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1 Introduction

Obesity has reached epidemic proportions in both children and adolescents in the United

States, increasing from 5% in 1980 to 18% in 2010 (Ogden et al. [2012]). To explain such

a phenomenon, a huge number of studies have focused on socio-economic factors such as

growing unhealthy eating habits, the rise in time spent watching television, playing video

games and using other types of media, the decline in time spent doing physical exercise

such as walking or biking to school, and the reduction in physical education at school (see

Papoutsi et al. [2013] for a survey).

Complementary to these views, health economics research has also attempted to inves-

tigate this obesity epidemic from the perspective of social interactions (e.g., Christakis and

Fowler [2007], Halliday and Kwak [2009], Trogdon et al. [2008], Cohen-Cole and Fletcher

[2008], Yakusheva et al. [2014], Fortin and Yazbeck [2015]). Many of these studies docu-

ment the presence of strong positive peer effects1 which could create a synergic effect on

the shocks (such as the technical progress in fast food preparation) which tend to increase

obesity.

Many of these studies are based on linear social interactions functions, as proposed

by Manski [1993], Bramoullé et al. [2009], and extended by Blume et al. [2015]. In the

standard version of this approach, an individual’s outcome linearly depends on his own

characteristics, and on peer effects. The latter come from two different channels: the

individual’s reference group mean outcome - the so-called endogenous peer effect - and

his/her reference group mean characteristics - known as the contextual peer effects.

However, one potentially important limitation of this framework is that it usually as-

sumes that social interactions are homogeneous. This means that peer effects do not vary

according to any particular type such as race or gender. However, this assumption is

strong and may not be realistic. For example, Costa-Font and Jofre-Bonet [2013] provides

evidence that the average Body Mass Index (BMI) of a young woman’s female peers neg-

atively influences her likelihood to suffer from anorexia.2 Intuitively, one may expect the

influence of her average male peers’ BMI on this risk to be much less important. This

example illustrates that imposing female and male peer effects to be the same on a young

woman’s chance to suffer from anorexia is likely to lead to severe estimating biases and

therefore to inappropriate health policies.
1An exception is Cohen-Cole and Fletcher [2008] who find a non-statistically significant coefficient of the

endogenous peer effect using standard econometric techniques. Fortin and Yazbeck [2015] find a significant
but small peer effect.

2According to the American Psychiatric Association (2000), women account for 90% of the 8 million
sufferers of anorexia.
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This paper generalizes the homogeneous linear social interactions model on teenagers’

BMI3 by allowing for gender-dependent heterogeneity in peer effects.4 Our model allows

the influence of male peers on a student to be different from that of female peers, and

depending on whether the student is a male or a female.5 In our setting, we consider the

population of interest as composed of a given number of networks (schools). Two types

of individuals interact within the same network (i.e, male vs. female students). This

defines two within- and two between- endogenous peer effects. Accordingly, we end up with

four different endogenous (mm, ff,mf,fm) social interaction matrices.6 The same reasoning

applies for the contextual peer effects. Of course, the standard homogeneous model is

nested into our heterogeneous model and therefore can be easily tested.

To estimate our model, we use data on students at the secondary level, arguably a period

in which social interactions are potentially highly important to structure an individual’s

body. More precisely, we use the saturation sample (1996) of the National Longitudinal

Study of Adolescent Health (Add Health) which focuses on 16 selected schools. In particu-

lar, students were asked for information on their height and weight. Using this information,

we constructed students’ BMI. Importantly, respondents from this sample were also asked

to name up to five male friends and up to five of their female friends within their school.

These data thus allow to recover the friendship social networks.

The contributions of the paper are both theoretical and empirical. At the theoretical

level, we propose a non-cooperative (Nash) model of BMI outcome with gender-dependent

heterogeneity in peer effects in a network context. Unless empirical evidence is provided

that obesity is a virus, it is counterintuitive to think that one can gain weight by simply

interacting with an obese person.7 Therefore, our model takes into account the presence of

a production function relating, among others, (unobservable) individual effort to BMI out-

come. Our theoretical model is consistent with a mechanism of strategic complementarity

or synergy in social interactions (e.g., "I better like to eat in a fast food restaurant with a

buddy"). Under the assumption that the best-response (reaction) functions are identified,

and assuming a synergy mechanism, we show that we can recover all the primitives of our
3We also perform the analysis on zBMI (or z-score BMI), that is, the BMI standardized for gender and

age.
4We leave the analysis of race or other characteristics heterogeneity in peer effects for further research.
5In a recent paper, Masten [2015] provides an analysis of endogenous peer effects with unobservable

heterogeneity. In his framework, peer effects are introduced as random coefficients in a simultaneous
equation model. Among other results, Masten shows that although the full joint distribution of structural
unobservables is not point identified, some marginal distributions are point identified. The present paper
can be seen as complementary to Masten [2015] approach.

6More details on these matrices will be given in the theoretical section.
7We acknowledge that some recent studies have pointed that obesity might be partially due to a virus

ad-36 (see Rogers et al. [2007]).
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structural model, given a proxy for the marginal productivity of effort on BMI. Therefore

the so-called identifiability problem (see Chiappori and Ekeland [2009]) is (partly) solved,

which may allow us to perform the analysis of shocks (e.g., reforms) which affect social

networks.

At the econometric level, one important contribution of our model is to show, using

an approach similar to Bramoullé et al. [2009] but where we allow both for the presence

of isolated students8 and gender heterogeneity in peer effects, that we can derive suffi-

cient identification conditions of the best-response functions. Our identification strategy

is close to the one used by Liu and Lee [2010] but is generalized to the presence of gender

heterogeneity. We show that these conditions are both based on restrictions on some of

the parameters of our model, and on the structure of our four social interaction matrices.

Our model is estimated using 2SLS and GMM methods inspired from Liu and Lee [2010].

Importantly, we rely on these estimators to account for the Bonacich centrality measure

in a general case where interaction matrices are not row-normalized (due to the presence

of isolated individuals in the networks).9 In addition, our estimation strategy allows to

account for network specific (or fixed) effects using a global transformation matrix.

Our approach is related to the one developed in Arduini et al. [2016]. In their paper, the

authors focus on the identification and estimation of treatment response with heterogeneity

using a network model. They propose a two-equation system based on the individual’s

type. However, their model specification and identification are different from ours. Our

approach is based on a single structural heterogeneous peer effects model in a network

context. To our knowledge, this is the first paper that uses our methodology. Also, while

their estimation approach focuses on a 2SLS method, we provide both 2SLS and GMM

estimators, the latter exploiting quadratic moments. Moreover, while Arduini et al. [2016]

present Monte Carlo simulations of their approach, we provide an empirical application to

peer effects heterogeneity in obesity.

One potentially important problem in the analysis of social interactions using non ex-

perimental data is the endogeneity in the formation of networks. A classical example is the

presence of homophily where individuals with common characteristics tend to associate to-

gether. The introduction of network fixed effects (as it is done in our paper) may partly take

this source of bias into account but not entirely as the formation of links within a network

may still be endogenous. A recent literature relies on the presence of endogenous group or

network formation and proposes models to simultaneously evaluate network formation and
8Isolated students are those who report having no friends. They represent about 23% of our sample.
9When an interaction matrix is row-normalized, the sum of its elements on each row is one. Of course,

this is not possible when there is at least one individual i who has no friend. In this case, the latter sum
for the row i is zero.
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network effects [Conti et al., 2012, Goldsmith-Pinkham and Imbens, 2013, Badev, 2013,

Hsieh and Lee, 2015, Hsieh and Lin, 2015, Boucher, 2016]. Goldsmith-Pinkham and Imbens

[2013] argue that it is possible to test for the presence of endogeneity in network forma-

tion. Liu et al. [2013] propose a test based on the Goldsmith-Pinkham and Imbens [2013]

approach as an attempt to test for the presence of possible network formation endogeneity

using the Add Health dataset. They find no evidence of endogeneity in network formation.

Patacchini and Rainone [2014] also find no evidence of the presence of endogenous network

formation, while concentrating on peer effects in financial products. On the other hand,

Hsieh and Lin [2015] finds the presence of homophily in the formation of network when the

outcomes are students’ achievement (GPA) or their smoking behavior. In our empirical

application, we perform both a test of exogeneity inspired by Liu et al. [2013] and a more

general one based on visual observation (see Boucher and Fortin [2016]). When we intro-

duce network specific effects into the model, we do not reject the presence of exogeneity in

the network formation associated with the BMI outcome.

Our main results based on a GMM approach reject the full (endogenous plus contextual)

gender homogeneous model for the more general heterogeneous one. However, we do not

reject that the endogenous peer effects are homogenous. This indicates that the source of

heterogeneity is the contextual and not the endogenous peer effects. We find that peers’

age, and parents’ education, health status, and race are relevant for the latter effects and

vary within and between gender.

Moreover, assuming gender peer effects homogeneity and strategic complementarity

leads to a social multiplier equal to 1.20. This means that, under this assumption, the

total impact of a common shock on the aggregate outcome in a network is 1.20 times the

sum of its direct effects at the individual level, as it incorporates synergic effects stemming

from social interactions. Interestingly, this figure is quite close to the one obtained by Fortin

and Yazbeck [2015] (= 1.15) in an homogeneous model where peer effects are limited to

fast food consumption.

The rest of the paper is organized as follows. Section 2 provides a short survey of the

relevant literature on heterogeneity in peer effects. In section 3, we present a theoreti-

cal model of heterogeneous peer interactions. In section 4, we present our econometric

model, our identification conditions and our estimation methods. Subsection 4.2 presents

a particular case of the model. Data are presented in section 5. We also provide a test

of network exogeneity. Section 6 presents our results based on gender decompositions.

Section 7 concludes.
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2 Previous Literature

Beside the study by Arduini et al. [2016] discussed in the introduction, a growing number

of researches have focused on issues raised by heterogeneity in peer effects. Many papers

assume that individuals interact in a network composed of groups10 and analyze the impact

of gender proportion on the outcomes of male and female individuals (e.g. Hoxby [2000],

Whitmore [2005], and Lavy and Schlosser [2011]). One limitation of this approach is that it

is generally not possible to separately identify endogenous and contextual effects. Manski

[1993] named this failure the reflection problem.11 To deal with this drawback, some studies

assume no endogenous effect (which imposes untestable restrictions) and others focus only

on the reduced form of the model. In the latter case, the model does not allow to recover the

fundamentals of the structural model. Therefore, it may be difficult to estimate the impact

of a reform which affects the structure of groups. However, Bramoullé et al. [2009] and

Lee et al. [2010] have shown that the linear-in-means homogeneous model is generically

identified when individuals interact through social networks that are not groups. Our

approach extends this result to the heterogeneous peer effects model.

Kooreman and Soetevent [2007] investigate heterogeneity in peer effects using a binary

choice model for different dichotomous outcomes. They estimate peer effects on girls,

peer effects on boys and between peer effects where interaction occurs in group contexts.

Their method consists in partitioning students into subgraphs using data from the Dutch

National School Youth Survey. Using a simulation based method that accounts for multiple

equilibria, they find that within-gender peer effects are larger than between-gender peer

effects. They also find that boys tend to be more influenced by their peers than girls in

terms of the different behavioral outcomes they consider (cigarettes smoking, for example).

Nonlinear tests of the nature of peer effects have been proposed by Sacerdote [2001].

His approach consists in grouping students and their peers into several categories and

including in the regression all possible interactions of the student and the categories of his

peers. Sacerdote [2001] finds that high ability students benefit each other more than high

ability students benefit from average or low ability students in terms of school performance.

In the same spirit, Lavy et al. [2009] find that high ability students positively affect girl

performance and negatively affect boys performance. However, low ability students tend

to negatively affect both girls and boys performance in their findings.

Renna et al. [2008] use the first wave of the Add Health dataset while controlling for
10In a group, all individuals are influenced by others in their group but by none outside of it.
11Note that Lee [2007] has shown that peer effects is theoretically identified when individuals do not

belong to their own reference group and that there are a sufficient number of groups of different size.
However, this approach often leads to weak identification, given the large average size of groups.

5



school fixed effects in a linear-in-means model. They find a positive peer effect coefficient

where the outcome variable is weight of adolescents. They also find, using instrumental

variables, that female adolescents are more responsive to the average body weight of their

friends, and that the effects remain significant only for their same gender friends.

Yakusheva et al. [2014] use a natural experiment to identify peer effects in weight gain.

Data are taken from roommates assignments of college students and they use the standard

linear-in-means model of peer influences. They solve the correlated unobservables problem

by taking the weight change of the ego from baseline to follow up. Their results show that

there are little evidence of peer effects for males in weight gain, whereas effects are positive

and significant for females. Their study thus provides evidence of heterogeneity in peer

effects weight gain.

Hsieh and Lin [2015] estimate a high order spatial autoregressive model (SAR) to

analyze gender and racial peer effects heterogeneity in the students’ academic achievement

(GPA) and smoking behavior. Their econometric model, using a Bayesian methodology,

takes homophily in network formation into account. They find that within-gender are

stronger than between-gender endogenous peer effects. Our approach uses a rather different

methodology. First, since our tests reject homophily, we use a method of estimation based

on 2SLS or GMM with quadratic moments. Also, our econometric model is derived from

a structural Nash-theoretic approach. Finally we focus on a different outcome: students’

BMI.

A recent paper by Beugnot et al. [2013] also provides evidence of heterogeneity of peer

effects in work performance using a laboratory experiment where workers interact through

networks. Their model is based on two different experiments: a recursive experiment

in which participants play in isolation and take their decision without being influenced

by their peers, and a simultaneous experiment where the same participants interact with

other participants and where ties are undirected. They find positive and significant peer

effects for male workers in the simultaneous game, while peer effects are not statistically

significant in the case of female workers. They suggest that male workers appear to be

more competitive than female workers.

3 Theoretical model

We consider a model extending Blume et al. [2015] in which n individuals interact through

a social network. To make it more concrete, we assume a friendship network of nm male

and nf female students (nm + nf = n), interacting within a school and whose weight

(the outcome) can be influenced by their behaviour. To take observable heterogeneity into

6



account, we define four network adjacency matrices: Az(z = 1, · · · , 4). We assume that

links do not differ in strength. The network adjacency matrix A1 (resp., A2) is such that

aij = 1 if the student i is a male student and is influenced by the male (resp., female)

student j and = 0, otherwise. The matrices A3 and A4 are similarly defined for female

students. The student i’s reference group with size ni,m (resp. ni,f ) is the set of male (resp.

female) students by which i is influenced.12 The social interaction matrix Gz is a weighted

adjacency matrix Az such that, when z = 1 for instance, one has g1ij = 1/(ni,m +ni,f ) if i

a male student and is influenced by the male student j, and 0, otherwise. For the moment,

we suppose that all Gz are non-stochastic (or fixed) and known social interaction matrices.

We also assume no isolated students.13

The BMI cannot be directly chosen by students but only indirectly through effort, that

is, healthy life habits (e.g., good dietary behaviour, physical exercise).14 Moreover, it is

counterintuitive to think that one can gain weight by simply interacting with an obese

person. To account for such characteristics in our heterogeneous social network setting, we

propose a non-cooperative (Nash) model in which every individual of each gender maxi-

mizes a quadratic utility function, separable in private and social sub-utilities, subject to

a linear production function relating weight to effort and individual characteristics. Ev-

ery individual of each type maximizes a utility function that is gender-dependent.15 The

maximization program of a type-m individual i is:

max
yi,m,ei,m

Ui,m(ei,m,y) = −yi,m −
e2i,m

2
+ ψmmyi,mg

′
1iym + ψmfyi,mg

′
2iyf ,

s.t. yi,m = α0 − α1ei,m + α2xi,m + ηi,m,

where yi,j is the outcome (BMI) of individual i in category j, ym is the vector of outcomes

in m category, yf is the vector of outcomes in f category, y is the concatenated vector

of outcomes in f and m categories, ei stands for the (unobserved) effort of i, g′zi is the

ith row of the social interaction matrix Gz, xi and ηi,m are vectors of observable and

unobservable characteristics, respectively. For notational simplicity, we assume only one

observable characteristic.

The first two expressions in the utility function describe the private sub-utility. One
12For now on, we will assume that the student is excluded from his or her own reference group.
13Our econometric approach allows for isolated students since the social interactions matrices are not

row-normalized.
14Fortin and Yazbeck [2015] assumes that visits in fast food restaurants is the main channel through

which effort influences the students BMI.
15For notational simplicity, we ignore contextual peer effects, though our econometric model takes them

into account.
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assumes that an increase in BMI reduces the individual i’s utility,16 and
e2i,m
2 represents

the cost of effort (in term of utility) to reduce weight. One supposes that the marginal

cost of effort is increasing with effort. The social sub-utility corresponds to the two last

expressions. One assumes that social interactions influence preferences through a basic

channel: strategic complementarity (or synergy) in BMI between a male student and his

reference group of each type.17 It means that an increase in the peers’ average BMI of a

given gender positively influences the marginal utility of his own BMI (ψmm > 0;ψmf >

0).18 Heterogeneity in social interactions is reflected by the fact that ψmm and ψmf can

be different.

The maximization program of type-f individuals can be written using a similar utility

function, where social interaction parameters can differ from those of type-m. Hence, a

type-f individual solves the following program :

max
yi,f ,ei,f

Uf (ei,f ,y) = −yi,f −
e2i,f
2

+ ψffyi,fg
′
3iyf + ψfmyi,fg

′
4iym

s.t. yi,f = α0 − α1ei,f + α2xi,f + ηi,f

The first order conditions of the type-m maximization program lead to (in matrix

notation):

ym = αιm + βmmG1ym + βmfG2yf + α2xm + εm (1)

where α = α0 + µ, βmm = µψmm, βmf = µψmf , and εm = ηm, with µ = α2
1. Note that µ

represents the squared marginal productivity of effort on weight level.

Similarly, the first order conditions for type-f individuals lead to:

yf = αιf + βffG3yf + βfmG4ym + α2xf + εf (2)

where βff = µψff , βfm = µψfm, γf = α2, and εf = ηf . It is assumed that the absolute

value of the β’s is less than one.

Concatenating vectors and matrices from equations (1) and (2), we end up with the

following best-response functions for the whole population of students, given the others’
16To simplify the model, we ignore a situation where very low weight negatively affects health (e.g.,

anorexia).
17Our model is also consistent with a mechanism of pure conformity in social interactions. In that case,

an individual’s utility is positively affected by the degree to which he conforms with his peers’ outcome or
characteristics due for instance to the presence of social norms. Unfortunately, the present model cannot
identify synergy from conformity (see Blume et al. [2015] and Boucher and Fortin [2016]) so that these two
channels are observationally equivalent. Following Fortin and Yazbeck [2015], we assume in this paper that
synergy is the relevant social interaction mechanism.

18An equivalent approach to introduce the social sub-utilities in the model would be to assume that the
marginal utility of the male student’s i effort increases with the average effort of his male or female peers
("I better like to go to a fast food restaurant with a friend").
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weight level (Nash equilibrium):

y = αι + βmmGGG1y + βmfGGG2y + βffGGG3y + βfmGGG4y + α2x + ε, (3)

where the GGGz’s are n× n matrices. More precisely, GGG1 is the interaction matrix such that

ggg1ij = 1/(nmi + nfi ) if i and j are male friends, and = 0 otherwise. Similarly, GGG3 is the

interaction matrix such that ggg3ij = 1/(nmi + nfi ) if i and j are female friends, and = 0

otherwise. The same reasoning applies for GGG2 and GGG4, where ggg2ij = 1/(nmi +nfi ) if i and j

are friends but where j is a female student while i is a male student, and ggg4ij = 1/(nmi +nfi )

if i and j are friends, where j is male student and i is a female student. It is clear that

GGG1 + GGG2 + GGG3 + GGG4 = GGG where GGG is the row-normalized social interaction matrix for the

whole population.

3.1 Identifiability

To evaluate the impact of an exogenous shock (e.g., a new course providing information to

improve health habits which influences the parameter α0 of the BMI production function),

on students’ BMI, one must recover the fundamentals of our structural model from the

knowledge of the coefficients of the best response functions (3). Unfortunately, a first

result is negative: in the general case, if one does not impose more structure to the model,

the fundamentals of the model are not all identified. The demonstration is simple: while

the latter include seven coefficients (the four ψ’s, and the three α’s), equation (3) can

identify only six coefficients (the four µψ, α0 + µ, and α2). The basic problem is that

µ = α2
1 is not identifiable, as it is equal to the squared marginal productivity of effort

on BMI, while effort is generally not observed. Of course, it is possible to recover the

parameters of the preferences and the production function function, for a given level of

µ. Indeed, each of the four social sub-utility parameters (the ψ’s) are proportional to its

corresponding β, the proportionality coefficient being µ−1. Note also that if we have a

good proxy for effort (e.g., a measure of eating habits, physical exercise, etc.), it may help

identify the fundamentals of the model.19

Our model provides a necessary condition for gender homogeneity in the peer effects.

Homogeneity implies that all ψ’s are equal (= ψ). In that case, one has: βmm = βmf =

βff = βfm = β. Therefore, in the absence of contextual effects, the model can be written

as:

y = αι + βGGGy + γx + ε. (4)
19Fortin and Yazbeck [2015] used the number of weekly visits to a fast food restaurant by students to

approximate eating habits.
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When the model is homogeneous, the social multiplier corresponds to the impact of α0

on the students’ BMI, when the peer effects are taken into account. It is the same for all

individuals and is equal to 1/(1−β) [= 1/(1−µψ)] in the absence of isolated individuals.

Therefore, as long as the parameters of the best responses functions are identified, the social

multiplier can be computed even if the social preference parameter ψ is not identifiable.

Note however that the evaluation of the effect of a change in α1 is not identifiable, at least

as long as one does not have a good proxy for effort.

4 Econometric model

In this section, we provide an econometric version of the best-response functions. We

now assume R networks, with r = 1, . . . , R. We still suppose that individuals of each

gender interact both with individuals of the same gender and with individuals of the other

gender. nmi,r and nfi,r stand respectively for the number of male and female individuals

influencing i in the network r. We now allow for isolated students, for which one has:

nmi,r = 0 and nfi,r = 0. Also, there are nmr male individuals and nfr female individuals,

where nmr + nfr = nr. We introduce heterogeneous contextual effects that account for

within- and between-gender peers characteristics in each network r. The best-response

functions for the network r can be written as:

yr = ιnrαr + βmmGGG1,ryr + βmfGGG2,ryr + βffGGG3,ryr + βfmGGG4,ryr

+ γ xr + δmmGGG1,r xr + δmfGGG2,r xr + δffGGG3,rxr + δfmGGG4,r xr + εr (5)

with r = 1, . . . , R, ιnr is a nr×1 vector of ones, and where αr stands for a fixed effect specific

to network r. Note that the GGGz,r’s, for z = 1, · · · , 4, matrices are not row-normalized in

the presence of isolated students. For sake of simplicity, we order vectors and matrices so

that the first nfr rows correspond to type-f individuals of network r, and the remaining nmr
rows are for type-m individuals in network r. Matrix ordering simplifies the identification

conditions of our model.20 In addition, for a sample with R networks, we stack up the data

by defining y = (y
′
1, ...,y

′
R)′, x = (x

′
1, ...,x

′
R)′, ε = (ε

′
1, ..., ε

′
R)′, ḠGG1 = D(GGG1,1, ...,GGG1,R),

ḠGG2 = D(GGG2,1, ...,GGG2,R), ḠGG3 = D(GGG3,1, ...,GGG3,R), ḠGG4 = D(GGG4,1, ...,GGG4,R), ι = D(ιn1 , ..., ιnR)

and α = (α1, ..., αR)′ where D(C1, ...,CR) is a block diagonal matrix. Finally, let ḠGG(β) =

βmmḠGG1 + βmfḠGG2 + βffḠGG3 + βfmḠGG4 and ḠGG(δ) = δmmḠGG1 + δmfḠGG2 + δffḠGG3 + δfmḠGG4 where

β = (βmm, βmf , βff , βfm)′ and δ = (δmm, δmf , δff , δfm)′. The best-response functions for
20Our vector and matrix ordering leads (by construction) to the following identities: GGG1,r.GGG4,r = 0nr ,

GGG3,r.GGG2,r = 0nr , GGG1,r.GGG3,r = 0nr , GGG3,r.GGG1,r = 0nr , GGGk≥2
2,r = 0nr , GGGk≥2

4,r = 0nr , GGG4,r.GGG3,r = 0nr and
GGG2,r.GGG1,r = 0nr .
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the R networks are:

y = ḠGG(β)y + γx + ḠGG(δ)x + ια + ε (6)

In this paper, we allow for network fixed effects. The latter take into account the

unknown specificities which commonly influence the BMI of all students within a school.

In this case, the fixed effects parameters αr are specific to network r. Consequently, one

has : α = (α1, ..., αR)′.

4.1 Identification

The aim of this section is to analyze conditions for the best-response functions of the model

to be identified. The identification of these functions are necessary (but not sufficient)21

to recover the fundamentals of our model. Here, identification means that a consistent

estimator of these functions exist.

Let us first write the best-response functions (6) in their reduced form. This requires

the matrix S(β) = (I−ḠGG(β)), where I is the identity matrix, to be invertible. Proposition

(1) below provides sufficient conditions of invertibility of matrix S(β).

Proposition 1 Suppose equation (6) holds. Suppose also that |βmm| < 1, |βmf | < 1,

|βff | < 1 and |βfm| < 1. Then matrix S(β) = (I− ḠGG(β)) is invertible.22

The reduced form model, assuming conditions of proposition (1) are satisfied, is given by:

y = S(β)−1
[
γx + ḠGG(δ)x + ια

]
+ S(β)−1ε. (7)

Using the reduced form model (7), ḠGGiy, ∀ ḠGGi ∈ {ḠGG1, ḠGG2, ḠGG3, ḠGG4}, can be expressed as :

ḠGGiy = Wi(β)
[
γx + ḠGG(δ)x + ια

]
+ Wi(β)ε

whereWi(β) = ḠGGiS(β)−1. It follows that ∀ i ∈ {1, 2, 3, 4}, ḠGGiy is correlated with ε because

E [(Wi(β)ε)′ε] 6= 0. Thus, model (6) cannot be consistently estimated by OLS. On the

other hand, 2SLS and GMM strategies can be used to estimate our model. We first consider

a 2SLS approach and show that we can find instruments to obtain consistent estimates of

our best response functions. Then we propose a GMM estimator of our heterogeneous

model that generalizes our 2SLS estimator using additional quadratic moment equations.

The latter provides asymptotically more efficient estimator than the 2SLS approach.
21The reason is that effort to reduce weight is generally unobservable.
22See proof in appendix A.
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4.1.1 2SLS estimation

Following the same strategy as Liu et al. [2013], we re-write the best-response functions

using our vector of parameters defined in θ = (β, γ, δ)′ and Z =
[
ḠGG1y, ḠGG2y, ḠGG3y, ḠGG4y,X

]
where X =

[
x, ḠGG1x, ḠGG2x, ḠGG3x, ḠGG4x

]
. The resulting model is given by equation (8) below.

y = Zθ + ια + ε (8)

This simplified writing of our model allows us to derive our identification conditions in the

case of 2SLS. A particularity of our model is however that it contains network fixed effects

(included in α) that need to be accounted for in our estimation. Standard (homogeneous)

linear-in-means social interaction models with network fixed effects usually perform a global

or local transformation of the model in order to eliminate fixed effects and to avoid the

incidental parameters problem to occur. The incidental parameters problem, as it was first

defined by Neyman and Scott [1948], occurs whenever the data available for each group

or network are finite. Consequently, it is sometimes not possible to consistently estimate

the structural and incidental parameters of the model, although in some cases structural

parameters can be consistently estimated. In such a situation however, i.e., even when

consistency is reached, efficiency is sometimes affected.

In order to avoid the incidental parameters problem in our case, we perform a global

transformation on equation (8). For that purpose, let J = D(J1, ...,JR) where Jr =

(Ir − ιrι′r
nr

) ∀ r ∈ {1, ..., R}. J is a global transformation matrix such that Jια = 0. Our

resulting (transformed) model is:

Jy = JZθ + Jε (9)

Following Liu and Lee [2010] strategy, the best IV matrix for JZ is given by :

JE(Z) = J
[
{Wi(β)

[
γx + ḠGG(δ)x + ια

]
}{i=1,2,3,4},X

]
and JZ = JE(Z) + J

∑4
i=1[Wiε]e′i where ei is the i’th unit (column) vector of dimen-

sion (k + 4) with k = dim(X). Letting Q0
i,∞ =

[
Wi(β)x,Wi(β)ḠGG(δ)x,Wi(β)ι

]
, ∀ i ∈

{1, 2, 3, 4}, the associated set of instrumental variables is Q∞ = J [{Qi,∞}i=1,2,3,4,X]. It

is important to note here the presence of variables characterized by the multiplication of

our interaction matrices and the matrix ι, that account for the fact that all rows of our

matrices do not sum to one (due to the presence of isolated people). This, as stated in Liu

et al. [2013] refer to the Bonacich centrality measure that is shown, if included in the set

of instruments, to increase the efficiency of our estimates.23

23Our empirical application accounts for the inclusion of the Bonacich centrality measure.
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If conditions of proposition (1) are satisfied, one can use a series expansion of S(β)−1 =∑∞
k=0[ḠGG(β)]k.24 Using this expression, we can re-write, ∀ i ∈ {1, 2, 3, 4}:

Qi,∞ = [Q0
i,∞x,Q0

i,∞ι]25

Using a subset of Q∞ including X, we show QK = J
[
Q1
K ,Q

2
K ,Q

3
K ,Q

4
K ,X

]
can be used

as instruments, where Qi
K is a subset of Qi,∞, ∀ i ∈ {1, 2, 3, 4} where K is the num-

ber of instruments.26 In addition, let ε(θ) = J (y − Zθ − ια). The moment conditions

corresponding to the orthogonality between QK and Jε is Q′Kε(θ).

Proposition 2 Suppose model (6) holds with correlated effects. Suppose also that (δmm +

γβmm) 6= 0, (δff + γβff ) 6= 0, (δmf + γβmf ) 6= 0 and (δfm + γβfm) 6= 0. If vector columns

of matrix QK are linearly independent, then social effects are identified.27

Proposition 2 give conditions extending those proposed in Bramoullé et al. [2009] to the

case of two-type (male-female) peer effects heterogeneity. In particular, we can note that

there are some similarities in the restriction on our set of parameters, except that in our

case, the restrictions are generalized to all categories of individuals and their associated

parameters. In addition, the condition on linear dependencies of vector columns of matrix

QK can be compared to the conditions on linear independency of the interaction matrices

stated in Bramoullé et al. [2009]. In particular, the instruments that are used here are

the characteristics of male friends of male friends of students, their female counterparts,

the characteristics of female friends of friends of males who are females, etc. In summary,

characteristics of friends at distance 2,3,4, etc. per categories may be used as instruments

to properly estimate the model. The 2SLS estimator of model (6) is given by:

θ̂2sls = (Z′PKZ)−1Z′PKy

where PK = QK(Q′KQK)−Q′K . The corresponding variance-covariance matrix of param-

eter estimates in this 2SLS setting is given by:

V̂θ̂2sls = (Z′PKZ)−1Z
′
DZ(ZPKZ′)−1

where D is an n × n diagonal matrix with entries given by the squared residuals from

the estimation. Under plausible regularity conditions (see Liu and Lee [2010]), the 2SLS

approach provides a consistent estimator of our model (6).
24Using the Newton’s binomial formula and identities derived from our matrix ordering, one can re-write

S(β)−1 = I +
∞∑

k=1

k≥1∑
i=0

(
k
i

) [
(βmmḠGG1)k−i + (k − i)βmf (βmmḠGG1)k−i−1ḠGG2

]
.
[
(βffḠGG3)i + iβfm(βffḠGG3)i−1ḠGG4

]
.

25Where Q0
i,∞ =

[
ḠGGiḠGG1, ḠGGiḠGG2, ḠGGiḠGG3, ḠGGiḠGG4, ḠGGiḠGG

2
1, ḠGGiḠGG1ḠGG2, ḠGGiḠGG2ḠGG3, ḠGGiḠGG2ḠGG4, ḠGGiḠGG

2
3, ...

]
. See Ap-

pendix B for examples of Qi,∞.
26A simple example for QK is J

[
ḠGG2

1x, ḠGG1ι, ḠGG2ḠGG3x, ḠGG2ι, ḠGG
2
3x, ḠGG3ι, ḠGG4ḠGG1x, ḠGG4ι,X

]
.

27See proof in Appendix C.
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4.1.2 GMM estimation

As shown in Liu and Lee [2010], the homogeneous version of the best-response functions

(6) can be estimated using a GMM estimator. Following the same reasoning, we propose

a GMM estimator of our heterogeneous model. For that purpose, we generalize the 2SLS

estimator using additional quadratic moment equations. As argued in Liu and Lee [2010],

the additional quadratic moments exploit the existing correlations between the error term

of the reduced for model, thus provide more precision compared to the traditional 2SLS

estimators. In addition, one of the advantages of using the GMM estimator instead of

the 2SLS is that the objective function of the GMM estimator uses the optimal weighting

matrix that allows the obtention of more efficient estimators.

In order to derive our GMM estimator in the context of heterogeneous peer effects, we

first let the IV moments be given by g1(θ) = Q′Kε(θ). The additional quadratic moments

are given by g2(θ) =
[
U′1ε(θ),U′2ε(θ), ...,U′qε(θ)

]′
ε(θ), where Uj is such that tr(JUj) =

0.28 For notational purpose, we also let Uj = JUjJ. In addition, let the combined vector

of linear and quadratic empirical moments be given in g(θ) = [g′1(θ), g′2(θ)]. Finally, let

Ω̃ = Ω̃(σ̃2, µ̃3, µ̃4) where σ̃2, µ̃3 and µ̃4 are initial estimators of the second, third and fourth

moments of our the error term of our model. Following the strategy of Liu et al. [2013],

extented to the case of heterogeneous peer effects, the optimal weighting matrix associated

with our GMM estimation strategy is given by Ω taking the following form:

Ω = V ar [g(θ)] =

σ̃2Q′KQK µ3Q
′
Kω

µ3ω
′QK (µ4 − 3σ4)ω′ω + σ4Υ



where ω = [vecD(U1), vecD(U2), ..., vecD(Uq)], Υ = 1
2

[
vec(Us

1), vecD(Us
2), ..., vecD(Us

q)
]

where ∀ square matrix E of size n , Es = E + E′ and vecD(A) = (a11, a22, ..., ann).

The feasible optimal GMM estimator is given by:

θ̂gmm = argmin θ∈Θg
′(θ)Ω̃−1g(θ)

Proposition 4 of Liu et al. [2013] state that under their assumptions 1− 3, 4′, 5− 9, if

K/n− > 0, and if Ω̃ = Ω̃(σ̃2, µ̃3, µ̃4), our GMM estimator θ̂gmm is consistent.

28Following Liu and Lee [2010], for any constant matrix B, if we define A = B − tr(JB)I/tr(J), then
tr(JA) = 0. In our setting, we use U1 = ḠGG1 − tr(JG1)I/tr(J), U2 = ḠGG2 − tr(JG1)I/tr(J), U3 =
ḠGG3 − tr(JG1)I/tr(J) and U4 = ḠGG4 − tr(JG1)I/tr(J).
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4.2 Particular cases: homogeneous and gender-specific homogeneous ef-
fects

Two particular cases of our model may be recovered by restricting some parameter values:

the baseline model of homogeneous peer effects and an intermediary case where effects are

gender-specific homogeneous.

In the homogeneous case, we suppose that βmm = βmf = βff = βfm = β. Similarly,

δmm = δmf = δff = δfm = δ. The baseline model is y = ια+βḠGGy+ γx+ δḠGGx+ ε. This is

similar to the standard model of Bramoullé et al. [2009] and our identification conditions

are the same as in that paper.

In the gender-specific homogeneous case, we suppose that βmm = βmf = βm and

βff = βfm = βf . Similarly, δmm = δmf = δm and δff = δfm = δf . The corresponding

model is:

y = ια + βmG̃1y + βf G̃2y + γ x + δmG̃1x + δf G̃2x + ε (10)

Using matrix Z̃ = [G̃1y, G̃2y, X̃] where X̃ = [x, G̃1x, G̃2x] and θ̃ = (β̃, γ, δ̃)′ with β̃ =

(βm, βf )′ and δ̃ = (δm, δf )′, the model can also be written as:

y = Z̃θ̃ + ια + ε

where subscripts ˜ on matrices and vectors have the same meaning as in the general

model, except that there is no distinction between the type of friends for males (resp. for

females).

Proposition 3 If |βm| < 1 and |βf | < 1, matrix S̃ = (I− βmG̃1 − βf G̃2) is invertible.

If conditions of proposition 3 are satisfied, the reduced form model is:

y = S̃−1
[
γx + G̃(δ̃) + ια

]
+ S̃−1ε (11)

where G̃(δ̃) = δmG̃1x + δf G̃2x.29 We perform a global transformation of model and the

transformed model is:

Jy = JZ̃θ̃ + Jε

The best IV matrix for JZ̃ is given by JE(Z̃) = J
[
{W̃i(β)[γx + G̃(δ̃)x + ια]}{i=1,2}, X̃

]
and JZ̃ = JE(Z̃) + J

∑2
i=1[W̃iε]e′i where ei is the i’th unit (column) vector of dimension

29Matrix S̃−1 can be re-written using a series expansion and the Newton binomial formula such that

S̃−1 = I +
∞∑

k=1

k≥1∑
i=0

(
k
i

) (
βmG̃1

)(k−i)

×
(
βf G̃2

)i
.
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(k + 2) with k = dim(X̃). Letting Q̃0
i,∞ =

[
W̃i(β)x,W̃i(β)G̃(δ̃)x,W̃i(β̃)ι

]
, ∀ i ∈ {1, 2}.

The set of instrumental variables of our model is Q̃∞ = J
[
{Q̃i,∞}i=1,2, X̃

]
. Following the

same method as in the general case, we end up with the following proposition.

Proposition 4 Suppose model (10) holds with correlated effects. Suppose also that (δm +

γβm) 6= 0 and (δf + γβf ) 6= 0. If vector columns of matrix Q̃K are linearly independent,

then social effects are identified.

Using the same strategies, our model can be estimated using both GMM and 2SLS esti-

mators.

5 Data

Our best-response model with heterogeneous peer effects is used to study the influences of

peer outcomes and characteristics on the body weight of adolescents, using data from the

National Longitudinal Study of Adolescent Health (Add Health). Add Health is a panel

study of a nationally representative sample of adolescents in grades 7-12 in the United

States. Mandated by the U.S. Congress to fund a study of adolescent health, the Carolina

Population Center conducted the first wave during the 1994-1995 school year. The dataset

comprises an In-School questionnaire that is administered to a nationally representative

sample of students. People from the Add Health cohort are followed into young adulthood

with four In-Home interviews: 1996, 2001-2002 and 2007-2008. The most recent In-Home

interview was in 2008, when the sample was aged 24-32. Add Health combines data on

respondents’ social, economic, psychological and physical well-being with contextual data

on family, neighbourhood, community, school, friendships, peer groups, and romantic re-

lationships. The dataset thus provides tools to conduct studies designed to measure the

effects of personal and contextual characteristics on behaviours that promote good health

for instance, positioning the dataset at the top of the largest and most comprehensive

longitudinal surveys of adolescents undertaken.

Wave I of Add Health consists of an In-school questionnaire that was filled out by 90,118

students in 145 schools and 80 communities. A subset of 20,745 students was then chosen

for an in-depth In-Home survey. Wave II, which was held in 1996, includes an In-Home

questionnaire that was completed by 14,738 students, a subset of the original 20,745 Wave

I pupils. Students who were selected for the In-Home survey were asked for information on

their height and weight. Using this information, we construct student body mass indices

(BMI)30 which is our dependent variable and an indicator of body fatness, according to the
30We do not use declared body mass indices although declared BMIs are shown to reflect real variables
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formula: BMI = (weight in kilograms)/(height in meters)2. Because Wave II of the Add

Health dataset also comprises a nutrition section, we use variables from Wave II to further

explore adolescents weight, as probably determined by their social ties. Covariates include

age, racial background, grade variables, parents education and parents’ health status. This

leaves us with as many contextual peer effects coefficients as personal characteristics, for

each type considered.

To account for social interactions, we also use information provided by Wave II of

the Add Health dataset, in which respondents are asked to name up to five male friends

and up to five of their female friends within their school. Provided information on their

friendship links and on their type thus allows us to construct our friendship interaction

matrices. The extensive questionnaire was also used to construct a saturation sample

that focuses on 16 selected schools (about 3000 students). Every student attending these

selected schools answered the detailed questionnaire. There are two large schools and 14

other small schools. We use the saturated sample in our estimations to deal with the

problem of partial observability.

5.1 Descriptive statistics

Table (1) provides descriptive statistics of our sample. The sample comprises 2220 students

in all 16 schools of the In-Home survey. Average BMI is 23.14 with a standard deviation

of 4.72. This reveals that on average, the population considered is normal in terms of

weight. In terms of individual characteristics, we can see that the male-female population

is equally distributed, and that mean age is about 16. White students are more represented

(61%) than the other racial communities. The percentage of Black and Asian students is

respectively 15% and 14%. In addition, 18% of students in the sample are of Hispanic

origin. 61% of students in our sample attend grade 11 or 12 and 27% are in grade 9 or 10.

Most of the parents hold at least a high school degree and 18% of mothers hold a college

degree compared to 15% of fathers of the students in our sample. Almost all parents

work for pay, 92% of mothers report being in good health compared to 76% of fathers.

Reported (directed) network statistics indicate that the average number of friends is 2

and is equally distributed between male friends and female friends. However, considering

undirected networks increases the average number of friends to 5. This indicates that

the constraint put in the number of friends by the Add Health study is not binding, and

individuals actually report having less friends than the number of allowed nominations

during the survey. Consequently, the partial observability of networks (see for example

in the case of Add-Health.
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Chandrasekhar and Lewis [2011]) is not problematic in our study, even when undirected

networks are considered. 509 students of our sample (about 23%) are isolated. We address

the issue of network endogeneity in the following section.

5.2 Network endogeneity

In the presence of self selection into networks, identification may be hindered because en-

dogenous effects cannot be separated from correlated effects, even when performing our

global transformation that captures only part of this selection bias - i.e. the one that is

due to the fact that individuals in the same network face a common environment. Network

endogeneity may be the source of potentially important biases whenever there are unob-

servables at the individual level that determine network formation and that influence the

outcome of interest at the same time. The presence of homophily where individuals with

common characteristics tend to associate together is an example of such a situation.

The network endogeneity issue has been addressed by a number of recent papers. The

main strategy consists in including a network formation model and using bayesian tech-

niques to estimate the parameters of interest (see for example Patacchini and Rainone

[2014] and Hsieh and Lee [2015]). A recent paper of Goldsmith-Pinkham and Imbens

[2013] argues that the presence of endogeneity in network formation is testable. Following

this argument, Liu et al. [2013] proposes a test for the presence of endogeneity in networks

using the Add Health dataset and applies their approach to the allocation of time in sleep.

They find no evidence of endogeneity of networks. Patacchini and Rainone [2014] also

find no evidence of the presence of endogenous network formation, while focusing on peer

effects on financial products.

We perform a series of tests based on the Goldsmith-Pinkham and Imbens [2013] idea

and the best response functions in the homogeneous model. We argue that lack of evidence

of network endogeneity in the homogeneous model suggests that network endogeneity is not

an important concern in our heterogeneous model of peer interactions. We first follow the

strategy of Liu et al. [2013] and, in a second approach, we consider a Goldsmith-Pinkham

and Imbens [2013] "inspired" test in a more general fashion.

Liu et al. [2013] adopt the following strategy based on the Goldsmith-Pinkham and

Imbens [2013] approach. The underlying idea is simple. Suppose that the best response

functions in network r are given by :

yr = ιnrαr + βḠGGryr + γxr + δḠGGrxr + εr

Suppose the error term is the sum of unobserved characteristics at the individual level vr

and random disturbances er such that εr = πvr+er, where π is the effect of the unobserved
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individual characteristic on the outcome of interest, yr. Let consider a network formation

model explaining the probability of observing a link between two individuals i and j. It

is assumed that the link formation process depends on distances between observed and

unobserved characteristics between any two individuals. For simplicity, we assume that

there is only one unobserved variable that drives both network formation and the outcome

variable. The network formation model is thus given by equation (12) below:

gij,r = κ+
K∑
k=1

ζm|xki,r − xkj,r|+ φ|vi,r − vj,r|+ κr + uij,r. (12)

Following this model, if there is homophily in the unobserved characteristics, then φ < 0

i.e. the closer two individuals are in terms of unobservables, the higher the probability that

they become friends. If, in addition, π 6= 0, these unobservables have a direct effect on yr

as well. Liu et al. [2013] argue that if the data reveal a positive and statistically significant

correlation between the predicted probability (using probit or logit estimation) to observe a

link between the two individuals (ĝij,r) and the difference between the residuals of the two

individuals in the outcome equation (|ε̂i,r− ε̂j,r|), when a link is really observed (gij,r = 1),

then we should not reject the presence of endogeneity in network formation. In the same

spirit, if a positive and statistically significant correlation is found between the predicted

probability to observe a link and the difference of residuals in the outcome equation, if no

link is observed in the reality (gij,r = 0), then the same conclusion holds. Following this

idea, we first perform a naive regression of the predicted probability to observe a link (ĝij,r)

and differences in residuals for the entire sample (|ε̂i − ε̂j |). We also include the variable

indicating whether there is a link or not, gij and we differentiate between cases where fixed

effects are included and cases where there are no fixed effects. Our results are reported on

table (2) and suggest that, in the absence of network fixed effects, there is a negative and

significant effect of differences in residuals and the predicted probability to observe a link.

However, whenever network fixed effects are accounted for, this significant effect vanishes.

As an alternative test, we propose to concentrate on the whole distribution of predicted

probabilities. Our test is based on a visual observation strategy aiming at detecting the

presence of endogeneity in network formation. The idea is that if the estimated kernel

densities are visually similar for both gij,r = 1 and gij,r = 0, then there is no evidence of

network endogeneity. Figure (1) summarizes the results of our non parametric estimation

without fixed effects. We can see that the two kernel density estimates are not similar

without the inclusion of school fixed effects. However, once we control for school fixed

effects using a semi-parametric model (see figure 2 above), one can see that densities are

visually similar. Accordingly, there is no significant effect of differences in residuals of the
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outcome and the predicted link values. This analysis suggests that there is no evidence

of the presence of network endogeneity as related to students’ BMI in our data. It also

provide evidence that the fixed effect strategy is quite efficient in reducing the selection

bias associated with the confounding variables influencing both the network formation and

the students’ weight.

6 Results

In this section, we discuss estimates of the best response functions on the weight of ado-

lescents. We first present results from the homogeneous model of peer interactions. In the

second subsection, we explore the heterogenous model.

6.1 Homogenous peer effects and BMI

Table (4) summarizes our results using a 2SLS estimator. The first two columns report

the estimates and standard errors of individual characteristics, and columns 3 and 4 report

the associated contextual peer effects. For robustness purposes, we also distinguish results

while excluding a dummy for the gender variable, which corresponds to a full homogeneous

model (see specification (1)), or including it and excluding race variables (see specification

(2)). Focusing on (1), results indicate that the endogenous peer effect is not significant at

5%. On the other hand, some contextual peer variables influence an individual’s BMI. In

particular, having friends whose mother has a college or and advanced level of education

strongly reduces a student’s BMI.31 This reveals the importance of the mothers’ education

and may indicate a transmission of information on good health habit from friends’ mother

to a student (learning effect). Regarding individual effects, being enrolled in grades 11

or 12 reveal positive and significant effects on a student BMI compared to students who

are in grades 7 or 8 (the reference). As expected, the impact of being a female student is

negative on BMI in specification (2) which introduces a dummy for gender. Other estimates

obtained specifications (1) and (2) are very similar.

Table (5) provides results based on GMM rather than on 2SLS. We can see that esti-

mates are now much more precise (as argued by Liu et al. [2013]), as the GMM approach

exploits additional (quadratic) moments conditions and the optimal weighting matrix.32

The endogenous peer effect is now statistically significant at the 5% level and is equal to

0.205. This may reveal the presence of strategic complementarity between one’s BMI and

the BMI of their other friends. This means that peers’ BMI positively affect own BMI,
31The mothers’ reference group is don’t know.
32See section 4.1.2 for more details.
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through channels documented in section such as a higher incentive to go to a fast food

restaurant with a friend (3). Under a strategic complementarity mechanism, this leads

to a social multiplier equal to 1.20 (= 1
1−0.205 × 0.77 + 1 × 0.23).33 Our results are in

accordance with the recent literature that reports evidence of a positive but small endoge-

nous peer effects on weight. For instance, Fortin and Yazbeck [2015], using a different

econometric approach based on Add Heath data but limiting the effort to reduce BMI on

limiting visits in fast food restaurants, estimates the social multiplier to 1.15. The second

specification (see (2)) also reveals similar effects, with an endogenous effect equal to 0.203

and a similar social multiplier as in specification (1). In addition, as in 2SLS specification

(2), female students tend to have a lower BMI compared to male students.

As regards contextual effects, some additional estimates are now statistically significant

compared to estimates obtained using the 2SLS estimation strategy. In particular, in spec-

ification (1), peers’ average age has a negative and significant impact on a student’s BMI.

Also having friends whose father has some college education now strongly and negatively

affects a student’s BMI. The effect of mother education is also amplified, with the effect

of having a friend’s mother holding a college degree becoming negative and statistically

significant at 1% on BMI. Individual characteristics effects also become much more precise

than estimates obtained previously, and grade 9 or 10 students also have a higher BMI

than grades 7 or 8 students. Race also seems to have an important role, as white and black

students have a lower BMI relative to their Hispanic, Asian or American Indian friends,

though their estimated coefficients are significant at only 10%.

6.2 Gender heterogeneity and BMI

In this subsection, we generalize our econometric model to allow for within- and between-

gender heterogeneity. We also provide Wald statistics to test the standard homogenous

model as compared with our more general heterogeneity model.

Table (6) provides the results from 2SLS estimation. Column 1 provides estimates

of the individual effects. Columns 3, 5, 7, and 9 report coefficients associated with the

effects of male peers characteristics on the BMI of male students (M-M), the effects of

female peers characteristics on the BMI of male students (M-F), the effects of female

peers characteristics on the BMI of female students (F-F) and the effects of male peers

characteristics on the BMI of female students (F-M). The lower panel provides the four

corresponding endogenous peer effects. Standard errors of the estimates are reported in

the adjacent columns.
33Recall that 23% of our sample are isolated students. For them, the social multiplier is 1.
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As in the case of the homogenous model, the 2SLS endogenous peer estimates are

not significant at the 5% level. As regards contextual effects, having male peers whose

mother holds a college or an advanced degree has a negative impact on a male student’s

BMI. Again, this confirms the importance of the mothers’ education and may reflect the

transmission of information on the benefits of good health habits. However, this effect

is significant only in the case of male-male ties. Furthermore, having male peers whose

father holds some college degree negatively affect male students’ BMI. Besides, an increase

the percentage of their white or black female friends positively influences females’ BMI.

Estimates of individual characteristics are very similar to those of the homogeneous model.

In particular, grade 11-12 students are the ones who report a higher BMI, even when

controlling for age. The other individual effects coefficients are not significant.

Table (7) reports the estimated coefficients based on the GMM approach. As it is

the case with the homogenous model, the use of this method makes our estimates more

precise. Importantly, our results reported on the last panel of table (7) suggest that

both within- and between-gender endogenous interactions influence own BMI. Thus within

male-male and female-female endogenous effects exhibit positive and significant coefficients.

The female-female endogenous effect (= 0.216) is a little higher than the male-male one

(= 0.202). A female student who interacts with female students with high (low) BMI has

more chance to have a high (low) BMI, as it is the case for a male student interacting with

male students. Moreover, between female-male interactions (= 0.216) and male-female

(= 0.287) interactions appear to influence a student’s BMI. However, performing a Wald

test (see Table 8) leads us not to reject that all the endogenous peer effects are the same

(statistics =0.55 as compared with a critical χ2 value of 7.89, at the 5% level). One

thus concludes that, at least as far as the endogenous peer effects are concerned, gender

homogeneity is a plausible hypothesis.

The next important issue is to check whether gender homogeneity also characterizes

the contextual peer effects. Our results reveal an important number of differences in the

contextual effects depending on the nature (within and between) of social interactions.

First, although the age of female peers has a negative impact on both the BMI of male and

female students, the age of male peers has no impact on students’ BMI, whatever their gen-

der. In addition, contextual effects are heterogeneous in the percentage of white students

with whom a student interacts. Our results suggest that this effect appears positively for

female students who interact with white female students but negatively for male students

who interact with white male students. Importantly, having male peers whose mother hold

less than a high school degree, a high school, a college or an advanced degree negatively
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affects male BMI. Also, having male peers whose mother hold an advanced education neg-

atively influence female BMI. Besides, peers’ mother education has no effect on students’

BMI at the 5% level, irrespective of their gender. In addition, a female student’s BMI is

positively affected by male peers whose father holds less than a high school. Also, a male

student’s BMI is negatively influenced by male peers whose father holds a high school or

some college level. Moreover, having male peers whose mother holds an advanced degree

increases a female student’s BMI. Finally, female peers whose father is in good health neg-

atively influence a female student’s BMI. Based on a Wald test, (see Table 8), we reject

joint homogeneity in contextual and endogenous effects (statistics =114.89 as compared

with a critical χ2 value of 72.15 at the 5% level). In other words, while we do not reject

homogeneity of endogenous peer effects, homogeneity of contextual effects is rejected.

As regards the individual effects, our results report estimates quite close to those of the

GMM homogenous model (see Table 5). They indicate that being enrolled in grade 11-12

or grade 9-10 has a positive and significant effect on a student’s BMI. Also, students whose

father has no high school education or does not have a good health have a higher BMI.

We also perform a robustness analysis of our results when using the z-BMI instead of

absolute BMI. The 2SLS and GMM estimation strategies reveals similar patterns. The

Wald tests statistics for the z-BMI results are provided in Table (8 and indicate that, as it

is the case for BMI, while full (endogenous plus contextual) gender homogeneity is rejected,

but not endogenous gender homogeneity.

7 Conclusion

This paper proposes a non-cooperative model of the Body Mass Index (BMI) outcome

with effort technology in a network context. We allow for intra- and inter-gender hetero-

geneity in endogenous and contextual peer effects. We analyze the possibility of recovering

the fondamentals of our structural model (individual preferences and production function

of effort on BMI). We show that as long that effort is not observable, the latter is only

partly identified. However, having good proxies for effort (e.g., good eating habits, physi-

cal exercise) helps completely identify the fondamentals of the model. Also, we show that

identification conditions of the best response (reaction) functions depend on the value of

some coefficients and on the properties of the social interactions matrices defined within

the model. Interestingly, particular cases of our model, including the traditional network

interaction model, can be shown as particular cases of our model. We first test the ex-

ogeneity of network formation as regards its effect on BMI. We do not reject exogeneity,

at least when network-specific effects are introduced in the model. Then we estimate a
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standard homogenous version of our model, using adolescents’ BMI in the Add Health

dataset. Using GMM estimators based on Liu and Lee [2010], we find a significant but

small endogenous effect, meaning that students tend to influence each other in terms of

weight. The peer effect is equal to 0.205, which corresponds to a social multiplier of 1.20,

assuming that the basic channel of social interactions is synergy (strategic complemen-

tarity). We then estimate our more general model with gender-dependent heterogeneity.

Surprisingly, we do not reject that the within- and between-gender endogenous peer effects

are the same. However, contextual effects differ significantly within and between gender as

related with age, parents’ education, parents health status and race. One important con-

clusion is therefore that gender-dependent heterogeneity is present not in the endogenous

but in the contextual peer effects. We thus reject the full homogeneity model in BMI peer

effects.

At the policy level, one interest of our approach is to introduce observable heterogeneity

in the model (here, gender-dependent heterogeneity). At the theoretical level, this may

help policy makers to use our method to better analyze the impact of reforms on adolescent

obesity and to find the most appropriate tracking of students to reach the optimal outcome

level.

Many extensions of our approach are possible. Firstly, following Hsieh and Lin [2015],

one could introduce (and test) additional observable categories such as race or age in the

model. Secondly, unobservable peer effects heterogeneity could also be taken into account

(see Masten [2015]). Thirdly, more attention could be put on the mechanisms by which

peers’ BMI may influence individuals’ BMI (through eating habits, physical exercise, social

norms, etc.). Finally, developing and estimating a complete model of peer effects with

heterogeneity and endogeneity in the network formation would be a most relevant research

topic.
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Table 1: Descriptive statistics

Mean Standard deviation Min Max
Weight status
BMI 23.14 4.72 13.25 46
zBMI 0.55 1.17 -3.74 4.44
Individual characteristics
Age 16.36 1.43 13 20
Female 0.49 0.50 0 1
White 0.61 0.48 0 1
Black 0.15 0.36 0 1
American Indian 0.03 0.17 0 1
Asian Pacific 0.14 0.34 0 1
Hispanic origin 0.18 0.38 0 1
Grades 7-8 0.12 0.32 0 1
Grades 9-10 0.26 0.44 0 1
Grades 11-12 0.62 0.48 0 1
Eating habits
Own decision to eat 0.85 0.36 0 1
Parents present when eat 4.47 2.38 0 7
Mother education and health status
No high school 0.13 0.34 0 1
High school 0.35 0.48 0 1
Some college 0.19 0.39 0 1
College 0.18 0.38 0 1
Advanced 0.06 0.24 0 1
Don’t know 0.04 0.19 0 1
Good health status 0.92 0.27 0 1
Father education and health status
No high school 0.11 0.31 0 1
High school 0.25 0.43 0 1
Some college 0.14 0.35 0 1
College 0.15 0.36 0 1
Advanced 0.07 0.25 0 1
Don’t know 0.05 0.23 0 1
Good health status 0.76 0.42 0 1
Network statistics
Average number of friends 2.28 1.94 0 10
Number of female friends 1.16 1.27 0 5
Number of male friends 1.12 1.30 0 5
No friend 509
N=2220
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Table 2: Endogenous network - Dep. var.: predicted link probability

(1) (2)
——————————– ——————————–

Coefficient (Std. Err.) Coefficient (Std. Err.)

|ε̂i − ε̂j | -0.00041 *** (0.000005) -0.000002 (0.0000019)

gij 0.03703 *** (0.00017) 0.02047 *** (0.00013)

Intercept 0.00449 *** (0.000017) 0.07755 *** (0.00018)

Network fixed effects No No Yes Yes

Observations 1,120,936 1,120,936
*** p<0.01, ** p<0.05, * p<0.1.

Table 3: Endogenous network formation: Liu et al. [2013] test

Panel A: gij,r = 1
T = 25% T = 35% T=45% T=60%

———————————————————
|ε̂i − ε̂j | 0.0000009 0.0000127 0.0000087 -0.0000403**

(0.000006) (0.00000783) (0.000011) (0.0000161)
Intercept 0.002142*** 0.004237** 0.01019*** 0.01124***

(0.000046) (0.001578) (0.001365) (0.00200)
Network fixed effects Yes Yes Yes Yes

Observations 1,249 1,750 2,249 3000

Panel B: gij,r = 0
T = 95% T = 85% T=75% T=60%

———————————————————
|ε̂i − ε̂j | 0.000003 0.000007 0.000002 0.000001

(0.000031) (0.000011) (0.000007) (0.000004)
Intercept 0.007777*** 0.07437*** 0.07440*** 0.07440***

(0.000671) (0.00043) (0.000342) (0.000276)
Network fixed effects Yes Yes Yes Yes

Observations 55,792 167,390 278,984 446,367
*** p<0.01, ** p<0.05, * p<0.1. Standard errors are in parentheses.
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Figure 1: Estimation without school fixed effects

gij,r = 1 gij,r = 0

Figure 2: Estimation with school fixed effects

gij,r = 1 gij,r = 0
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Appendices

A Proof of proposition 1: invertibility condition

Recall that matrices ḠGG1, ḠGG2, ḠGG3 and ḠGG4 are ordered so that the nf first rows are for type-f
individuals and the remaining nmrows correspond to type-m individuals. In this setting,
the degree of ḠGG(β) are, for type-f individuals, equal to (nfi βff + nmi βfm)/(nmi + nfi ). For
type-m individuals, it is equal to (nmi βmm + nfi βmf )/(nmi + nfi ). Thus, the degree vector
of ḠGG(β) is a vector containing each of these unique values that depend on the number of
friends of each type for each individual. Let λ1 ≥ λ2 ≥ ... ≥ λn be the spectrum of ḠGG(β).
The determinant of S can be written as the product of eigenvalues of the matrix. Given
that eigenvalues of I + ḠGG(β) are equal to (1 + λi), one has det(S) =

∏n
i=1(1 + λi). The

maximum degree is:

∆(ḠGG) = max

(
max
i∈Nf

[
nfi βff + nmi βfm

nmi + nfi

]
, max
j∈Nm

[
nmj βmm + nfj βmf

nmj + nfj

])

We have the two following inequalities: λ1(ḠGG) ≤ ∆(ḠGG) and λn(ḠGG) ≥ −λ1(ḠGG). A sufficient
condition for matrix S to be invertible is that its determinant is positive. Taking this
condition into account, developping by using the upper inequalities, we end up with the
following inequality, ∀i/in{1, ..., n}:

1−∆(ḠGG) ≤ λi ≤ 1 +∆(ḠGG)

Two of the following cases may apply:

• If∆(ḠGG) = max
i∈Nf

[
nf
i βff+n

m
i βfm

nm
i +nf

i

]
, then two upper cases are βff or βfm. Thus, sufficient

invertibility condition are |βff | < 1 or |βfm| < 1;

• If ∆(ḠGG) = max
j∈Nm

[
nm
j βmm+nf

j βmf

nm
j +nf

j

]
, then two upper cases are βmm or βmf . Thus,

sufficient invertibility condition are |βmm| < 1 or |βmf | < 1.

�

B Example of IV matrix Qi,∞

Examples of Qi,∞ are:
Q1,∞ = ḠGG2

1x, ḠGG1ḠGG2x, ḠGG
3
1x, ḠGG

2
1ḠGG2x, ḠGG1ḠGG2ḠGG3x, ḠGG1ḠGG2ḠGG4x, ..., ḠGG1ι, ḠGG

2
1ι, ḠGG1ḠGG2ι, ...,

Q2,∞ = ḠGG2ḠGG3x, ḠGG2ḠGG4x, ḠGG2ḠGG
2
3x, ..., ḠGG2ι, ḠGG2ḠGG3ι, ḠGG2ḠGG4ι, ḠGG2ḠGG

2
3ι, ...,

Q3,∞ = ḠGG2
3x, ḠGG3ḠGG4x, ḠGG

3
3x, ..., ḠGG3ι, ḠGG

2
3ι, ḠGG3ḠGG4ι, ḠGG

3
3ι, ...,

Q4,∞ = ḠGG4ḠGG1x, ḠGG4ḠGG2x, ḠGG4ḠGG
2
1x, ḠGG4ḠGG1ḠGG2x, ..., ḠGG4ι, ḠGG4ḠGG1ι, ḠGG4ḠGG2ι, ḠGG4ḠGG

2
1ι, ḠGG4ḠGG1ḠGG2ι, ...
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C Proof of proposition 2: identification of the best response
model

Proof C.1 To prove our proposition, we use the formula of the inverse of matrix S(β)
established using the Newton Binomial formula, the identities given in footnote (20), and
the conditions of invertibility (see Proposition 1). We also use the expression of JZ given by
equation JZ = E(Z)+J

∑4
i=1[Wiε]e′i where JE(Z) = J

[
{Wi(β)

[
γx + ḠGG(δ)x + ια

]
}{i=1,2,3,4},X

]
.

The following steps are necessary to prove our proposition:

1. Let k = 1, 2, 3, 4, ... and derive the expression of Sk(β)−1 using:

Sk(β) =

k≥1∑
i=0

(
k

i

)[
(βmmḠGG1)k−i + (k − i)βmf (βmmḠGG1)k−i−1ḠGG2

]
.
[
(βffḠGG3)i + iβfm(βffḠGG3)i−1ḠGG4.

]

2. Sum over all k’s and re-write S(β)−1 such that S(β)−1 = I +
∞∑
k=1

Sk(β).

3. Using the latter expression, derive an expression of Wi(β) = ḠGGiS(β)−1 and Wi(β)ḠGG(δ)
∀i ∈ {1, 2, 3, 4}.

4. Write {Wi(β)
[
γx + ḠGG(δ)x + ια

]
}{i=1,2,3,4} as a function of instruments and ex-

tract intruments and the associated restrictions on the parameters of the model, pre-
multiplied by matrix J.

For sake of simplicity, let susbscripts mm, mf , ff and fm in β be replaced by 1, 2, 3, 4
respectively. Using the steps enumerated above and developing for k ∈ 1, 2, 3, 4, one can
write Sk(β) using the expression below:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S1(β) = [β1ḠGG1 + β2ḠGG2]× [β3ḠGG3 + β4ḠGG4]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S2(β) =
[
β21ḠGG

2
1 + 2β1β2ḠGG1ḠGG2

]
+ 2 [β1ḠGG1 + β2ḠGG2]× [β3ḠGG3 + β4ḠGG4] +

[
β23ḠGG

2
3 + 2β3β4ḠGG3ḠGG4

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S3(β) =
[
β3
1ḠGG

3
1 + 3β2

1β2ḠGG
2
1ḠGG2

]
+ 3

[
β2
1ḠGG

2
1 + 2β1β2ḠGG1ḠGG2

]
×
[
β3ḠGG3 + β4ḠGG4

]
+ 3

[
β1ḠGG1 + β2ḠGG2

]
×
[
β2
3ḠGG

2
3 + 2β3β4ḠGG3ḠGG4

]
+
[
β3
3ḠGG

3
3 + 3β2

3β4ḠGG
2
3ḠGG4

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S4(β) =
[
β4
1ḠGG

4
1 + 4β3

1β2ḠGG
3
1ḠGG2

]
+ 4

[
β3
1ḠGG

3
1 + 3β2

1β2ḠGG
2
1ḠGG2

]
×
[
β3ḠGG3 + β4ḠGG4

]
+ 6

[
β2
1ḠGG

2
1 + 2β1β2ḠGG1ḠGG2

]
×
[
β2
3ḠGG

2
3 + 2β3β4ḠGG3ḠGG4

]
+ 4

[
β1ḠGG1 + β2ḠGG2

]
×

[
β3
3ḠGG

3
3 + 3β2

3β4ḠGG
2
3ḠGG4

]
+
[
β4
3ḠGG

4
3 + 4β3

3β4ḠGG
3
3ḠGG4

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

We then write S−1(β) = I+S1(β)+S2(β)+S3(β)+S4(β)+
∞∑
k=5

Sk(β) using the expressions

of Sk(β) given above. We are then able to write, ∀i ∈ {1, 2, 3, 4}, Wi(β)
[
γx + ḠGG(δ)x + ια

]
as:
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

W1(β)
[
γx + ḠGG(δ)x + ια

]
= γḠGG1x + (γβ1 + δ1)

[
ḠGG2

1 + β1ḠGG
3
1 + β2

1ḠGG
4
1 + β5

1ḠGG
2
1

]
x

+ (γβ2 + δ2)
[
ḠGG1ḠGG2

]
x + β1(2γβ2 + δ2)

[
ḠGG2

1ḠGG2

]
x

+ β2(2γβ3 + δ3)
[
ḠGG1ḠGG2ḠGG3

]
x + β2(2γβ4 + δ4)

[
ḠGG1ḠGG2ḠGG4

]
x

+
[
ḠGG1 + β1ḠGG

2
1 + β2ḠGG1ḠGG2 + β2

1ḠGG
3
1 + 2β1β2ḠGG

2
1ḠGG2 + ...

]
ια

+ ḠGG1

∞∑
k=5

Sk(β)
[
(γ + ḠGG(δ))x + ια

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

W2(β)
[
γx + ḠGG(δ)x + ια

]
= γḠGG2x + (γβ3 + δ3)

[
ḠGG2ḠGG3 + β3ḠGG2ḠGG

2
3 + β2

3ḠGG2ḠGG
3
3 + β3

3ḠGG2ḠGG
3
3

]
x

+ (γβ4 + δ4)
[
ḠGG2ḠGG4

]
x + β3(2γβ4 + δ4)

[
ḠGG2ḠGG3ḠGG4

]
x

+ β2
3(3γβ4 + δ4)

[
ḠGG2ḠGG

2
3ḠGG4

]
x + β3

3(4γβ4 + δ4)
[
ḠGG2ḠGG

3
3ḠGG4

]
x

+
[
ḠGG2 + β3ḠGG2ḠGG3 + β2

3ḠGG2ḠGG
2
3 + 2β3β4ḠGG2ḠGG3ḠGG4 + ...

]
ια

+ ḠGG2

∞∑
k=5

Sk(β)
[
(γ + ḠGG(δ))x + ια

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

W3(β)
[
γx + ḠGG(δ)x + ια

]
= γḠGG3x + (γβ3 + δ3)

[
ḠGG2

3 + β3ḠGG
3
3 + β2

3ḠGG
4
3 + β3

3ḠGG
5
3

]
x

+ (γβ4 + δ4)
[
ḠGG3ḠGG4

]
x + β3(2γβ4 + δ4)

[
ḠGG2

3ḠGG4

]
x

+ β2
3(3γβ4 + δ4)

[
ḠGG3

3ḠGG4

]
x + β3

3(4γβ4 + δ4)
[
ḠGG4

3ḠGG4

]
x

+
[
ḠGG3 + β3ḠGG

2
3 + β4ḠGG3ḠGG4 + 2β3β4ḠGG

2
3ḠGG4 + ...

]
ια

+ ḠGG3

∞∑
k=5

Sk(β)
[
(γ + ḠGG(δ))x + ια

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

W4(β)
[
γx + ḠGG(δ)x + ια

]
= γḠGG4x + (γβ1 + δ1)

[
ḠGG4ḠGG1 + β1ḠGG4ḠGG

2
1 + β2

1ḠGG4ḠGG
3
1 + β3

1ḠGG4ḠGG
4
1

]
x

+ (γβ2 + δ2)
[
ḠGG4ḠGG2

]
x + β1(2γβ2 + δ2)

[
ḠGG4ḠGG1ḠGG2

]
x

+ β2(2γβ3 + δ3)
[
ḠGG4ḠGG2ḠGG3

]
x + β2(2γβ4 + δ4)

[
ḠGG4ḠGG2ḠGG4

]
x

+
[
ḠGG4 + β1ḠGG4ḠGG1 + β2ḠGG4ḠGG2 + β2

1ḠGG4ḠGG
2
1 + ...

]
ια

+ ḠGG4

∞∑
k=5

Sk(β)
[
(γ + ḠGG(δ))x + ια

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Using the above expressions, we can derive sufficient conditions of identification of our
parameters using the IV method. These conditions are similar to the ones obtained in
Bramoullé et al. [2009] regarding the independence of the interaction matrices of our model
and restrictions on our parameters.

Specifically, considering the expressions given above, we can see that naturally occuring
intruments of our endogenous variables include different order of our interaction matri-
ces and interactions of different orders of these matrices. For example, intruments of
our first endogenous variable include JG1x, JG1

2x, JG1
3x and higher degrees of the

matrix JG1 multiplied by vector x of characteristics if both (γβ1 + δ1) 6= 0 and matrices
G1,G1

2,G1
3,G1

4, etc. are linearly independent. Following the same method and using the
other expressions above, we can see that minimal conditions for IV variables to work for
each of the four endogenous variables are (γβ2+δ2) 6= 0 , (γβ3+δ3) 6= 0 and (γβ4+δ4) 6= 0.
In addition, γ needs to be different from zero and matrices ḠGG1, ḠGG2, ḠGG3, ḠGG4, ḠGG

2
1, ḠGG1ḠGG2,

ḠGG2ḠGG3, ḠGG
2
3, ḠGG

3
1, ..., I need to be independent, which corresponds to the condition that vector

columns of matrix QK of instruments should be linearly independent.

Additional conditions appear whenever one is concerned about adding instruments of
higher order of interaction matrices multiplication. In this case, the additional conditions
on parameters of the model take the form of βi 6= 0 ∀i ∈ {2, 3, 4} and ((j − 1)γβl + δl) 6= 0
and linear independence of jth order interaction of social interaction matrices such that
CGiḠGGl adds up to the independence conditions stated above, where C is either a single
interaction matrix or a non-zero product of interaction matrices. For example, JG1ḠGG2ḠGG4x
may be used as an instrument if β2 6= 0, (2γβ4 + δ4) 6= 0 and matrices ḠGG1, ḠGG2, ḠGG3, ḠGG4,
ḠGG2

1, ḠGG1ḠGG2, ḠGG2ḠGG3, ḠGG
2
3, ḠGG

3
1, ..., I and ḠGG1ḠGG2ḠGG4 are linearly independent. Also, JG4ḠGG2ḠGG

2
3x

may be used as an additional instrument if β2 6= 0, β3 6= 0, (3γβ3 + δ3) 6= 0 and matrices
ḠGG1, ḠGG2, ḠGG3, ḠGG4, ḠGG

2
1, ḠGG1ḠGG2, ḠGG2ḠGG3, ḠGG

2
3, ḠGG

3
1, ..., I and ḠGG4ḠGG2ḠGG

2
3 are linearly independent.

QED
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