the inequality (B.9) and some successive applications of the Cauchy-Schwarz inequality, we can find a
deterministic constant real number A > 0 such that for any vector e ∈ Rp with unit norm:

−e′ZT e ≤ A
√
T∥θ̂T − θ0∥2 + oP (1),

By Lemma B.2,

lim sup
T→∞

Prob
(
−e′ZT e−A

√
T∥θ̂T − θ0∥2 ≤ ϵ

)
= 1, ∀ϵ > 0.

Considering again a subsequence along which (T 1/4(θ̂T − θ0)′,
√
T ϕ̄T (θ

0)′)′ converges in distribution, we can
write, using the Portmanteau Lemma (Lemma 2.2(vi) of van der Vaart (1998)), that

Prob
(
−e′Z(X)e−A∥V ∥2 ≤ ϵ

)
= 1, ∀ϵ > 0.

Thus, by right continuity of cumulative distribution functions,

Prob
(
−e′Z(X)e−A∥V ∥2 ≤ 0

)
= 1

and consequently,

Prob

(
∥V ∥2 ≥ −e

′Z(X)e

A

∣∣∣∣Z(X) = z

)
= 1, PZa.s. (B.11)

In particular, when Z(X) = z non positive semi-definite, we can find a vector e ∈ Rp with unit norm and
such that e′Z(X)e < 0 and thus:

Prob (∥V ∥ > 0 |Z(X) = z ) = 1.

Therefore Prob
(
∥V ∥ > 0

∣∣∣(Z(X) ≥ 0)
)
= 1 �

Proof of Theorem 3.1. Follows from Lemma B.5-(iii)�

Proof of Lemma 3.1. The first order condition associated to (11) is:

G′WX +
1

2
G′WGû = 0.
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Moreover, we know from Lemma B.3 that we can decompose G = G1G2 with G1 (resp. G2) full column-rank
(resp. full row-rank) p. Since G′

2 is full column-rank, the above first order conditions are equivalent to:

G′
1WX +

1

2
G′

1WG1G2û = 0

and, since G1 is full column-rank, we deduce:

G2û = −2 (G′
1WG1)

−1
G′

1WX.

Defining:
X̃ =W 1/2X, G̃1 =W 1/2G1,

we see that:
G̃1G2û = −2G̃1(G̃

′
1G̃1)

−1G̃′
1X̃ = −2P1X̃,

where P1 stands for the matrix of orthogonal projection on the p-dimensional subspace of RH spanned by the
columns of G̃1. Plugging in (11), we deduce:

L = X̃ ′X̃ + X̃ ′G̃1G2û+
1

4
û′G′

2G̃
′
1G̃1G2û

= X̃ ′X̃ − 2X̃ ′P1X̃ + X̃ ′P1X̃ = X̃ ′(Id− P1)X̃.

Thus:

L =
∥∥∥(Id− P1)X̃

∥∥∥2 ∼ χ2(H − p)

since, for W = Σ−1(θ0), X̃ =W 1/2X is a standardized Gaussian vector. Since J(0) = X ′WX =
∥∥∥X̃∥∥∥2 :

S = J(0)− L =
∥∥∥P1X̃

∥∥∥2 ∼ χ2(p).

Moreover, since P1X̃ and (Id−P1)X̃ are stochastically independent (orthogonal projections of standard Gaussian
vectors on two orthogonal subspaces), L is independent of S and of course J(0) = S + L ∼ χ2(H).

In addition, elementary computations give:

Vec(Z(X)) = G′
2G

′
1WX = G′

2(G̃
′
1G̃1)(G̃

′
1G̃1)

−1G′
1WX = G′

2G̃
′
1P1X̃.

Therefore, L is actually jointly independent of (S,Z(X)). �

Proof of Theorem 3.2. By definition of the minimization problems, we obviously have:

L ≤ J ≤ J(0).

Moreover, from the alternative expression of J(v) given by (9), one can easily see that, when Z(X) ≥ 0, the
minimum of J(v) is reached at v = 0, leading to J = J(0).

Part (ii) of Theorem 3.2 will be proved in two steps:
1st step: We show that there exists some ε > 0 such that:

Prob (J > L+ ε, Z(X) ≥ 0) > 0.

To see that, first note that since S = J(0)− L ∼ χ2(p), Prob (J(0) > L) = 1.
Thus:

Prob(J(0) > L,Z(X) ≥ 0) = Prob(Z(X) ≥ 0).

But we know that:
Z(X) ≥ 0 ⇒ J = J(0).

Therefore,
Prob(J > L,Z(X) ≥ 0) = Prob(Z(X) ≥ 0).
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However:

Prob(J > L,Z(X) ≥ 0) = Prob

∪
n≥1

(
J > L+

1

n

)
, Z(X) ≥ 0

 = lim
n→∞

Prob

(
J > L+

1

n
,Z(X) ≥ 0

)
.

Then:

lim
n→∞

Prob

(
J > L+

1

n
,Z(X) ≥ 0

)
= Prob(Z(X) ≥ 0) > 0

and we deduce that there exists n ∈ N such that:

Prob

(
J > L+

1

n
,Z(X) ≥ 0

)
> 0.

2nd step: Following Remark 3.3, we actually show that:

Prob (L > c, Z(X) ≥ 0) < Prob (J > c, Z(X) ≥ 0) , ∀c > 0.

Since we always have L ≤ J, we have for any measurable part B of the sample space:

Prob (L > c, (Z(X) ≥ 0) ∩B) ≤ Prob (J > c, (Z(X) ≥ 0) ∩B) , ∀c > 0.

We will then obviously be able to deduce the announced strict inequality if we show that:

Prob (L > c,Z(X) ≥ 0, J > L+ ε) < Prob (J > c, Z(X) ≥ 0, J > L+ ε) , ∀c > 0.

But since again L ≤ J :

Prob (J > c, Z(X) ≥ 0, J > L+ ε)

= Prob (L > c,Z(X) ≥ 0, J > L+ ε) + Prob (L ≤ c, J > c, Z(X) ≥ 0, J > L+ ε) .

Hence we only need to show that:

Prob (L ≤ c, J > c, Z(X) ≥ 0, J > L+ ε) > 0, ∀c > 0.

Since when Z(X) ≥ 0, J = J(0) and thus L = J − S, we want to show that:

Prob (c− S < L ≤ c, S > ε, Z(X) ≥ 0) > 0.

Let FL,S,Z(X)(l, s, z) (resp. FL(l), and FS,Z(X)(s, z)) be the joint distribution of (L, S, Z(X)) (resp. L, and
(S,Z(X))), and I(·) the usual indicator function. We have:

Prob (c− S < L ≤ c, S > ε, Z(X) ≥ 0)

=

∫
I (c− s < l ≤ c, s > ε, z ≥ 0) dFL,S,Z(X)(l, s, z)

=

∫
I (c− s < l ≤ c, s > ε, z ≥ 0) dFL(l)dFS,Z(X)(s, z)

=

∫
s>ε,z≥0

(∫
c−s<l≤c

dFL(l)

)
dFS,Z(X)(s, z)

=

∫
s>ε,z≥0

(
Prob(c− s < χ2(H − p) ≤ c)

)
dFS,Z(X)(s, z),

where second equality follows from the independence of L and (S,Z(X)) and the last one follows from the fact
that L ∼ χ2(H − p).

But,

∀s > ε ≥ 0, and ∀c, Prob
(
c− s < χ2(H − p) ≤ c

)
≥ Prob

(
c− ε < χ2(H − p) ≤ c

)
.
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Hence,

∫
s>ε,z≥0

(
Prob(c− s < χ2(H − p) ≤ c)

)
dFS,Z(X)(s, z)

≥
∫
s>ε,z≥0

(
Prob(c− ε < χ2(H − p) ≤ c)

)
dFS,Z(X)(s, z)

= Prob(c− ε < χ2(H − p) ≤ c)

∫
s>ε,z≥0

dFS,Z(X)(s, z)

= Prob(c− ε < χ2(H − p) ≤ c)Prob (S > ε, Z(X) ≥ 0) .

Since, by continuity and positivity on the positive half line of the χ2(H − p) distribution, Prob(c − ε <
χ2(H − p) ≤ c) > 0, for all c, ε > 0 and Prob (S > ε, Z(X) ≥ 0) > 0 from the 1st step, we conclude that
Prob (c− S < L ≤ c, S > ε, Z(X) ≥ 0) > 0 which concludes the proof. �

Proof of Corollary 3.2. Since p = 1, G is the column vector ∂2ρ
∂θ2 (θ

0) and Lemma 2.3 guarantees that G ̸= 0.
Also, J now has the expression:

J = min
v∈R

(
X ′WX +X ′WGv2 +

1

4
G′WGv4

)
.

The first order necessary condition for optimality gives v
(
2X ′WG+G′WGv2

)
= 0 while the second order

sufficient condition for v = 0 to be solution is X ′WG > 0. If X ′WG < 0, we can say, from the first order
condition, that any solution v satisfies 2X ′WG+G′WGv2 = 0. In the event that X ′WG = 0, it appears that
v = 0 is solution. In summary, we can write that: If X ′WG ≥ 0,

J = J(0) = X ′WX

and if X ′WG < 0, J(v) is minimized at v2 = −2X ′WG/G′WG so that

J = X ′W 1/2
(
IdH −W 1/2G(G′WG)−1G′W 1/2

)
W 1/2X ≡ X ′W 1/2PW 1/2X ≡ L.

P is the orthogonal projection matrix of the orthogonal of the subspace generated by the column vectors of
W 1/2G.

Let z = X′WG√
G′WG

. z ∼ N(0, 1) and clearly,

J = I(z ≥ 0)J(0) + I(z < 0)L.

Now, we show that I(z ≥ 0) is independent of both J(0) and L.

We have Cov(z,PW 1/2X) = Cov
(
X′WG√
G′WG

,PW 1/2X
)
= 0. Thus, since X is a Gaussian vector, z is inde-

pendent of PW 1/2X and so are I(z ≥ 0) and L.
To see that I(z ≥ 0) is independent of J(0), we write W 1/2X in the orthonormal basis(

W 1/2a1,W
1/2a2, . . . ,W

1/2aH

)
of RH such that a1 = G√

G′WG
. (We choose a1 such that the first component of W 1/2X in this new basis is z).

The coordinates of W 1/2X in this basis are (a′1WX,a′2WX, . . . , a′HWX) and, by the invariance of the norm,

J(0) = X ′WX =

H∑
h=1

(a′hWX)2.

Note that Cov(a′jWX,a′jWX) = 0 for i ̸= j so that z = a′1WX is independent of a′jWX, j = 2, . . . , H. Hence,

to claim that I(z ≥ 0) is independent of J(0), it is sufficient to show that (a′1WX)2 = z2 is independent of
I(z ≥ 0). This becomes obvious once we see that z ∼ N(0, 1) has a symmetric distribution about the origin.
This completes the proof. �
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