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This paper explores gender peer effects heterogeneity in adolescent Body Mass Index (BMI). We
propose a utility-based non-cooperative social network model with effort technology. We allow the
gender composition to influence peer effects. We analyze the possibility of recovering the
fundamentals of our structural model from the best-response functions. We provide identification
conditions of these functions generalizing those of the homogeneous version of the model. Extending
Liu and Lee [2010], we consider 2SLS and GMM strategies to estimate our model using Add Health
data. We provide tests of homophily in the formation of network and reject them after controlling for
network (school) fixed effects. The joint (endogenous plus contextual) gender homogeneous model is
rejected. However, we do not reject that the endogenous effects are the same. This suggests that the
source of gender peer effects heterogeneity is the contextual effects. We find that peers’ age, parents’
education, health status, and race are relevant for the latter effects and are gender-dependent.
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1 Introduction

Obesity has reached epidemic proportions in both children and adolescents in the United
States, increasing from 5% in 1980 to 18% in 2010 (Ogden et al. [2012]). To explain such
a phenomenon, a huge number of studies have focused on socio-economic factors such as
growing unhealthy eating habits, the rise in time spent watching television, playing video
games and using other types of media, the decline in time spent doing physical exercise
such as walking or biking to school, and the reduction in physical education at school (see
Papoutsi et al. [2013] for a survey).

Complementary to these views, health economics research has also attempted to inves-
tigate this obesity epidemic from the perspective of social interactions (e.g., Christakis and
Fowler [2007|, Halliday and Kwak [2009], Trogdon et al. [2008], Cohen-Cole and Fletcher
[2008], Yakusheva et al. [2014], Fortin and Yazbeck [2015]). Many of these studies docu-
ment the presence of strong positive peer effects! which could create a synergic effect on
the shocks (such as the technical progress in fast food preparation) which tend to increase
obesity.

Many of these studies are based on linear social interactions functions, as proposed
by Manski [1993], Bramoullé et al. [2009], and extended by Blume et al. [2015]. In the
standard version of this approach, an individual’s outcome linearly depends on his own
characteristics, and on peer effects. The latter come from two different channels: the
individual’s reference group mean outcome - the so-called endogenous peer effect - and
his/her reference group mean characteristics - known as the contextual peer effects.

However, one potentially important limitation of this framework is that it usually as-
sumes that social interactions are homogeneous. This means that peer effects do not vary
according to any particular type such as race or gender. However, this assumption is
strong and may not be realistic. For example, Costa-Font and Jofre-Bonet [2013] provides
evidence that the average Body Mass Index (BMI) of a young woman’s female peers neg-
atively influences her likelihood to suffer from anorexia.? Intuitively, one may expect the
influence of her average male peers’ BMI on this risk to be much less important. This
example illustrates that imposing female and male peer effects to be the same on a young
woman’s chance to suffer from anorexia is likely to lead to severe estimating biases and

therefore to inappropriate health policies.

! An exception is Cohen-Cole and Fletcher [2008] who find a non-statistically significant coefficient of the
endogenous peer effect using standard econometric techniques. Fortin and Yazbeck [2015] find a significant
but small peer effect.

2 According to the American Psychiatric Association (2000), women account for 90% of the 8 million
sufferers of anorexia.



This paper generalizes the homogeneous linear social interactions model on teenagers’
BMI? by allowing for gender-dependent heterogeneity in peer effects.* Our model allows
the influence of male peers on a student to be different from that of female peers, and
depending on whether the student is a male or a female.® In our setting, we consider the
population of interest as composed of a given number of networks (schools). Two types
of individuals interact within the same network (i.e, male vs. female students). This
defines two within- and two between- endogenous peer effects. Accordingly, we end up with
four different endogenous (mm, ff,mf.fm) social interaction matrices.® The same reasoning
applies for the contextual peer effects. Of course, the standard homogeneous model is
nested into our heterogeneous model and therefore can be easily tested.

To estimate our model, we use data on students at the secondary level, arguably a period
in which social interactions are potentially highly important to structure an individual’s
body. More precisely, we use the saturation sample (1996) of the National Longitudinal
Study of Adolescent Health (Add Health) which focuses on 16 selected schools. In particu-
lar, students were asked for information on their height and weight. Using this information,
we constructed students’ BMI. Importantly, respondents from this sample were also asked
to name up to five male friends and up to five of their female friends within their school.
These data thus allow to recover the friendship social networks.

The contributions of the paper are both theoretical and empirical. At the theoretical
level, we propose a non-cooperative (Nash) model of BMI outcome with gender-dependent
heterogeneity in peer effects in a network context. Unless empirical evidence is provided
that obesity is a virus, it is counterintuitive to think that one can gain weight by simply
interacting with an obese person.” Therefore, our model takes into account the presence of
a production function relating, among others, (unobservable) individual effort to BMI out-
come. Our theoretical model is consistent with a mechanism of strategic complementarity
or synergy in social interactions (e.g., "I better like to eat in a fast food restaurant with a
buddy"). Under the assumption that the best-response (reaction) functions are identified,

and assuming a synergy mechanism, we show that we can recover all the primitives of our

3We also perform the analysis on zBMI (or z-score BMI), that is, the BMI standardized for gender and
age.

4We leave the analysis of race or other characteristics heterogeneity in peer effects for further research.

°In a recent paper, Masten [2015] provides an analysis of endogenous peer effects with unobservable
heterogeneity. In his framework, peer effects are introduced as random coefficients in a simultaneous
equation model. Among other results, Masten shows that although the full joint distribution of structural
unobservables is not point identified, some marginal distributions are point identified. The present paper
can be seen as complementary to Masten [2015] approach.

5More details on these matrices will be given in the theoretical section.

"We acknowledge that some recent studies have pointed that obesity might be partially due to a virus
ad-36 (see Rogers et al. [2007]).



structural model, given a proxy for the marginal productivity of effort on BMI. Therefore
the so-called identifiability problem (see Chiappori and Ekeland [2009]) is (partly) solved,
which may allow us to perform the analysis of shocks (e.g., reforms) which affect social
networks.

At the econometric level, one important contribution of our model is to show, using
an approach similar to Bramoullé et al. [2009] but where we allow both for the presence
of isolated students® and gender heterogeneity in peer effects, that we can derive suffi-
cient identification conditions of the best-response functions. Our identification strategy
is close to the one used by Liu and Lee [2010] but is generalized to the presence of gender
heterogeneity. We show that these conditions are both based on restrictions on some of
the parameters of our model, and on the structure of our four social interaction matrices.
Our model is estimated using 2SLS and GMM methods inspired from Liu and Lee [2010].
Importantly, we rely on these estimators to account for the Bonacich centrality measure
in a general case where interaction matrices are not row-normalized (due to the presence
of isolated individuals in the networks).” In addition, our estimation strategy allows to
account for network specific (or fixed) effects using a global transformation matrix.

Our approach is related to the one developed in Arduini et al. [2016]. In their paper, the
authors focus on the identification and estimation of treatment response with heterogeneity
using a network model. They propose a two-equation system based on the individual’s
type. However, their model specification and identification are different from ours. Our
approach is based on a single structural heterogeneous peer effects model in a network
context. To our knowledge, this is the first paper that uses our methodology. Also, while
their estimation approach focuses on a 2SLS method, we provide both 2SLS and GMM
estimators, the latter exploiting quadratic moments. Moreover, while Arduini et al. [2016]
present Monte Carlo simulations of their approach, we provide an empirical application to
peer effects heterogeneity in obesity.

One potentially important problem in the analysis of social interactions using non ex-
perimental data is the endogeneity in the formation of networks. A classical example is the
presence of homophily where individuals with common characteristics tend to associate to-
gether. The introduction of network fixed effects (as it is done in our paper) may partly take
this source of bias into account but not entirely as the formation of links within a network
may still be endogenous. A recent literature relies on the presence of endogenous group or

network formation and proposes models to simultaneously evaluate network formation and

8Tsolated students are those who report having no friends. They represent about 23% of our sample.

9When an interaction matrix is row-normalized, the sum of its elements on each row is one. Of course,
this is not possible when there is at least one individual ¢ who has no friend. In this case, the latter sum
for the row i is zero.



network effects [Conti et al., 2012, Goldsmith-Pinkham and Imbens, 2013, Badev, 2013,
Hsieh and Lee, 2015, Hsieh and Lin, 2015, Boucher, 2016]. Goldsmith-Pinkham and Imbens
[2013] argue that it is possible to test for the presence of endogeneity in network forma-
tion. Liu et al. [2013] propose a test based on the Goldsmith-Pinkham and Imbens [2013]
approach as an attempt to test for the presence of possible network formation endogeneity
using the Add Health dataset. They find no evidence of endogeneity in network formation.
Patacchini and Rainone [2014] also find no evidence of the presence of endogenous network
formation, while concentrating on peer effects in financial products. On the other hand,
Hsieh and Lin [2015] finds the presence of homophily in the formation of network when the
outcomes are students’ achievement (GPA) or their smoking behavior. In our empirical
application, we perform both a test of exogeneity inspired by Liu et al. [2013] and a more
general one based on wvisual observation (see Boucher and Fortin [2016]). When we intro-
duce network specific effects into the model, we do not reject the presence of exogeneity in
the network formation associated with the BMI outcome.

Our main results based on a GMM approach reject the full (endogenous plus contextual)
gender homogeneous model for the more general heterogeneous one. However, we do not
reject that the endogenous peer effects are homogenous. This indicates that the source of
heterogeneity is the contextual and not the endogenous peer effects. We find that peers’
age, and parents’ education, health status, and race are relevant for the latter effects and
vary within and between gender.

Moreover, assuming gender peer effects homogeneity and strategic complementarity
leads to a social multiplier equal to 1.20. This means that, under this assumption, the
total impact of a common shock on the aggregate outcome in a network is 1.20 times the
sum of its direct effects at the individual level, as it incorporates synergic effects stemming
from social interactions. Interestingly, this figure is quite close to the one obtained by Fortin
and Yazbeck [2015] (= 1.15) in an homogeneous model where peer effects are limited to
fast food consumption.

The rest of the paper is organized as follows. Section 2 provides a short survey of the
relevant literature on heterogeneity in peer effects. In section 3, we present a theoreti-
cal model of heterogeneous peer interactions. In section 4, we present our econometric
model, our identification conditions and our estimation methods. Subsection 4.2 presents
a particular case of the model. Data are presented in section 5. We also provide a test
of network exogeneity. Section 6 presents our results based on gender decompositions.

Section 7 concludes.



2 Previous Literature

Beside the study by Arduini et al. [2016] discussed in the introduction, a growing number
of researches have focused on issues raised by heterogeneity in peer effects. Many papers
assume that individuals interact in a network composed of groups!'? and analyze the impact
of gender proportion on the outcomes of male and female individuals (e.g. Hoxby [2000],
Whitmore [2005], and Lavy and Schlosser [2011]). One limitation of this approach is that it
is generally not possible to separately identify endogenous and contextual effects. Manski
[1993] named this failure the reflection problem.!! To deal with this drawback, some studies
assume no endogenous effect (which imposes untestable restrictions) and others focus only
on the reduced form of the model. In the latter case, the model does not allow to recover the
fundamentals of the structural model. Therefore, it may be difficult to estimate the impact
of a reform which affects the structure of groups. However, Bramoullé et al. [2009] and
Lee et al. [2010] have shown that the linear-in-means homogeneous model is generically
identified when individuals interact through social networks that are not groups. Our
approach extends this result to the heterogeneous peer effects model.

Kooreman and Soetevent [2007| investigate heterogeneity in peer effects using a binary
choice model for different dichotomous outcomes. They estimate peer effects on girls,
peer effects on boys and between peer effects where interaction occurs in group contexts.
Their method consists in partitioning students into subgraphs using data from the Dutch
National School Youth Survey. Using a simulation based method that accounts for multiple
equilibria, they find that within-gender peer effects are larger than between-gender peer
effects. They also find that boys tend to be more influenced by their peers than girls in
terms of the different behavioral outcomes they consider (cigarettes smoking, for example).

Nonlinear tests of the nature of peer effects have been proposed by Sacerdote [2001].
His approach consists in grouping students and their peers into several categories and
including in the regression all possible interactions of the student and the categories of his
peers. Sacerdote [2001] finds that high ability students benefit each other more than high
ability students benefit from average or low ability students in terms of school performance.
In the same spirit, Lavy et al. [2009] find that high ability students positively affect girl
performance and negatively affect boys performance. However, low ability students tend
to negatively affect both girls and boys performance in their findings.

Renna et al. [2008] use the first wave of the Add Health dataset while controlling for

10Tn a group, all individuals are influenced by others in their group but by none outside of it.

"Note that Lee [2007] has shown that peer effects is theoretically identified when individuals do not
belong to their own reference group and that there are a sufficient number of groups of different size.
However, this approach often leads to weak identification, given the large average size of groups.



school fixed effects in a linear-in-means model. They find a positive peer effect coefficient
where the outcome variable is weight of adolescents. They also find, using instrumental
variables, that female adolescents are more responsive to the average body weight of their
friends, and that the effects remain significant only for their same gender friends.

Yakusheva et al. [2014] use a natural experiment to identify peer effects in weight gain.
Data are taken from roommates assignments of college students and they use the standard
linear-in-means model of peer influences. They solve the correlated unobservables problem
by taking the weight change of the ego from baseline to follow up. Their results show that
there are little evidence of peer effects for males in weight gain, whereas effects are positive
and significant for females. Their study thus provides evidence of heterogeneity in peer
effects weight gain.

Hsieh and Lin [2015] estimate a high order spatial autoregressive model (SAR) to
analyze gender and racial peer effects heterogeneity in the students’ academic achievement
(GPA) and smoking behavior. Their econometric model, using a Bayesian methodology,
takes homophily in network formation into account. They find that within-gender are
stronger than between-gender endogenous peer effects. Our approach uses a rather different
methodology. First, since our tests reject homophily, we use a method of estimation based
on 2SLS or GMM with quadratic moments. Also, our econometric model is derived from
a structural Nash-theoretic approach. Finally we focus on a different outcome: students’
BMI.

A recent paper by Beugnot et al. [2013] also provides evidence of heterogeneity of peer
effects in work performance using a laboratory experiment where workers interact through
networks. Their model is based on two different experiments: a recursive erperiment
in which participants play in isolation and take their decision without being influenced
by their peers, and a simultaneous experiment where the same participants interact with
other participants and where ties are undirected. They find positive and significant peer
effects for male workers in the simultaneous game, while peer effects are not statistically
significant in the case of female workers. They suggest that male workers appear to be

more competitive than female workers.

3 Theoretical model

We consider a model extending Blume et al. [2015] in which n individuals interact through
a social network. To make it more concrete, we assume a friendship network of n” male
and n/ female students (n™ + n/ = n), interacting within a school and whose weight

(the outcome) can be influenced by their behaviour. To take observable heterogeneity into



account, we define four network adjacency matrices: A,(z = 1,---,4). We assume that
links do not differ in strength. The network adjacency matrix A (resp., Ag) is such that
a;j = 1 if the student ¢ is a male student and is influenced by the male (resp., female)
student j and = 0, otherwise. The matrices A3 and A4 are similarly defined for female
students. The student 4’s reference group with size n; ,,, (resp. n; s) is the set of male (resp.
female) students by which i is influenced.'? The social interaction matrix G is a weighted
adjacency matrix A, such that, when z = 1 for instance, one has g1;; = 1/(nim +n f) if @
a male student and is influenced by the male student j, and 0, otherwise. For the moment,
we suppose that all G, are non-stochastic (or fixed) and known social interaction matrices.
We also assume no isolated students.!

The BMI cannot be directly chosen by students but only indirectly through effort, that

4 Moreover, it is

is, healthy life habits (e.g., good dietary behaviour, physical exercise).
counterintuitive to think that one can gain weight by simply interacting with an obese
person. To account for such characteristics in our heterogeneous social network setting, we
propose a non-cooperative (Nash) model in which every individual of each gender maxi-
mizes a quadratic utility function, separable in private and social sub-utilities, subject to
a linear production function relating weight to effort and individual characteristics. Ev-

ery individual of each type maximizes a utility function that is gender-dependent.'® The

maximization program of a type-m individual 7 is:

2
y.maéx Ui,m(ei,ma Y) = —Yim — Zém + @Z}mmyi,mglli}’m + wmfyi,mg,%}’fa

St Yim = Q0 — Q1€m + Q2Tim + Nim,

where y; ; is the outcome (BMI) of individual 4 in category j, y.m, is the vector of outcomes
in m category, yy is the vector of outcomes in f category, y is the concatenated vector
of outcomes in f and m categories, e; stands for the (unobserved) effort of 4, g/, is the
ith row of the social interaction matrix G, x; and Mi,m are vectors of observable and
unobservable characteristics, respectively. For notational simplicity, we assume only one

observable characteristic.

The first two expressions in the utility function describe the private sub-utility. One

2For now on, we will assume that the student is excluded from his or her own reference group.

3Qur econometric approach allows for isolated students since the social interactions matrices are not
row-normalized.

“Fortin and Yazbeck [2015] assumes that visits in fast food restaurants is the main channel through
which effort influences the students BMI.

5For notational simplicity, we ignore contextual peer effects, though our econometric model takes them
into account.



es

2
assumes that an increase in BMI reduces the individual 4’s utility,'® and 5™ Tepresents

the cost of effort (in term of utility) to reduce weight. One supposes that the marginal
cost of effort is increasing with effort. The social sub-utility corresponds to the two last
expressions. One assumes that social interactions influence preferences through a basic
channel: strategic complementarity (or synergy) in BMI between a male student and his
reference group of each type.!” It means that an increase in the peers’ average BMI of a
given gender positively influences the marginal utility of his own BMI (¢, > 0340, >
0).'® Heterogeneity in social interactions is reflected by the fact that ¥, and Yy can
be different.

The maximization program of type-f individuals can be written using a similar utility
function, where social interaction parameters can differ from those of type-m. Hence, a

type-f individual solves the following program :

2
e
jnax Ugpleir,y) = —Yif — ;’f + U1 rYi 185 f + VpmYi 8L Ym

s.t. Yi.f = 00 — Q1€ f + Q2T f + i, f

The first order conditions of the type-m maximization program lead to (in matrix

notation):

Ym = Oy + BmmGl}’m + BmfGQYf + aoXpy + € (1)

where a = ap + i, Bim = WWmm, Bmf = Wmy, and €, = My, with p = a%. Note that u
represents the squared marginal productivity of effort on weight level.

Similarly, the first order conditions for type-f individuals lead to:

yr=ouy+ BrrGsys + BrmGaym + coxy + €5 (2)

where Brr = wibrr, Brm = ppm, vy = a2, and € = ny. It is assumed that the absolute
value of the f’s is less than one.
Concatenating vectors and matrices from equations (1) and (2), we end up with the

following best-response functions for the whole population of students, given the others’

15To simplify the model, we ignore a situation where very low weight negatively affects health (e.g.,
anorexia).

Y Our model is also consistent with a mechanism of pure conformity in social interactions. In that case,
an individual’s utility is positively affected by the degree to which he conforms with his peers’ outcome or
characteristics due for instance to the presence of social norms. Unfortunately, the present model cannot
identify synergy from conformity (see Blume et al. [2015] and Boucher and Fortin [2016]) so that these two
channels are observationally equivalent. Following Fortin and Yazbeck [2015], we assume in this paper that
synergy is the relevant social interaction mechanism.

18 An equivalent approach to introduce the social sub-utilities in the model would be to assume that the
marginal utility of the male student’s ¢ effort increases with the average effort of his male or female peers
("I better like to go to a fast food restaurant with a friend").



weight level (Nash equilibrium):

Yy = at + BumG1y + BnfGay + BrrGsy + BrmGay + aox + €, (3)

where the G,’s are n x n matrices. More precisely, G1 is the interaction matrix such that
gii; = 1/(n* + nlf) if ¢ and j are male friends, and = 0 otherwise. Similarly, G3 is the
interaction matrix such that gs;; = 1/(n" + n{ ) if @ and j are female friends, and = 0
otherwise. The same reasoning applies for Gy and G4, where go;; = 1/(n]" + n{ )if i and j

are friends but where j is a female student while ¢ is a male student, and g4;; = 1/ (n;"—i—n{ )
if ¢ and j are friends, where j is male student and i is a female student. It is clear that
G + Gy +G3 + G4 = G where G is the row-normalized social interaction matrix for the

whole population.

3.1 Identifiability

To evaluate the impact of an exogenous shock (e.g., a new course providing information to
improve health habits which influences the parameter ag of the BMI production function),
on students’ BMI, one must recover the fundamentals of our structural model from the
knowledge of the coefficients of the best response functions (3). Unfortunately, a first
result is negative: in the general case, if one does not impose more structure to the model,
the fundamentals of the model are not all identified. The demonstration is simple: while
the latter include seven coefficients (the four 1’s, and the three a’s), equation (3) can
identify only six coefficients (the four i, ap + p, and az). The basic problem is that
p = of is not identifiable, as it is equal to the squared marginal productivity of effort
on BMI, while effort is generally not observed. Of course, it is possible to recover the
parameters of the preferences and the production function function, for a given level of
w. Indeed, each of the four social sub-utility parameters (the 1’s) are proportional to its

corresponding 3, the proportionality coefficient being p=!.

Note also that if we have a
good proxy for effort (e.g., a measure of eating habits, physical exercise, etc.), it may help
identify the fundamentals of the model.'”

Our model provides a necessary condition for gender homogeneity in the peer effects.
Homogeneity implies that all ¢’s are equal (= ). In that case, one has: Bym = Bmf =

Bt = Bfm = B. Therefore, in the absence of contextual effects, the model can be written

as:

y = at+ Gy + vx + €. (4)

9Fortin and Yazbeck [2015] used the number of weekly visits to a fast food restaurant by students to
approximate eating habits.



When the model is homogeneous, the social multiplier corresponds to the impact of ag
on the students’ BMI, when the peer effects are taken into account. It is the same for all
individuals and is equal to 1/(1 — ) [=1/(1 — )] in the absence of isolated individuals.
Therefore, as long as the parameters of the best responses functions are identified, the social
multiplier can be computed even if the social preference parameter ¢ is not identifiable.
Note however that the evaluation of the effect of a change in « is not identifiable, at least

as long as one does not have a good proxy for effort.

4 Econometric model

In this section, we provide an econometric version of the best-response functions. We
now assume R networks, with » = 1,..., R. We still suppose that individuals of each

gender interact both with individuals of the same gender and with individuals of the other

gender. n!"

i and n{ , stand respectively for the number of male and female individuals

influencing ¢ in the network r. We now allow for isolated students, for which one has:

niy = 0 and n{ . = 0. Also, there are n;" male individuals and nf female individuals,
where n;* + nff = n,. We introduce heterogeneous contextual effects that account for

within- and between-gender peers characteristics in each network r. The best-response

functions for the network r can be written as:

yr = Lnrar'f'ﬁmmGl,Tyr + BmfGZWYT + BffG?),r‘YT + /BfmG4,TYT
+ 7xr+5mmGl,r Xp + 5mfG2,r Xp + 5ffG3,rX7' + 6fmG4,r Xp + € (5)

withr =1,..., R, ¢y, is an, x1 vector of ones, and where «, stands for a fixed effect specific
to network r. Note that the G.,’s, for z = 1,---,4, matrices are not row-normalized in
the presence of isolated students. For sake of simplicity, we order vectors and matrices so
that the first nf rows correspond to type-f individuals of network 7, and the remaining n;"
rows are for type-m individuals in network r. Matrix ordering simplifies the identification
conditions of our model.?’ In addition, for a sample with R networks, we stack up the data
by defining y = (yllj...,y;z)’, X = (xll,...,x;z)’, € = (611,...7611%)/, Gy = D(Gy1,...,G1R),
G2 = D(G21,..,G2.r), G3 = D(G31,....G3r), G4 = D(Gy1,....GaR), t = D(tny, s lny)
and a = (v, ..., ar)’ where D(Cy, ..., CR) is a block diagonal matrix. Finally, let G(3) =
BmmG1 + Bmf(?rg + ﬁfng + ﬁfmG4 and G(8) = 6,,mG1 + 5mfG2 + 6ffG3 + (5fmG4 where
B = (Bmms Bmgs Brfs Brm)' and 8 = (8mm, s, 97 f,0m) . The best-response functions for

20Qur vector and matrix ordering leads (by construction) to the following identities: G1,,.G4,r = O,
Gs3,G2,r = Oy, G1,.Gsr = Oy, G3,.G1r = On,, G572 = 0,,, GZ° = 0, G4,.G3, = 0, and
G2,r.Gi,r =0,
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the R networks are:

y=G(B)y +1x +G(d)x +ta+ € (6)

In this paper, we allow for network fixed effects. The latter take into account the
unknown specificities which commonly influence the BMI of all students within a school.
In this case, the fixed effects parameters «,. are specific to network r. Consequently, one

has : a = (a1, ...,ar)".
4.1 Identification

The aim of this section is to analyze conditions for the best-response functions of the model
to be identified. The identification of these functions are necessary (but not sufficient)?!
to recover the fundamentals of our model. Here, identification means that a consistent
estimator of these functions exist.

Let us first write the best-response functions (6) in their reduced form. This requires

the matrix S(8) = (I-G(8)), where I is the identity matrix, to be invertible. Proposition

(1) below provides sufficient conditions of invertibility of matrix S(3).

Proposition 1 Suppose equation (6) holds. Suppose also that |Bmm| < 1, |Bmf| < 1,
1Bs¢] <1 and |Bgm| < 1. Then matriz S(8) = (I — G(B)) is invertible.?

The reduced form model, assuming conditions of proposition (1) are satisfied, is given by:
y =S(8)" [yx+G(8)x +ta] +S(B8) e (7)

Using the reduced form model (7), G;y, ¥V G; € {G1,G2,G3,G4}, can be expressed as :

Giy = Wi(B) [yx +G(8)x + ta] + W;(B)e

where W;(8) = G;S(8)L. It follows that Vi € {1,2, 3,4}, G;y is correlated with € because
E[(W:(B)e)'e] # 0. Thus, model (6) cannot be consistently estimated by OLS. On the

other hand, 2SLS and GMM strategies can be used to estimate our model. We first consider
a 2SLS approach and show that we can find instruments to obtain consistent estimates of
our best response functions. Then we propose a GMM estimator of our heterogeneous
model that generalizes our 2SLS estimator using additional quadratic moment equations.

The latter provides asymptotically more efficient estimator than the 2SLS approach.

21The reason is that effort to reduce weight is generally unobservable.
22Gee proof in appendix A.
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4.1.1 2SLS estimation

Following the same strategy as Liu et al. [2013|, we re-write the best-response functions
using our vector of parameters defined in 6 = (3,7,8) and Z = [Gly,@rgy,Ggy,G4y, X]
where X = [X, Gix, GQX,GgX,G4X]. The resulting model is given by equation (8) below.

y=Z0+i1a+e€ (8)

This simplified writing of our model allows us to derive our identification conditions in the
case of 25LS. A particularity of our model is however that it contains network fixed effects
(included in «) that need to be accounted for in our estimation. Standard (homogeneous)
linear-in-means social interaction models with network fixed effects usually perform a global
or local transformation of the model in order to eliminate fixed effects and to avoid the
incidental parameters problem to occur. The incidental parameters problem, as it was first
defined by Neyman and Scott [1948], occurs whenever the data available for each group
or network are finite. Consequently, it is sometimes not possible to consistently estimate
the structural and incidental parameters of the model, although in some cases structural
parameters can be consistently estimated. In such a situation however, i.e., even when
consistency is reached, efficiency is sometimes affected.

In order to avoid the incidental parameters problem in our case, we perform a global
transformation on equation (8). For that purpose, let J = D(Jy,...,Jr) where J, =

(I, — L’”L/T) Vr e {l,..,R}. Jis a global transformation matrix such that Jta = 0. Our

Ny

resulting (transformed) model is:
Jy =JZ6 + Je 9)
Following Liu and Lee [2010] strategy, the best IV matrix for JZ is given by :
JE(Z) = I [{Wi(B) [yx +G(d)x + ta]} 1234}, X]

and JZ = JE(Z) + J Y\ [W,ele, where e; is the i’th unit (column) vector of dimen-
sion (k + 4) with k£ = dim(X). Letting Q?,oo = [W;(8)x, W;(B)G(8)x, W;(B)], V i €
{1,2, 3,4}, the associated set of instrumental variables is Qoo = J [{Qi 00 }i=1,2,34, X]. It
is important to note here the presence of variables characterized by the multiplication of
our interaction matrices and the matrix ¢, that account for the fact that all rows of our
matrices do not sum to one (due to the presence of isolated people). This, as stated in Liu
et al. [2013] refer to the Bonacich centrality measure that is shown, if included in the set

of instruments, to increase the efficiency of our estimates.??

230ur empirical application accounts for the inclusion of the Bonacich centrality measure.
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If conditions of proposition (1) are satisfied, one can use a series expansion of S(3)~! =

S 2 0[G(B)]F.2* Using this expression, we can re-write, V i € {1,2,3,4}:

QLOO = [Q?,ooxv Qg,ooL]%
Using a subset of Q. including X, we show Qr = J [Q}(, Q%, Q%, Q‘}(, X} can be used
as instruments, where Q% is a subset of Q; o, V i € {1,2,3,4} where K is the num-
ber of instruments.?® In addition, let €(6) = J (y — Z6# — ta). The moment conditions

corresponding to the orthogonality between Qg and Je is Q' €(0).

Proposition 2 Suppose model (6) holds with correlated effects. Suppose also that (§mm +
VBmm) # 0, (Opg +7Brf) # 0, (Omg +VBmyp) # 0 and (8 fm + ¥Bgm) # 0. If vector columns

of matriz Qg are linearly independent, then social effects are identified.?”

Proposition 2 give conditions extending those proposed in Bramoullé et al. [2009] to the
case of two-type (male-female) peer effects heterogeneity. In particular, we can note that
there are some similarities in the restriction on our set of parameters, except that in our
case, the restrictions are generalized to all categories of individuals and their associated
parameters. In addition, the condition on linear dependencies of vector columns of matrix
Qg can be compared to the conditions on linear independency of the interaction matrices
stated in Bramoullé et al. [2009]. In particular, the instruments that are used here are
the characteristics of male friends of male friends of students, their female counterparts,
the characteristics of female friends of friends of males who are females, etc. In summary,
characteristics of friends at distance 2,3,4, etc. per categories may be used as instruments

to properly estimate the model. The 2SLS estimator of model (6) is given by:
024 = (ZPKZ) ' Z'Pry

where P = Qr(Q' xQx)~ Q'x. The corresponding variance-covariance matrix of param-

eter estimates in this 2SLS setting is given by:

Vo,ss = (ZPrZ) ' ZDZ(ZPKZ)™
where D is an n x n diagonal matrix with entries given by the squared residuals from
the estimation. Under plausible regularity conditions (see Liu and Lee [2010]), the 2SLS

approach provides a consistent estimator of our model (6).

24Using the Newton’s binomial formula and identities derived from our matrix ordering, one can re-write

o k>1 _ . _ . _ _ . _ . _
S(B) =1+ k; ;O ) [(BrmG1)* ™" + (k = 0) Bt (BrmG1)* 7 'G2] . [(Br1G3)" + iBsm(Br1Gs)' 'Ga].

2 Where Q0 = [Gicl,ci@%cicg,@im,cicici@@g,@i@@g,Gi@m,éi@; ...] See Ap-
pendix B for examples of Qi .

26 A simple example for Qg is J [(;fx,clb,@ZGSX,@ﬂ,@gxﬁgb,@mlx,@u,x].

27See proof in Appendix C.
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4.1.2 GMDM estimation

As shown in Liu and Lee [2010], the homogeneous version of the best-response functions
(6) can be estimated using a GMM estimator. Following the same reasoning, we propose
a GMM estimator of our heterogeneous model. For that purpose, we generalize the 2SLS
estimator using additional quadratic moment equations. As argued in Liu and Lee [2010],
the additional quadratic moments exploit the existing correlations between the error term
of the reduced for model, thus provide more precision compared to the traditional 2SLS
estimators. In addition, one of the advantages of using the GMM estimator instead of
the 2SLS is that the objective function of the GMM estimator uses the optimal weighting
matrix that allows the obtention of more efficient estimators.

In order to derive our GMM estimator in the context of heterogeneous peer effects, we
first let the IV moments be given by ¢1(0) = Q/x€(0). The additional quadratic moments
are given by g2(0) = [U’€(0), Ube(6), ..., U;e(H)],e(B), where Uj is such that tr(JU;) =
0.2% For notational purpose, we also let U; = JU;J. In addition, let the combined vector
of linear and quadratic empirical moments be given in g(0) = [¢7(0), ¢g5(0)]. Finally, let
Q2= _(~2(62, fi3, fis) where 2, fi3 and fi4 are initial estimators of the second, third and fourth
moments of our the error term of our model. Following the strategy of Liu et al. [2013],
extented to the case of heterogeneous peer effects, the optimal weighting matrix associated

with our GMM estimation strategy is given by {2 taking the following form:

7*Q Qx 3 Qlw
Q2 =Var[g(0)] =
psw' Qre (pg — 30M)w'w + o7

where w = [vecp(Uy), veep(Us), ..., vecp(Ug)], T = 3 [vec(U3),vecp(U3), ..., veep (US)]
where V square matrix E of size n , E®* = E+ E’ and vecp(A) = (a11,a22, ..., Gpp)-

The feasible optimal GMM estimator is given by:

Ogmm = argmin 0699/(0)0_19(9)

Proposition 4 of Liu et al. [2013] state that under their assumptions 1 — 3, 4, 5 — 9, if
K/n— >0, and if 0= _(~2(62,/23, fia), our GMM estimator égmm is consistent.

ZBFollowing Liu and Lee [2010], for any constant matrix B, if we define A = B — tr(JB)I/tr(J), then
tr(JA) = 0. In our setting, we use U1 = G1 — tr(JG1)I/tr(J), Uz = G2 — tr(JG1)I/tr(J), Us =
Gs — tr(JG1)I/tr(J) and Uy = G4 — tr(JG1)1/tr(J).
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4.2 Particular cases: homogeneous and gender-specific homogeneous ef-
fects

Two particular cases of our model may be recovered by restricting some parameter values:
the baseline model of homogeneous peer effects and an intermediary case where effects are
gender-specific homogeneous.

In the homogeneous case, we suppose that B, = By = Bfr = Bfm = B. Similarly,
Omm = Omyp = 0 = 0fm = 6. The baseline model is y = ta+BGy +vx + 6Gx + €. This is
similar to the standard model of Bramoullé et al. [2009] and our identification conditions
are the same as in that paper.

In the gender-specific homogeneous case, we suppose that B, = Bny = Bm and
Brr = Brm = By. Similarly, 6, = Oy = O and dyp = 6y, = 6¢. The corresponding

model is:
y=ta + BnGiy + Bf@Qy + vx + 0mGix + 5f@2X + € (10)

Using matrix 7 = [@1y,@2y,}~(] where X = [X,@lx,@gx] and 0 = (B,7,8) with 8 =
(Bm, By) and 6= (0m,d¢)", the model can also be written as:

yzZé—FLa—Fe

where subscripts ~ on matrices and vectors have the same meaning as in the general
model, except that there is no distinction between the type of friends for males (resp. for

females).

Proposition 3 If [3,,| <1 and |B¢| < 1, matriz S=(I- BmG1 — Bf@z) is invertible.

If conditions of proposition 3 are satisfied, the reduced form model is:

y =S7! |yx + G(d) + ta| + S e (11)
where @(5) = (5m((~}1x + 6 f@2x.29 We perform a global transformation of model and the
transformed model is:

Jy:JZé+Je

The best IV matrix for JZ is given by JE(Z) = J [{Wl(,@)[’yx + G(6)x + Loz]}{i:m},f(
and JZ = JE(Z) + J Zle[Wie]eg where e; is the ¢'th unit (column) vector of dimension

29Matrix S™! can be re-written using a series expansion and the Newton binomial formula such that

=0 X (ﬁf@Q) i.

00

S'=1+ % kil ) (6m@1)

k=1 1i=0
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(k +2) with k = dim(X). Letting Q0. = [Wi(ﬂ)x,Wi(,@)@(g)x,wi(,@ﬂ}, vie {1,2).
The set of instrumental variables of our model is Qoo =J {inoo}izlvg, i} . Following the

same method as in the general case, we end up with the following proposition.

Proposition 4 Suppose model (10) holds with correlated effects. Suppose also that (6p, +
YBm) # 0 and (6 + vBf) # 0. If vector columns of matrix QK are linearly independent,

then social effects are identified.

Using the same strategies, our model can be estimated using both GMM and 2SLS esti-

mators.

5 Data

Our best-response model with heterogeneous peer effects is used to study the influences of
peer outcomes and characteristics on the body weight of adolescents, using data from the
National Longitudinal Study of Adolescent Health (Add Health). Add Health is a panel
study of a nationally representative sample of adolescents in grades 7-12 in the United
States. Mandated by the U.S. Congress to fund a study of adolescent health, the Carolina
Population Center conducted the first wave during the 1994-1995 school year. The dataset
comprises an In-School questionnaire that is administered to a nationally representative
sample of students. People from the Add Health cohort are followed into young adulthood
with four In-Home interviews: 1996, 2001-2002 and 2007-2008. The most recent In-Home
interview was in 2008, when the sample was aged 24-32. Add Health combines data on
respondents’ social, economic, psychological and physical well-being with contextual data
on family, neighbourhood, community, school, friendships, peer groups, and romantic re-
lationships. The dataset thus provides tools to conduct studies designed to measure the
effects of personal and contextual characteristics on behaviours that promote good health
for instance, positioning the dataset at the top of the largest and most comprehensive
longitudinal surveys of adolescents undertaken.

Wave I of Add Health consists of an In-school questionnaire that was filled out by 90,118
students in 145 schools and 80 communities. A subset of 20,745 students was then chosen
for an in-depth In-Home survey. Wave II, which was held in 1996, includes an In-Home
questionnaire that was completed by 14,738 students, a subset of the original 20,745 Wave
I pupils. Students who were selected for the In-Home survey were asked for information on
their height and weight. Using this information, we construct student body mass indices

(BMI)3® which is our dependent variable and an indicator of body fatness, according to the

30We do not use declared body mass indices although declared BMIs are shown to reflect real variables
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formula: BMI = (weight in kilograms)/(height in meters)?. Because Wave II of the Add
Health dataset also comprises a nutrition section, we use variables from Wave II to further
explore adolescents weight, as probably determined by their social ties. Covariates include
age, racial background, grade variables, parents education and parents’ health status. This
leaves us with as many contextual peer effects coefficients as personal characteristics, for
each type considered.

To account for social interactions, we also use information provided by Wave II of
the Add Health dataset, in which respondents are asked to name up to five male friends
and up to five of their female friends within their school. Provided information on their
friendship links and on their type thus allows us to construct our friendship interaction
matrices. The extensive questionnaire was also used to construct a saturation sample
that focuses on 16 selected schools (about 3000 students). Every student attending these
selected schools answered the detailed questionnaire. There are two large schools and 14
other small schools. We use the saturated sample in our estimations to deal with the

problem of partial observability.

5.1 Descriptive statistics

Table (1) provides descriptive statistics of our sample. The sample comprises 2220 students
in all 16 schools of the In-Home survey. Average BMI is 23.14 with a standard deviation
of 4.72. This reveals that on average, the population considered is normal in terms of
weight. In terms of individual characteristics, we can see that the male-female population
is equally distributed, and that mean age is about 16. White students are more represented
(61%) than the other racial communities. The percentage of Black and Asian students is
respectively 15% and 14%. In addition, 18% of students in the sample are of Hispanic
origin. 61% of students in our sample attend grade 11 or 12 and 27% are in grade 9 or 10.
Most of the parents hold at least a high school degree and 18% of mothers hold a college
degree compared to 15% of fathers of the students in our sample. Almost all parents
work for pay, 92% of mothers report being in good health compared to 76% of fathers.
Reported (directed) network statistics indicate that the average number of friends is 2
and is equally distributed between male friends and female friends. However, considering
undirected networks increases the average number of friends to 5. This indicates that
the constraint put in the number of friends by the Add Health study is not binding, and
individuals actually report having less friends than the number of allowed nominations

during the survey. Consequently, the partial observability of networks (see for example

in the case of Add-Health.
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Chandrasekhar and Lewis [2011]) is not problematic in our study, even when undirected
networks are considered. 509 students of our sample (about 23%) are isolated. We address

the issue of network endogeneity in the following section.

5.2 Network endogeneity

In the presence of self selection into networks, identification may be hindered because en-
dogenous effects cannot be separated from correlated effects, even when performing our
global transformation that captures only part of this selection bias - i.e. the one that is
due to the fact that individuals in the same network face a common environment. Network
endogeneity may be the source of potentially important biases whenever there are unob-
servables at the individual level that determine network formation and that influence the
outcome of interest at the same time. The presence of homophily where individuals with
common characteristics tend to associate together is an example of such a situation.

The network endogeneity issue has been addressed by a number of recent papers. The
main strategy consists in including a network formation model and using bayesian tech-
niques to estimate the parameters of interest (see for example Patacchini and Rainone
[2014] and Hsieh and Lee [2015]). A recent paper of Goldsmith-Pinkham and Imbens
[2013] argues that the presence of endogeneity in network formation is testable. Following
this argument, Liu et al. [2013] proposes a test for the presence of endogeneity in networks
using the Add Health dataset and applies their approach to the allocation of time in sleep.
They find no evidence of endogeneity of networks. Patacchini and Rainone [2014] also
find no evidence of the presence of endogenous network formation, while focusing on peer
effects on financial products.

We perform a series of tests based on the Goldsmith-Pinkham and Imbens [2013] idea
and the best response functions in the homogeneous model. We argue that lack of evidence
of network endogeneity in the homogeneous model suggests that network endogeneity is not
an important concern in our heterogeneous model of peer interactions. We first follow the
strategy of Liu et al. [2013] and, in a second approach, we consider a Goldsmith-Pinkham
and Imbens [2013| "inspired" test in a more general fashion.

Liu et al. [2013] adopt the following strategy based on the Goldsmith-Pinkham and
Imbens [2013] approach. The underlying idea is simple. Suppose that the best response

functions in network r are given by :
Vr = tn. 0 + Gy, + VX, + 6G,x, + €,

Suppose the error term is the sum of unobserved characteristics at the individual level v,

and random disturbances e, such that €. = wv,.+e,, where 7 is the effect of the unobserved
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individual characteristic on the outcome of interest, y,.. Let consider a network formation
model explaining the probability of observing a link between two individuals ¢ and j. It
is assumed that the link formation process depends on distances between observed and
unobserved characteristics between any two individuals. For simplicity, we assume that
there is only one unobserved variable that drives both network formation and the outcome

variable. The network formation model is thus given by equation (12) below:

K
Gijr =K+ Z Cm]a:ﬁr — :z:fr] + iy — Vi | + Br + Ui (12)
k=1
Following this model, if there is homophily in the unobserved characteristics, then ¢ < 0
i.e. the closer two individuals are in terms of unobservables, the higher the probability that
they become friends. If, in addition, m # 0, these unobservables have a direct effect on y,
as well. Liu et al. [2013] argue that if the data reveal a positive and statistically significant
correlation between the predicted probability (using probit or logit estimation) to observe a
link between the two individuals (g;;) and the difference between the residuals of the two
individuals in the outcome equation (|, — €;,|), when a link is really observed (g;j,» = 1),
then we should not reject the presence of endogeneity in network formation. In the same
spirit, if a positive and statistically significant correlation is found between the predicted
probability to observe a link and the difference of residuals in the outcome equation, if no
link is observed in the reality (g;j,» = 0), then the same conclusion holds. Following this
idea, we first perform a naive regression of the predicted probability to observe a link (g;;)
and differences in residuals for the entire sample (|é; — €;]). We also include the variable
indicating whether there is a link or not, g;; and we differentiate between cases where fixed
effects are included and cases where there are no fixed effects. Our results are reported on
table (2) and suggest that, in the absence of network fixed effects, there is a negative and
significant effect of differences in residuals and the predicted probability to observe a link.
However, whenever network fixed effects are accounted for, this significant effect vanishes.

As an alternative test, we propose to concentrate on the whole distribution of predicted
probabilities. Our test is based on a visual observation strategy aiming at detecting the
presence of endogeneity in network formation. The idea is that if the estimated kernel
densities are visually similar for both g;;, = 1 and g;;, = 0, then there is no evidence of
network endogeneity. Figure (1) summarizes the results of our non parametric estimation
without fixed effects. We can see that the two kernel density estimates are not similar
without the inclusion of school fixed effects. However, once we control for school fixed
effects using a semi-parametric model (see figure 2 above), one can see that densities are

visually similar. Accordingly, there is no significant effect of differences in residuals of the
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outcome and the predicted link values. This analysis suggests that there is no evidence
of the presence of network endogeneity as related to students’ BMI in our data. It also
provide evidence that the fixed effect strategy is quite efficient in reducing the selection
bias associated with the confounding variables influencing both the network formation and

the students’ weight.

6 Results

In this section, we discuss estimates of the best response functions on the weight of ado-
lescents. We first present results from the homogeneous model of peer interactions. In the

second subsection, we explore the heterogenous model.

6.1 Homogenous peer effects and BMI

Table (4) summarizes our results using a 2SLS estimator. The first two columns report
the estimates and standard errors of individual characteristics, and columns 3 and 4 report
the associated contextual peer effects. For robustness purposes, we also distinguish results
while excluding a dummy for the gender variable, which corresponds to a full homogeneous
model (see specification (1)), or including it and excluding race variables (see specification
(2)). Focusing on (1), results indicate that the endogenous peer effect is not significant at
5%. On the other hand, some contextual peer variables influence an individual’s BMI. In
particular, having friends whose mother has a college or and advanced level of education
strongly reduces a student’s BMI.3! This reveals the importance of the mothers’ education
and may indicate a transmission of information on good health habit from friends’ mother
to a student (learning effect). Regarding individual effects, being enrolled in grades 11
or 12 reveal positive and significant effects on a student BMI compared to students who
are in grades 7 or 8 (the reference). As expected, the impact of being a female student is
negative on BMI in specification (2) which introduces a dummy for gender. Other estimates
obtained specifications (1) and (2) are very similar.

Table (5) provides results based on GMM rather than on 2SLS. We can see that esti-
mates are now much more precise (as argued by Liu et al. [2013]), as the GMM approach
exploits additional (quadratic) moments conditions and the optimal weighting matrix.3?
The endogenous peer effect is now statistically significant at the 5% level and is equal to
0.205. This may reveal the presence of strategic complementarity between one’s BMI and

the BMI of their other friends. This means that peers’ BMI positively affect own BMI,

31The mothers’ reference group is don’t know.
32Gee section 4.1.2 for more details.
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through channels documented in section such as a higher incentive to go to a fast food
restaurant with a friend (3). Under a strategic complementarity mechanism, this leads
to a social multiplier equal to 1.20 (= —55g5z % 0.77 + 1 x 0.23).33 Our results are in
accordance with the recent literature that reports evidence of a positive but small endoge-
nous peer effects on weight. For instance, Fortin and Yazbeck [2015], using a different
econometric approach based on Add Heath data but limiting the effort to reduce BMI on
limiting visits in fast food restaurants, estimates the social multiplier to 1.15. The second
specification (see (2)) also reveals similar effects, with an endogenous effect equal to 0.203
and a similar social multiplier as in specification (1). In addition, as in 2SLS specification
(2), female students tend to have a lower BMI compared to male students.

As regards contextual effects, some additional estimates are now statistically significant
compared to estimates obtained using the 2SLS estimation strategy. In particular, in spec-
ification (1), peers’ average age has a negative and significant impact on a student’s BMI.
Also having friends whose father has some college education now strongly and negatively
affects a student’s BMI. The effect of mother education is also amplified, with the effect
of having a friend’s mother holding a college degree becoming negative and statistically
significant at 1% on BMI. Individual characteristics effects also become much more precise
than estimates obtained previously, and grade 9 or 10 students also have a higher BMI
than grades 7 or 8 students. Race also seems to have an important role, as white and black
students have a lower BMI relative to their Hispanic, Asian or American Indian friends,

though their estimated coefficients are significant at only 10%.

6.2 Gender heterogeneity and BMI

In this subsection, we generalize our econometric model to allow for within- and between-
gender heterogeneity. We also provide Wald statistics to test the standard homogenous
model as compared with our more general heterogeneity model.

Table (6) provides the results from 2SLS estimation. Column 1 provides estimates
of the individual effects. Columns 3, 5, 7, and 9 report coefficients associated with the
effects of male peers characteristics on the BMI of male students (M-M), the effects of
female peers characteristics on the BMI of male students (M-F), the effects of female
peers characteristics on the BMI of female students (F-F) and the effects of male peers
characteristics on the BMI of female students (F-M). The lower panel provides the four
corresponding endogenous peer effects. Standard errors of the estimates are reported in

the adjacent columns.

33Recall that 23% of our sample are isolated students. For them, the social multiplier is 1.
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As in the case of the homogenous model, the 2SLS endogenous peer estimates are
not significant at the 5% level. As regards contextual effects, having male peers whose
mother holds a college or an advanced degree has a negative impact on a male student’s
BMI. Again, this confirms the importance of the mothers’ education and may reflect the
transmission of information on the benefits of good health habits. However, this effect
is significant only in the case of male-male ties. Furthermore, having male peers whose
father holds some college degree negatively affect male students’ BMI. Besides, an increase
the percentage of their white or black female friends positively influences females’ BMI.
Estimates of individual characteristics are very similar to those of the homogeneous model.
In particular, grade 11-12 students are the ones who report a higher BMI, even when
controlling for age. The other individual effects coefficients are not significant.

Table (7) reports the estimated coefficients based on the GMM approach. As it is
the case with the homogenous model, the use of this method makes our estimates more
precise. Importantly, our results reported on the last panel of table (7) suggest that
both within- and between-gender endogenous interactions influence own BMI. Thus within
male-male and female-female endogenous effects exhibit positive and significant coefficients.
The female-female endogenous effect (= 0.216) is a little higher than the male-male one
(= 0.202). A female student who interacts with female students with high (low) BMI has
more chance to have a high (low) BMI, as it is the case for a male student interacting with
male students. Moreover, between female-male interactions (= 0.216) and male-female
(= 0.287) interactions appear to influence a student’s BMI. However, performing a Wald
test (see Table 8) leads us not to reject that all the endogenous peer effects are the same
(statistics —0.55 as compared with a critical x? value of 7.89, at the 5% level). One
thus concludes that, at least as far as the endogenous peer effects are concerned, gender
homogeneity is a plausible hypothesis.

The next important issue is to check whether gender homogeneity also characterizes
the contextual peer effects. Our results reveal an important number of differences in the
contextual effects depending on the nature (within and between) of social interactions.
First, although the age of female peers has a negative impact on both the BMI of male and
female students, the age of male peers has no impact on students’ BMI, whatever their gen-
der. In addition, contextual effects are heterogeneous in the percentage of white students
with whom a student interacts. Our results suggest that this effect appears positively for
female students who interact with white female students but negatively for male students
who interact with white male students. Importantly, having male peers whose mother hold

less than a high school degree, a high school, a college or an advanced degree negatively
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affects male BMI. Also, having male peers whose mother hold an advanced education neg-
atively influence female BMI. Besides, peers’ mother education has no effect on students’
BMI at the 5% level, irrespective of their gender. In addition, a female student’s BMI is
positively affected by male peers whose father holds less than a high school. Also, a male
student’s BMI is negatively influenced by male peers whose father holds a high school or
some college level. Moreover, having male peers whose mother holds an advanced degree
increases a female student’s BMI. Finally, female peers whose father is in good health neg-
atively influence a female student’s BMI. Based on a Wald test, (see Table 8), we reject
joint homogeneity in contextual and endogenous effects (statistics =114.89 as compared
with a critical x? value of 72.15 at the 5% level). In other words, while we do not reject
homogeneity of endogenous peer effects, homogeneity of contextual effects is rejected.

As regards the individual effects, our results report estimates quite close to those of the
GMM homogenous model (see Table 5). They indicate that being enrolled in grade 11-12
or grade 9-10 has a positive and significant effect on a student’s BMI. Also, students whose
father has no high school education or does not have a good health have a higher BMI.

We also perform a robustness analysis of our results when using the z-BMI instead of
absolute BMI. The 2SLS and GMM estimation strategies reveals similar patterns. The
Wald tests statistics for the z-BMI results are provided in Table (8 and indicate that, as it
is the case for BMI, while full (endogenous plus contextual) gender homogeneity is rejected,

but not endogenous gender homogeneity.

7 Conclusion

This paper proposes a non-cooperative model of the Body Mass Index (BMI) outcome
with effort technology in a network context. We allow for intra- and inter-gender hetero-
geneity in endogenous and contextual peer effects. We analyze the possibility of recovering
the fondamentals of our structural model (individual preferences and production function
of effort on BMI). We show that as long that effort is not observable, the latter is only
partly identified. However, having good proxies for effort (e.g., good eating habits, physi-
cal exercise) helps completely identify the fondamentals of the model. Also, we show that
identification conditions of the best response (reaction) functions depend on the value of
some coefficients and on the properties of the social interactions matrices defined within
the model. Interestingly, particular cases of our model, including the traditional network
interaction model, can be shown as particular cases of our model. We first test the ex-
ogeneity of network formation as regards its effect on BMI. We do not reject exogeneity,

at least when network-specific effects are introduced in the model. Then we estimate a
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standard homogenous version of our model, using adolescents’” BMI in the Add Health
dataset. Using GMM estimators based on Liu and Lee [2010], we find a significant but
small endogenous effect, meaning that students tend to influence each other in terms of
weight. The peer effect is equal to 0.205, which corresponds to a social multiplier of 1.20,
assuming that the basic channel of social interactions is synergy (strategic complemen-
tarity). We then estimate our more general model with gender-dependent heterogeneity.
Surprisingly, we do not reject that the within- and between-gender endogenous peer effects
are the same. However, contextual effects differ significantly within and between gender as
related with age, parents’ education, parents health status and race. One important con-
clusion is therefore that gender-dependent heterogeneity is present not in the endogenous
but in the contextual peer effects. We thus reject the full homogeneity model in BMI peer
effects.

At the policy level, one interest of our approach is to introduce observable heterogeneity
in the model (here, gender-dependent heterogeneity). At the theoretical level, this may
help policy makers to use our method to better analyze the impact of reforms on adolescent
obesity and to find the most appropriate tracking of students to reach the optimal outcome
level.

Many extensions of our approach are possible. Firstly, following Hsieh and Lin [2015],
one could introduce (and test) additional observable categories such as race or age in the
model. Secondly, unobservable peer effects heterogeneity could also be taken into account
(see Masten [2015]). Thirdly, more attention could be put on the mechanisms by which
peers’ BMI may influence individuals’ BMI (through eating habits, physical exercise, social
norms, etc.). Finally, developing and estimating a complete model of peer effects with
heterogeneity and endogeneity in the network formation would be a most relevant research

topic.

24



References

Tiziano Arduini, Eleonora Patacchini, and Edoardo Rainone. Identification and estimation
of network models with heterogeneous externalities. mimeo, 2016.

Anton Badev. Discrete games in endogenous networks: Theory and policy. Working Papers
2-1-2013, University of Pennsylvania Scholarly Commons, 2013.

Julie Beugnot, Bernard Fortin, Guy Lacroix, and Marie Claire Villeval. Social Networks
and Peer Effects at Work. IZA Discussion Papers 7521, Institute for the Study of Labor
(IZA), July 2013.

Lawrence E Blume, William A Brock, Steven N Durlauf, and Rajshri Jayaraman. Linear
social interactions models. Journal of Political Economy, 123(2):444-496, 2015.

Vincent Boucher. Conformism and self-selection in social networks. Journal of Public
Economics, 136:30 — 44, 2016.

Vincent Boucher and Bernard Fortin. Some challenges in the empirics of the effects of
networks. In Y. Bramoullé, A. Galeotti, and B. Rogers, editors, The Ozford Handbook
of the Economics of Networks, Oxford Handbooks, chapter 12. Oxford University Press,
March 2016.

Y. Bramoullé, H. Djebbari, and B. Fortin. Identification of peer effects through social
networks. Journal of Econometrics, 150(1):41-55, May 20009.

A. G. Chandrasekhar and R. Lewis. Econometrics of sampled networks. Preliminary and
Incomplete, November 2011.

P.-A. Chiappori and I. Ekeland. The microeconomics of efficient group behavior: Identifi-
cation. Econometrica, 77(3):763-799, 20009.

Nicholas A. Christakis and James H. Fowler. The spread of obesity in a large social network
over 32 years. The New England Journal of Medicine, 357(4):370-379, July 2007.

Ethan Cohen-Cole and Jason M. Fletcher. Is obesity contagious? social networks vs.
environmental factors in the obesity epidemic. Journal of Health Economics, 27(5):1382
— 1387, 2008.

Gabriella Conti, Andrea Galeotti, Gerrit Mueller, and Stephen Pudney. Popularity. Work-
ing Paper 18475, National Bureau of Economic Research, October 2012.

Joan Costa-Font and Mireia Jofre-Bonet. Anorexia, body image and peer effects: evidence
from a sample of european women. Economica, 80(317):44-64, 2013.

Bernard Fortin and Myra Yazbeck. Peer effects, fast food consumption and adolescent
weight gain. Journal of Health Economics, 42:125-138, 2015.

Paul Goldsmith-Pinkham and Guido W. Imbens. Social Networks and the Identification
of Peer Effects. Journal of Business € Economic Statistics, 31(3):253-264, July 2013.

Timothy J. Halliday and Sally Kwak. Weight gain in adolescents and their peers. Economics
€ Human Biology, Elsevier, 7(2):181-190, July 2009.

D. L. Hoxby. Peer effects in the classroom: Learning from gender and race variation.
Working Papers 7867, NBER, 2000.

25



C.-H. Hsieh and Xu Lin. Gender and racial peer effects with endogenous network formation.
Technical report, Mimeo, 2015.

Chih-Sheng Hsieh and Lung-Fei Lee. A social interactions model with endogenous friend-
ship formation and selectivity. Journal of Applied Econometrics, 2015.

Peter Kooreman and Adriaan R. Soetevent. A discrete-choice model with social interac-
tions: with an application to high school teen behavior. Journal of Applied Econometrics,
22(3):599-624, 2007.

Victor Lavy and Analia Schlosser. Mechanisms and impacts of gender peer effects at school.
American Economic Journal: Applied Economics, 3(2):1-33, April 2011.

Victor Lavy, Olmo Silva, and Felix Weinhardt. The good, the bad and the average: Ev-
idence on the scale and nature of ability peer effects in schools. National Bureau of
Economic Research, Working Paper Series(15600), December 2009.

Lung-Fei Lee. Identification and estimation of spatial econometric models with group
interactions, contextual factors and fixed effects. Journal of Econometrics, 140(2):333—
374, 2007.

Lung-Fei Lee, X. Liu, and X. Lin. Specification and estimation of social interaction models
with networks structure. The Econometrics Journal, 13(2):143-176, 2010.

Xiaodong Liu and Lung-fei Lee. Gmm estimation of social interaction models with cen-
trality. Journal of Econometrics, 159(1):99-115, 2010.

Xiaodong Liu, Eleonora Patacchini, and Edoardo Rainone. The Allocation of Time in Sleep:
A Social Network Model with Sampled Data. Center for Policy Research Working Papers
162, Center for Policy Research, Maxwell School, Syracuse University, November 2013.

Charles F. Manski. Identification of endogenous social effects: The reflection problem. The
Review of Economic Studies, 60(3):531-542, 1993.

M. A. Masten. Random coefficients on endogenous variables in simultaneous equations
models. Technical report, Mimeo, 2015.

J. Neyman and Elizabeth L. Scott. Consistent estimates based on partially consistent
observations. Econometrica, 16(1):pp. 1-32, 1948.

CL Ogden, MD Carroll, BK Kit, and KM Flegal. Prevalence of obesity and trends in body
mass index among us children and adolescents, 1999-2010. JAMA, 307(5):483, 2012.

Georgia S Papoutsi, Andreas C Drichoutis, and Rodolfo M Nayga. The causes of childhood
obesity: A survey. Journal of Economic Surveys, 27(4):743-767, 2013.

Eleonora Patacchini and Edoardo Rainone. The Word on Banking - Social Ties, Trust,
and the Adoption of Financial Products. Technical report, 2014.

Francesco Renna, Irina B. Grafova, and Nidhi Thakur. The effect of friends on adolescent
body weight. Economics & Human Biology, 6(3):377-387, December 2008.

PM Rogers, KA Fusinski, MA Rathod, SA Loiler, M. Pasarica, MK Shaw, G. Kilroy,
GM Sutton, EJ McAllister, N. Mashtalir, et al. Human adenovirus Ad-36 induces adi-
pogenesis via its E4 orf-1 gene. International Journal of Obesity, 32(3):397-406, 2007.

26



Bruce Sacerdote. Peer effects with random assignment: Results for dartmouth roommates.
The Quarterly Journal of Economics, 116(2):681-704, May 2001.

Justin G. Trogdon, James Nonnemaker, and Joanne Pais. Peer effects in adolescent over-
weight. Journal of Health Economics, 27(5):1388 — 1399, 2008.

Diane Whitmore. Resource and peer impacts on girls’ academic achievement: Evidence
from a randomized experiment. American Economic Review, 95(2):199-203, May 2005.

Olga Yakusheva, Kandice A Kapinos, and Daniel Eisenberg. Estimating heterogeneous
and hierarchical peer effects on body weight using roommate assignments as a natural
experiment. Journal of Human Resources, 49(1):234-261, 2014.

27



Table 1: Descriptive statistics

Mean Standard deviation  Min Max

Weight status

BMI 23.14 4.72 13.25 46
zBMI 0.55 1.17 -3.74  4.44
Individual characteristics

Age 16.36 1.43 13 20
Female 0.49 0.50 0 1
White 0.61 0.48 0 1
Black 0.15 0.36 0 1
American Indian 0.03 0.17 0 1
Asian Pacific 0.14 0.34 0 1
Hispanic origin 0.18 0.38 0 1
Grades 7-8 0.12 0.32 0 1
Grades 9-10 0.26 0.44 0 1
Grades 11-12 0.62 0.48 0 1
Eating habits

Own decision to eat 0.85 0.36 0 1
Parents present when eat 4.47 2.38 0 7
Mother education and health status

No high school 0.13 0.34 0 1
High school 0.35 0.48 0 1
Some college 0.19 0.39 0 1
College 0.18 0.38 0 1
Advanced 0.06 0.24 0 1
Don’t know 0.04 0.19 0 1
Good health status 0.92 0.27 0 1
Father education and health status

No high school 0.11 0.31 0 1
High school 0.25 0.43 0 1
Some college 0.14 0.35 0 1
College 0.15 0.36 0 1
Advanced 0.07 0.25 0 1
Don’t know 0.05 0.23 0 1
Good health status 0.76 0.42 0 1
Network statistics

Average number of friends 2.28 1.94 0 10
Number of female friends 1.16 1.27 0 5
Number of male friends 1.12 1.30 0 5
No friend 509

N=2220
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Table 2: Endogenous network - Dep. var.: predicted link probability
(1) (2)

Coefficient (Std. Err.) Coefficient (Std. Err.)
& — &1 ~0.00041 ***  (0.000005)  -0.000002  (0.0000019)
Gij 0.03703 *** (0.00017) 0.02047 *** (0.00013)
Intercept 0.00449 ***  (0.000017)  0.07755 *** (0.00018)
Network fixed effects No No Yes Yes
Observations 1,120,936 1,120,936

*H* p<0.01, ** p<0.05, * p<0.1.

Table 3: Endogenous network formation: Liu et al. [2013] test

Panel A: g;;,, =1

T = 25% T = 35% T=45% T=60%
|€; — &1 0.0000009 0.0000127 0.0000087  -0.0000403**

(0.000006) (0.00000783)  (0.000011) (0.0000161)
Intercept 0.002142***  0.004237**  0.01019***  0.01124***

(0.000046) (0.001578) (0.001365) (0.00200)
Network fixed effects Yes Yes Yes Yes
Observations 1,249 1,750 2,249 3000
Panel B: g;;, =0

T = 95% T = 8% T=75% T=60%
|€; — €] 0.000003 0.000007 0.000002 0.000001

(0.000031) (0.000011) (0.000007) (0.000004)
Intercept 0.007777***  0.07437***  0.07440***  0.07440%**

(0.000671) (0.00043) (0.000342) (0.000276)
Network fixed effects Yes Yes Yes Yes
Observations 55,792 167,390 278,984 446,367

*¥** p<0.01, ** p<0.05, * p<0.1. Standard errors are in parentheses.
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Figure 1: Estimation without school fixed effects
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Appendices

A Proof of proposition 1: invertibility condition

Recall that matrices G1, G2, G3 and G4 are ordered so that the nf first rows are for type-f
individuals and the remaining n"rows correspond to type-m individuals. In this setting,
the degree of G(3) are, for type-f individuals, equal to (nzfﬁff +nl"Brm)/ (N + nfc) For
type-m individuals, it is equal to (n]"Bpmm + n{ Bmyg)/ (0" + n{ ). Thus, the degree vector
of G(B) is a vector containing each of these unique values that depend on the number of
friends of each type for each individual. Let A\ > Ao > ... > A, be the spectrum of G(B).
The determinant of S can be written as the product of eigenvalues of the matrix. Given
that eigenvalues of I + G(8) are equal to (1 + A;), one has det(S) = []/-;(1 + \i). The
maximum degree is:

AG) = ma (max [f Bis + nz”ﬁfm] e [nz"ﬁmm + nfﬂme

We have the two following inequalities: A\ (G) < A(G) and A\, (G) > —Ai(G). A sufficient
condition for matrix S to be invertible is that its determinant is positive. Taking this
condition into account, developping by using the upper inequalities, we end up with the
following inequality, Vi/in{1,...,n}:

1-AG) <\ <1+ AG)

Two of the following cases may apply:

_ f m
o If AG) = max [W , then two upper cases are 3¢s or B¢,,. Thus, sufficient
iEN g TG

invertibility condition are |Bsf| < 1 or |Bfm| < 1;

m f
—~ ; mm+ jFm
[M , then two upper cases are [pym or B,y. Thus,

o If A(G) = max 4
jeN'm n§n+nj

sufficient invertibility condition are |Bym| < 1 or |Bpyf| < 1.

B Example of IV matrix Q;

Examples of Q; « are:

Qi = G?X,GlGQX, G?X, G%GQX,GlGQGgX,GlGQGg}X, ...,GlL,GiL,GlGQL, .
Q200 = GoGsx, G2G4X,G2G§X, e.tyGot,GoG3e, GoGye, GQG?L, e

Q300 = ng,Gng;X, ng, ...,GgL,ng,G3G4L,G§L, e

Q4,oo = G4G1X,G4G2X,G4G§X, G4G1G2X, ...,G4L,G4G1L,G4G2L,G4G§L,G4G1G2L,
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C Proof of proposition 2: identification of the best response
model

Proof C.1 To prove our proposition, we use the formula of the inverse of matriz S(3)
established using the Newton Binomial formula, the identities given in footnote (20), and

the conditions of invertibility (see Proposition 1). We also use the expression of JZ given by
equation JZ = E(Z)+J Y1 [Wi€le, where JE(Z) = J {Wi(8) [7x +G(0)x + va] }iz1 2343, X].
The following steps are necessary to prove our proposition:

1. Let k=1,2,3,4,... and derive the expression of Sp(8)~! using:

Sk(B) = 2 <I:> [(ﬂmmal)kii + (k- i)ﬁmf(ﬁmm@rl)kiiilﬁﬂ . [(5ffG3)i + iﬂfm(ﬁff©3)i71@4-]

2. Sum over all k’s and re-write S(B) ™" such that S(B)"' =1+ 3 Sk(B).
k=1

3. Using the latter expression, derive an expression of W;(8) = G;S(8)~" and W;(B)G(d)
Vi € {1,2,3,4}.

4. Write {W3(8) [’yx—i—G(d)x—i—La]}{i:1727374} as a function of instruments and ex-
tract intruments and the associated restrictions on the parameters of the model, pre-
multiplied by matriz J.

For sake of simplicity, let susbscripts mm, mf, ff and fm in B be replaced by 1,2, 3,4

respectively. Using the steps enumerated above and developing for k € 1,2,3,4, one can
write Si(B) using the expression below:

S3(B) = [553@? + 351252@%@2} +3 {55(3’? + 25152(;1@2} x [83Gs + B1G4]

+ 3[BiG1 + B2Gs] x [5;%@; + 253ﬂ4G3G4} + {@Gg + 353%54@’;@4}

Si(8)=  [BIG] +4835:6G:] + 4 [BIG] + 351 3:G1Gs] x [5G + 5G]
+ 6 [B%Gi + 25152@'1@2} X {53?@:2:, + 2ﬁ354G3G4} +4 [81G1 + B2Go]

X [B1G5 + 383,636 + [BIG; + 4815:G3G]

We then write S™1(8) = I+S1(8)+S2(8)+S3(8)+S4(8) + io: Sk(B) using the expressions
k=5

of Sk(B) given above. We are then able to write, Vi € {1,2,3, ZI}, Wi(8) [yx + G(8)x + ta]
as:
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W1(3) [’nyrG(&)erLa] =1Gx +

W2(B) [vx +G(d)x + ta] =1Gox  +

Wi(3) [vx +G(6)x + La] =1Gsx +
+

+

W4(3) [’yx + G(&)x + La] = 7G4x +

(181 +81) [61 + B1G] + BIG) + 5iG] | x
(182 + 82) [61Gs] x + 51(298 + 02) [ 616 x
B2(27Bs + 03) [G1G2Gs] x + B2(2vBs + 61) [G1G2G4] x

[Gl + Blcf + 3:G1G2 + ﬁ%G? + 2ﬁ1ﬁ2@i@2 + } Lo

(783 + d3) {Gzcs + 53G2G§ + 5;%‘@2@3 + 5§G2G§} x
(Y81 + 61) [G2Ga] x + B3(27B4 + 61) [G2G3Gu] x
B3(3781 + 01) [GoG3Gu ] x + B3 (4781 + 80) 62616 | x
[G2 + 33G2Gs + B2GoGr + 28381G2G5Gy + } L

G- é Sk(8) [(v + G (8))x + al

(785 + 8) |63 + BsG3 + H3G3 + B3G5 | x

(81 + 01) [GsGa] x + B5(284 + 81) [5G | x
B3(8984 + 84) [G36u] x + (484 + 8) [636u] x
[Gg + B3G + B1G3Gy + 285 8.G Gy + } Lo

Gs > Sk(8) [(7 + G(8))x + 1]

k=5

(vB1 + 01) {(;4@1 + [31@4@? + ﬂ%GAL(G? + ﬂf@q@ﬂ x
(782 + 02) [GuG2] x + B1(2v82 + 82) [G4G1G2] x
B2(27B3 + 63) [G4G2G3] x + B2(2vB4 + 64) [G4G2G 4] x

[G4 + 81G4G1 + £2G4Go + ﬁ%@z}@? + ] Lo

(e § Sk(B) [(v +G(d))x + o]

k=5



Using the above expressions, we can derive sufficient conditions of identification of our
parameters using the IV method. These conditions are similar to the ones obtained in
Bramoullé et al. [2009] regarding the independence of the interaction matrices of our model
and restrictions on our parameters.

Specifically, considering the expressions given above, we can see that naturally occuring
intruments of our endogenous variables include different order of our interaction matri-
ces and interactions of different orders of these matrices. For example, intruments of
our first endogenous variable include JG1x, JG12x, JG1°x and higher degrees of the
matric JG1 multiplied by vector x of characteristics if both (yf1 + 01) # 0 and matrices
G1,G12,G13, G, ete. are linearly independent. Following the same method and using the
other expressions above, we can see that minimal conditions for IV wvariables to work for
each of the four endogenous variables are (yB2+0d2) # 0, (v53+03) # 0 and (754—1—(54) #0.
In addition, v needs to be different from zero and matrices Gy, G, G3, Gy, Gl, GG,
G-Gs, Gg, Gl, ..., I need to be independent, which corresponds to the condition that vector
columns of matriz Qg of instruments should be linearly independent.

Additional conditions appear whenever one is concerned about adding instruments of
higher order of interaction matrices multiplication. In this case, the additional conditions
on parameters of the model take the form of 5; # 0 Vi € {2,3,4} and ((j — D)yB;+ ;) # 0
and linear independence of j* order interaction of social interaction matrices such that
CG;G; adds up to the independence conditions stated above, where C is either a single
interaction matriz or a non-zero product of interaction matrices. For example, JG1G2Gx
may be used as an instrument if B2 # 0, (2784 + d4) # 0 and matrices G1, Gs, Gs, G4,
Gl, GG, G.Gs, G3, Gl, ..., T and G1G2Gy are linearly independent. Also, JG4G2G3X
may be used as an addmonal mstrument zf B2 #0, B3 # 0, (37&3 + 93) # 0 and matrices
G1, Gy, G3, Gy, Gl, GG, GoGs3, G3, Gl, ..., T and G4G2G3 are linearly independent.

QED
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