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School closures and effective in-person learning during 
covid-19: When, where, and for whom 

 
André Kurmann et Etienne Lalé 

 
Résumé 

 
Nous apparions des données de mobilité obtenus à partir de téléphones portables à un échantillon 
représentatif de près de 70 000 écoles aux États-Unis, et combinons ces données avec des 
informations sur les modes d'apprentissage scolaire pour construire une mesure de 
l'apprentissage effectivement réalisé en présentiel (EIPL) pendant la pandémie de COVID-19. 
Nous augmentons ensuite ces données avec plusieurs bases de données administratives afin de 
documenter les différences d'EIPL dans le temps, selon les régions et en fonction des 
caractéristiques individuelles des écoles. Nous obtenons trois résultats principaux. Premièrement, 
alors que l'EIPL a chuté en deçà de 20 % par rapport à son niveau pré-pandémique au printemps 
2020 dans toutes les régions des États-Unis, l'EIPL a ensuite fortement varié au cours de l'année 
scolaire 2020-2021, atteignant plus de 80 % dans certaines villes du sud alors qu’il se maintenait 
en deçà de 20 % dans certaines villes de la côte ouest. Deuxièmement, une part substantielle de 
cette variation est expliquée par les caractéristiques observables des écoles : (i) les écoles 
publiques ont fourni en moyenne moins d'EIPL que les écoles privées ; (ii) les écoles situées 
dans des localités plus riches et plus instruites et les écoles comptant une plus grande proportion 
d'élèves non blancs ont fourni en moyenne moins d'EIPL ; et (iii) les écoles publiques ayant des 
dépenses par élève plus élevées avant la pandémie, ayant reçu un montant d'aide d'urgence aux 
écoles élémentaires et secondaires (ESSER) par élève plus importante, et les écoles ayant un plus 
grand nombre d'élèves ont fourni en moyenne moins d'EIPL. Troisièmement, l'association 
négative de l'EIPL avec la richesse, l'éducation et les dépenses scolaires pré-pandémiques est due 
en grande partie à des différences régionales systématiques qui sont corrélées aux préférences 
politiques. En revanche, l'association négative de l'EIPL avec la part d'élèves non blancs d'une 
école et le financement ESSER persiste au sein même des comtés et en contrôlant la richesse et 
l'éducation locales. Ces tendances sont importantes pour comprendre les facteurs qui ont conduit 
aux disparités dans les fermetures d'écoles et pour évaluer l'impact de la perte d'apprentissage en 
présentiel pendant la pandémie sur le niveau d'éducation futur, les inégalités des revenus et la 
croissance économique. 
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Abstract

We combine cell phone data on foot-traffic to a highly representative sample of almost 70,000
schools in the U.S. with information on school learning modes to estimate a measure of effective
in-person learning (EIPL) during the COVID-19 pandemic. We then match the data with various
administrative records to document differences in EIPL over time, across regions, and by individual
school characteristics. We find three main results. First, while EIPL dropped to below 20% of its
pre-pandemic level across all regions of the U.S. during Spring 2020, EIPL varied widely during the
2020-21 school year, ranging from less than 20% in some cities on the West Coast to more than 80%
in some cities in the South. Second, a substantial part of this variation is accounted for by observable
school characteristics: (i) public schools provided on average less EIPL than private schools; (ii) schools
in more affluent and educated localities and schools with a larger share of non-white students provided
on average lower EIPL; and (iii) public schools with higher pre-pandemic spending per student, higher
district-level Elementary and Secondary School Emergency Relief (ESSER) funding per student, and
larger student enrollment provided on average lower EIPL. Third, the negative association of EIPL with
affluence, education and pre-pandemic school spending is driven in large part by systematic regional
differences that are correlated with political preferences. In contrast, the negative association of EIPL
with a school’s share of non-white students and ESSER funding persists even within counties and
controlling for local affluence and education. These patterns are important for our understanding of
the factors that led to the large disparities in school closures and the impact of in-person learning loss
during the pandemic on future educational attainment, income inequality, and economic growth.
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1 Introduction

The COVID-19 pandemic led many schools in the U.S. to suspend or substantially reduce in-person learn-
ing. While available studies report conflicting results on the extent to which school closures helped prevent
the spread of the virus, evidence is emerging that remote instruction constituted at best an imperfect
substitute to in-person instruction and led to substantial learning losses and social-emotional harm with
possibly large adverse long-term effects, especially for students from disadvantaged backgrounds.1,2 A key
input for analyzing these consequences is the availability of precise and consistent estimates of effective
in-person learning at the individual school level. The goal of this paper is to provide such estimates and
analyze the extent to which differences in effective in-person learning during the pandemic reflect school
characteristics as opposed to systematic geographic differences that are not directly related to schools.

We match anonymized cell phone data from Safegraph on foot traffic to the population of public
and private schools from the National Center for Education Statistics (NCES). We then map changes in
foot traffic during the pandemic to information on school learning mode by Burbio and Return2Learn to
construct a measure of effective in-person learning (EIPL) at the individual school level. After removing
low-quality matches and records with sparse or noisy data, we end up with a dataset of weekly EIPL for
almost 70,000 schools that is highly representative of the universe of schools in the U.S. We organize our
analysis of this dataset into three parts.

In the first part, we provide new evidence on the disparities in in-person learning over time and across
regions of the U.S. While EIPL dropped to less than 20% of its pre-pandemic level in most places during
Spring of 2020, EIPL increased to over 50% on average during the 2020-21 school year but with large
differences across regions. For instance, in cities in Florida and Texas such as Jacksonville or Houston,
EIPL averaged more than 75% from September 2020 to May 2021 whereas in cities in California, Oregon
and Washington such as Los Angeles, Portland or Seattle, EIPL averaged less than 25% over the same
time period.

Concurrently, we find that even for narrow geographical areas, there are sizable differences in EIPL
across individual schools. For instance, the mean interquartile range of average EIPL across schools
within a given county amounts to 14%. This suggests that some schools returned to in-person learning
much more quickly than others not just because of systematic regional differences, but also because of
school-specific factors that apply similarly across the country.

In the second part of the analysis, we investigate the extent to which pre-pandemic school characteris-
tics and local conditions surrounding the school predict EIPL during the 2020-21 school year. Naturally,
this correlations should not be interpreted as causal, but they provide us with a set of stylized facts that
can help us understand the factors behind school closings and which segments of the student population
were most affected. The main results coming out of this analysis are the following:

1. Public schools provided on average 10% less EIPL than private schools, with public charter schools

1See Bravata et al. [2021], Chernozhukov et al. [2021b], Ertem et al. [2021], and the references therein for systematic
assessments of the effect of school closures on subsequent COVID-19 infections.

2See Curriculum Associates [2021], Dorn et al. [2021], Kogan and Lavertu [2021], Lewis et al. [2021] and references
therein for evidence on the learning losses and social-emotional harm on students caused by the pandemic. See Agostinelli
et al. [2020], Fuchs-Schündeln et al. [2021] or Jang and Yum [2020] for simulations of the adverse long-term consequences of
learning losses in the form of lower educational attainment and reduced earnings potential, especially for students from less
affluent and less educated backgrounds.
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ranking below public non-charter schools and private religious schools ranking above private non-
religious schools.

2. For both public and private schools, EIPL was substantially lower in more affluent and more educated
localities, and for schools with a larger share of non-white students.

3. For public schools, EIPL is negatively related to pre-pandemic school spending per student, Ele-
mentary and Secondary School Emergency Relief (ESSER) funding per student, and school size.

In the third part of the analysis, we ask to what extent these results are driven by systematic regional
differences that are not directly related to schools. We find that once we control for county fixed effects,
the negative association of EIPL with local affluence, education, and school spending per student largely
disappears. We show that this result is not driven by whether the school is located in a city, suburb, or
town/rural area. In other words, schools in less affluent parts of the country with lower education and
lower spending per student reopened for in-person learning more quickly. We show that this result is
to a substantial part explained by the presence of a Republican governor and the margin by which the
county voted Republican in the 2020 presidential election. COVID vaccination rates also predict higher
county EIPL but overall have little explanatory power, whereas the COVID health situation as measured
by county-level case and death rates is unrelated to EIPL. The results suggest that school reopenings
were driven in large part by policies and general attitudes towards school openings that align with local
political preferences.

In contrast, we find that the negative association of EIPL with a school’s share of non-white students
and ESSER funding persists even within counties and after controlling for local affluence and other school
characteristics. A school at the 75th percentile of the share of non-white student distribution provided
on average 7% lower EIPL during the 2020-21 school year than a school at the 25th percentile; and a
school at the 75th percentile of the ESSER funding distribution provided on average 3% lower EIPL
than a school at the 25th percentile. These results are striking both because schools with a larger share
of non-white students generally perform worse in terms of learning outcomes and because ESSER was
advertised in Congress primarily as support for schools to reopen to in-person learning.

The paper is part of a growing literature that attempts to measure the extent and consequences of
school closures during the pandemic. The papers probably closest to ours are Bravata et al. [2021],
Chernozhukov et al. [2021a], and Ertem et al. [2021] who use Safegraph, respectively Burbio data to
predict the effect of school reopenings on infection rates and deaths, Dee et al. [2021] who use Burbio
data to study the effect of school closings on school enrollment, and Parolin and Lee [2021] who use
Safegraph data to estimate school closures and analyze their relationship with demographic and socio-
economic composition of a school’s student body. The contribution of our paper relative to this literature
is two-fold.

First, the EIPL measure we construct has clear advantages over estimates of school closing based
solely on foot traffic or learning mode data. While mobility data as provided for example by Safegraph
covers a large and representative share of all schools in the U.S., it is not clear what a given decline in
foot traffic to a school represents in terms of lost in-person learning.3 Furthermore, attributing cell phone

3For instance, suppose cell phone usage is concentrated among school staff and parents. If school staff returned to school
more quickly than students (e.g. to prepare the return of students or to teach only some students in person while others
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data to a particular location is inherently challenging, thus raising questions about the reliability of the
information. The learning mode data from Burbio and Return2Learn, in turn, covers only public schools
and provides only averages at the county-, respectively the district level. This limits the analysis of the
relationship of EIPL with individual school characteristics and local conditions surrounding the school.
Even more importantly, learning modes are reported as percentages of student time spent in traditional,
hybrid, or virtual learning mode. Yet the extent to which traditional learning is fully spent in person
and how much hybrid learning contributes to in-person learning is unclear. By combining the two data
sources, we attempt to address these limitations and perform important validity checks about the quality
of the different datasets.

Second, we relate our estimate of EIPL to a host of indicators measuring not just the demographic
and socio-economic characteristics of a school’s student body, but also school funding and local conditions
surrounding the school. We document striking inverse associations of EIPL with local income, education,
and school funding that, to our knowledge, are new. Furthermore, we show that many but not all of these
associations are driven by systematic regional differences that are correlated with political preferences.
The results raise critical questions about the response of schools in different parts of the country to the
pandemic, and the patterns of EIPL that we uncover are important for our understanding of the impact
of in-person learning loss during the pandemic on future educational attainment, income inequality, and
economic growth. See Fuchs-Schündeln et al. [2021] for an application in this respect. At the same time,
we emphasize that our analysis does not contribute to the ongoing debate of whether and under what
circumstances school closings helped in slowing down the spread of COVID-19.

2 Data sources, matching, and sample restrictions

This section describes the different datasets used to construct our EIPL measure. We start with an
overview of the Safegraph data, how we match it to administrative information on individual schools from
the NCES, and how we construct changes in school visits for a restricted sample that aims to reduce
measurement error. Then we provide an overview of the Burbio and Return2Learn data and compare
their learning mode estimates.

2.1 Safegraph school visit data

The primary source of information for measuring in-person learning comes from Safegraph, which provides
data on over 7 million Places of Interest (POIs) for the U.S. based on anonymized cell phone pings from
over 40 million devices.4 From this large set of POIs we retain all places with North American Industry
Classification System (NAICS) code 611110 (“Elementary and Secondary Schools”) that have weekly foot
traffic data (visits). We then match these places by school name and address to the universe of public
and private schools from the NCES’s Common Core of Data (CCD) and the Private School Universe
Survey (PSS), which results in about 102,500 high-quality matches. Relative to the universe of schools
in the NCES, we lose about 22,000 schools, but the matched sample remains highly representative of the

remained in remote-learning mode) or if students get dropped off and picked up by parents instead of using buses, then
changes in Safegraph foot traffic data alone would overestimate EIPL during the pandemic.

4A cell phone ping is the process of determining the current location of a cell phone.
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universe of schools in terms of demographic and geographic makeup. Appendix A provides details of the
matching procedure and reports statistics on the representativeness of the sample.

2.2 Constructing changes in school visits

The Safegraph data provides weekly visit counts for each school by dwell time. There are D = 7 dwell
time intervals (less than 5, 5 to 10, 11 to 20, 21 to 60, 61 to 120, 121 to 240, more than 240 minutes),
Denoting weekly visits counts as vj,t (d) for d = 1, . . . , D, the total visits count for school j in week t is
vj,t =

∑D
d=1 vj,t (d) .

As shown in Appendix A, prior to the pandemic, both aggregate total visit counts and aggregate
visits longer than 240 minutes per day decline markedly during the weeks of Thanksgiving, Christmas,
and Summer break. And consistent with the public health emergency on March 13, 2020, both visits
series drop precipitously during the week of March 15 to March 21, 2020 and remain substantially lower
thereafter.

At the same time, we find that aggregate visits are trending upward prior to the pandemic, which
is in large part driven by the increase in cell phone devices covered by Safegraph. Furthermore, closer
inspection of the data reveals that visit counts are subject to substantial variation over time, both for
individual schools and for in the aggregate. While some of these high-frequency variations are due to
holidays and other breaks, another part of the variations reflects the inherent difficulty of attributing cell
phone pings to a particular POI.

To address these measurement issues, we normalize weekly visits with the weekly count of Safegraph
devices at the county level, and then construct the change in school visits as the percent difference in dwell-
time weighted, normalized visits relative to the average over a reference period preceding the pandemic;
i.e.

ṽj,t =
1

nc(j),t

D∑
d=1

ωj (d) vj,t (d) ,

where nc(j),t denotes the normalization by the count of devices during week t in county c (j) in which

school j is located; and ωj (d) =
∑t1

t=t0
vj,t(d)∑t1

t=t0
vj,t

measures the importance of visits of dwell time d for school

j during reference period t = t−1, . . . , t0 (beginning of November 2019 through the end of February 2020,
excluding the weeks of Thanksgiving, Christmas and New Year). The percent change in school visits is
then defined as

∆ṽj,t = 100× ṽj,t − ṽj,0
ṽj,0

,

where ṽj,0 = 1
t0−t−1+1

∑t0
t=t−1

ṽj,t is the average over the reference period.
In an effort to further reduce measurement error, we drop schools with sparse or noisy visit data and

apply weights to ensure that the remaining sample of roughly 70,000 schools remains representative of
the full sample of schools in the U.S. See Appendix A for details. Moreover, we top-code ∆ṽj,t at 100%,
and if in any week t outside of the reference period ∆ṽj,t > 25% while ∆ṽj,t−1 ≤ 25% and ∆ṽj,t+1 ≤ 25%,
we replace ∆ṽj,t by the average of ∆ṽj,t−1 and ∆ṽj,t+1.5

5This adjustment implements the assumption that during the school year 2020-21, schools did not reopen for only one
week at a time.
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Compared to Bravata et al. [2021], Chernozhukov et al. [2021b] and Parolin and Lee [2021] who
consider year-over-year changes in raw visits, our construction of dwell-time weighted normalized changes
in school visits relative to an average over a reference period prior to the pandemic has the advantage that
it is not influenced by the upward trend due to increased device coverage and that it reduces the influence
of holidays that fall on different weeks across years as well as other idiosyncratic variations. Furthermore
we apply apply stringent sample selection criteria for schools with sparse or noisy data. Appendix B
provides further discussion.

Figure 1 presents histograms of the distribution of the average change in school visits ∆ṽj,t during
three subperiods. The figure clearly shows that relative to the pre-pandemic baseline, school visits declined
massively during March-May 2020, and were still significantly lower during September-December 2020 as
well as during January-May 2021. At the same time, the dispersion in visit changes across schools in each
of the subperiods is large, reflecting the differences in school closings during the pandemic. See Appendix
A for further results on the distribution of school visit changes.

Figure 1: Distribution of changes in school visits for selected subperiods
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2020, September-December 2020, and January-May 2021, relative to average pre-pandemic (November 2019 through February
2020) school visits.

2.3 Burbio and Return2Learn learning mode data

Burbio is a private company that collects data on school learning mode from publicly available sources
for 1,200 public school districts representing 47% of U.S. K-12 student enrollment in over 35,000 schools
in all 50 states. The data is aggregated to the county level and primarily used for commercial purposes,
but the company also uses the data to publish a weekly School Opening Tracker and generously agreed to
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Figure 2: Evolution of learning mode trackers over time
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(b) Return2Learn
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Notes: The figures show the weekly percentage share of each learning mode according to Burbio and Return2learn, aggre-
gated using public school student enrollment at the county (Burbio) or district (Return2learn) level.

share the data with us and other researchers. The data consists of weekly indicators from August 2020 to
June 2021 of the share of public school students engaged in either “Traditional”, “Hybrid”, or “Virtual”
learning mode, where Hybrid means that students attend school 2-3 days per week in-person.6

Return2Learn is another school learning mode tracker constructed by researchers from the American
Enterprise Institute and the College Crisis Initiative center at Davidson College, and is generously shared
with researchers. Like Burbio, the Return2Learn data consists of weekly indicators of the share of public
school students engaged in one of the three learning modes, although their definitions are somewhat
different.7 In particular, “Hybrid” means that either students in some grades can return to buildings
in person while other grades can only return in a hybrid or remote mode, or all students can return
to in-person school for four days or less. Return2Learn provides weekly data at the school district level,
covering about 8,000 districts in over 3,000 counties that account for 90% of U.S. K-12 student enrollment.

Given the differences in definition and information sources used to construct the three learning modes,
it is important to compare the Burbio and Return2Learn trackers. As shown in Figure 2, while the learning
mode percentages averaged across counties from the two trackers generally show a similar evolution over
time, in particular with regards to the decline in virtual learning in 2021, there are also important level
differences, especially with regards to the share of hybrid versus traditional in-person learning. For
instance, in May 2021, Burbio shows 70% of traditional learning and 30% of hybrid learning, whereas
Return2Learn shows 55% of traditional learning and 45% of hybrid learning. These differences are even
more pronounced for some regions of the U.S. and make it difficult to use the trackers without further
information for a quantitative assessment of effective in-person learning.8 Furthermore, note that since

6The Burbio data also contains another category called “Undecided”. Since it is only rarely used, we ignore
it and rescale the three main learning modes such that they always sum to 100 for each county and week. See
https://about.burbio.com/methodology/ for further details.

7Return2Learn also uses a different terminology, classifying the different learning modes as “Fully in-person”, “Hybrid”,
and “Fully remote”. See https://www.returntolearntracker.net/about/ for details.

8We are not the first to point out the difficulty of distinguishing between “Traditional” and “Hybrid” learning, and that
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these trackers only cover public schools and are only available at the county, respectively the district
level, they cannot be used to document differences in effective in-person learning between school types
(e.g. public vs. private or elementary vs. secondary) or demographic and socioeconomic surroundings of
individual schools.

3 From school visits to effective in-person learning

To construct a measure of effective in-person learning (EIPL), we map changes in school visits from Safe-
graph to changes in school learning mode from Burbio and Return2Learn. This is the main methodological
contribution of the paper and proceeds in two steps. First, we aggregate changes in weekly visits to the
pertinent level (the county level for Burbio, respectively the district level for Return2Learn) to estimate
the mapping. Second, we use the estimates to compute measures of EIPL at the individual school level.

For expositional purposes, we focus on the county-level aggregation; the steps for the district-level
aggregation are analogous. Denote by ∆ṽc,t =

∑
j∈c κj∆ṽj,t the average change in school visits in county

c in week t relative to the reference period, where κj is the share of county c’s students enrolled in school
j. Next, define the fraction of week t that students in county c effectively spend in in-person learning as

EIPLc,t = Tc,t + γHc,t, (1)

where Tc,t is the share of students in traditional in-person learning mode, Hc,t is the share of students in
hybrid learning mode, and γ defines the fraction of hybrid learning spent in person.

Since both ∆ṽc,t and EIPLc,t measure percent deviations from the pre-pandemic baseline, we can
estimate their relationship with a linear regression

EIPLc,t = α+ β∆ṽc,t + εc,t,

or equivalently
Tc,t = α+ β∆ṽc,t + γHc,t + εc,t. (2)

The regression tells us not only how a given change in school visits maps into EIPL, but also the proportion
γ of hybrid learning spent in person.

We estimate (2) using the weeks from September 6, 2020 to December 13, 2020 excluding the week of
Thanksgiving. The reason we are not using data for Winter and Spring 2021 is that during this period,
schools increasingly moved away from virtual learning. But when Vc,t ≈ 0, traditional learning becomes
mechanically related to hybrid learning; i.e. Tc,t ≈ 100−Hc,t. In a regression context, this implies γ → 1

and β → 0 since ∆ṽc,t is subject to idiosyncratic variation. During Fall 2020, in contrast, there are
changes across all three learning modes, which enables us to identify the mapping between Tc,t and ∆ṽc,t,
controlling for Hc,t.

Table 1 reports the results of the estimation, both for the Burbio county level mapping (first panel)
and the Return2Learn district level mapping (second panel). To save on space, the table only shows
estimates for the case when we restrict α = 100 as implied by our measures for the pre-pandemic period

this leads to inconsistencies between different trackers of school learning mode. See Camp and Zamarro [2021].
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Table 1: Regression of “Traditional learning” on changes in school visits

Dependent variable Traditional learning (Tc,t)

(a) Burbio (b) Return2Learn
(1) (2) (3) (4)

Change in school visits (∆ṽc,t) 1.09*** 1.09*** 1.00*** 1.03***
(0.02) (0.02) (0.02) (0.02)

Hybrid learning (Hc,t) -0.42*** -0.40*** -0.49*** -0.46***
(0.02) (0.02) (0.00) (0.00)

R-squared 0.63 0.65 0.60 0.61
# of geographic units 2,783 1,741 7,533 2,413
# of students (in thousands) 44,668 42,726 41,478 32,088
% of all public-school students 87.9 84.1 81.6 63.1

Notes: Safegraph, Burbio and Return2Learn data for the Fall term 2020 (weeks of September 6, 2020 to De-
cember 19, 2020, excluding the week of Thanksgiving). All regressions are weighted by student enrollment at
the county (Burbio) or district (Return to learn) level. Standard errors are clustered at the county (Burbio)
or district (Return to learn) level. In columns (1) and (3), all counties and districts with available school visits
data are included (subject to the sampling restrictions for schools with sparse or noisy visits data described
in Section (2)). In columns (2) and (4), all counties and districts with data for at least 5 schools are included.

when schools are fully in person (i.e. Tc,t = 100, ∆ṽc,t = 0, and Hc,t = 0).9 In columns (1) and (3), we
include all geographic units (counties or districts) with available data (subject to sample restrictions on
Safegraph data described above). For both datasets, the mapping between learning modes and school
visit changes is tightly estimated, with a R2 of 0.6 or higher and highly significant coefficients. A 1
percentage point decline in school visits reduces EIPL by 1.09 percentage points according to Burbio and
1.00 percentage points according to Return2Learn, while the estimated fraction of hybrid learning spent
in person is 0.42 according to Burbio and 0.49 according to Return2Learn, or 2 to 2.5 days out of a 5 day
school week.

In columns (2) and (4), we restrict the sample to the counties and districts for which we have reliable
school visits data for at least 5 schools.10 The results are robust across the different specifications, confirm-
ing that there is a tight linear relationship between change in school visits and Burbio and Return2Learn
learning modes. Also note that the estimated γ is consistently lower with the Burbio data than with the
Return2Learn data. This difference reflects the fact, discussed above, that Burbio is on average more
likely to classify a student to be in traditional in-person learning mode, which in turn implies that hybrid
learning spent in person is on average lower than according to Return2Learn.

To refine the mapping, we reestimate (2) separately for different regions. By doing so, we allow for
differences in how a given learning mode translates into EIPL. As shown in Appendix C, while the fit of the
regression is high across all regions, there are substantial differences in the estimated coefficients, especially
with regards to the share of hybrid learning spent in person. This should not be surprising since different
districts pursued different hybrid school policies and these differences appear to vary systematically across
regions of the U.S.

9When we run the regression unrestricted, α is estimated close to 100.
10Since many counties have more than one public school district and also contain independent private and public charter

schools, this restriction reduces the Return2Learn sample by a larger proportion.

9



Figure 3: County-level loss of effective in-person learning
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Notes: The figures show the student-weighted average county EIPL for all counties for which we have reliable data on at
least three schools.
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Given these estimates, we compute EIPLj,t at the individual school level by projecting visit changes
∆ṽj,t based on the mapping from each region that yields the highest R2. This effectively assumes that
the relationship between learning modes and school visits for all schools in a given region is the same,
including for private schools.

4 The “when” and “where” of in-person learning

We start our empirical analysis by documenting disparities in EIPL over time and across different regions
of the U.S. To do so, we compute average student-weighted EIPL for each county for which we have at
least three schools with reliable data.

Figure 3 shows the map of the resulting county EIPLs for three different time periods. From March to
May 2020, EIPL was greatly reduced across most of the U.S., averaging between 0% and 20% of its pre-
pandemic level, as many schools closed completely for in-person learning. From September to December
2020, EIPL recovered partially but very unequally across regions. While EIPL increased to between 40%
and 60% on average in the Southern, Midwestern, and Central Northern parts of the country as many
schools returned to at least partial in-person instruction, EIPL in the Northeastern and Western parts
remained stuck in the 0% to 40% range as a large fraction of schools continued in full virtual mode. From
January through May 2021, EIPL generally recovered further but large regional disparities persist, with
counties located mostly on the East and West Coast continuing to average EIPL below the 50% mark.11

Table 2 provides another illustration of the large regional disparities in EIPL by reporting the top 10
and bottom 10 cities in terms of average EIPL from September 2020 through May 2021 among the 50
biggest cities in the U.S. by population. In cities in Florida and Texas such as Jacksonville or Houston,
EIPL averaged 75% or higher, whereas in cities in California, Oregon and Washington such as Los Angeles,
Portland or Seattle, EIPL averaged less than 25%. These differences are striking and suggest that state-
wide policies and attitudes towards school closing may have played an important role.

Table 2: The top 10 and bottom 10 cities of effective in-person learning

Rank CBSA name EIPL Rank CBSA name EIPL

1 Jacksonville, FL 84.5% 41 San Francisco-San Mateo-Redwood City, CA 24.9%
2 Fort Worth-Arlington, TX 80.0% 42 Sacramento--Arden-Arcade--Roseville, CA 23.7%
3 Houston-Baytown-Sugar Land, TX 79.9% 43 Las Vegas-Paradise, NV 22.5%
4 Dallas-Plano-Irving, TX 79.5% 44 San Diego-Carlsbad-San Marcos, CA 22.4%
5 Tampa-St.Petersburg-Clearwater, FL 76.7% 45 Portland-Vancouver-Beaverton, OR-WA 21.2%
6 San Antonio, TX 74.2% 46 Seattle-Bellevue-Everett, WA 21.0%
7 Orlando, FL 71.6% 47 San Jose-Sunnyvale-Santa Clara, CA 18.7%
8 Austin-Round Rock, TX 71.0% 48 Los Angeles-Long Beach-Santa Ana, CA 18.0%
9 Cincinnati-Middletown, OH-KY-IN 65.4% 49 Oakland-Fremont-Hayward, CA 15.6%
10 Atlanta-Sandy Springs-Marietta, GA 59.7% 50 Riverside-San Bernardino-Ontario, CA 13.8%

Notes: The table shows the top-10 and bottom-10 Core-Based Statistical Areas (CBSAs) in terms of average EIPL from September 2020 to May
2021 among the 50 largest CBSAs by population. EIPL for each CBSA is computed as the student-weighted average across schools with reliable
data.

11Appendix C provides additional evidence on the temporal disparities across regions by showing weekly time series of
average EIPL for the nine different U.S. Census divisions.
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At the same time, it is important to emphasize that there are large disparities in EIPL across schools
even within counties. As shown in Table 3, among all the counties with at least three schools with reliable
data, the mean county interquartile range of EIPL across schools is 14% for the 2020-21 school year.
Furthermore, the extent of this within-county dispersion is similar across counties with different levels of
average EIPL. This suggests that the disparity in EIPL does not only reflect systematic regional differences
but may also be driven by school-specific characteristics and local conditions that apply similarly across
the country.

Table 3: Dispersion in effective in-person learning within counties

Category of county EIPL average Mean county EIPL average Mean county EIPL interquartile range
(1) (2) (3)

All counties 57.4% 14.3%
0% – 25% 21.8% 10.4%
25% – 50% 38.7% 16.3%
50% – 75% 61.5% 15.2%
75% – 100% 83.5% 10.0%

Notes: The table shows the mean county EIPL average and the mean county EIPL interquartile range for groups of counties in a given
category of average EIPL from September 2020 to May 2021. The EIPL average for each county is computed as the weighted average
of EIPL across schools within the county. The EIPL interquartile range for each county is computed as the difference between the 75th
and 25th percentile of the weighted distribution of EIPL across schools within the county. The sample consists of counties with at least
three schools with reliable data. The school-specific weights are constructed to keep the sample representative of the population. See
Appendix A.3 for a description.

5 What accounts for the disparities in EIPL?

Why did some schools return to in-person learning more quickly than others and what explains the
large geographic differences? To answer these questions, we begin by analyzing how various observable
school characteristics and local conditions surrounding the school correlate with EIPL. Then we return
to geography and examine the extent to which the correlation between EIPL and school characteristics,
respectively local conditions are due to systematic regional differences, and what may account for these
differences. Naturally, these correlations should not be interpreted as causal. The objective is merely to
document a set of stylized facts that can help us understand the “for whom” in order to quantify the
consequences of pandemic-induced learning losses for different segments of the student population and
formulate appropriate policies going forward.

5.1 School type and grade

Perhaps the most obvious observable school characteristics are school type and grade. NCES designates
each school as either a public non-charter, public charter, private non-religious, or private religious school,
and either elementary school, middle school, high school, or a combination thereof.12 We use this infor-
mation to group individual schools accordingly and compute average student-weighted EIPL for each
group.

12Elementary school generally comprises grades K through 5, middle school comprises grades 6 through 8, and high school
comprises grades 9 through 12.
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Figure 4: Effective in-person learning by school type and grade
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(b) School type by school grade
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Notes: The figures show student-weighted average EIPL for private schools versus public schools by time period and by
school grade.

Panel (a) of Figure 4 shows differences in average EIPL by school type and time period. During the
first three months of the pandemic, there is almost no difference in EIPL across school types. During both
Fall 2020 and Winter/Spring 2021, however, we see substantial differences. Over the entire 2020-21 school
year, EIPL is 10% lower for public schools than for private schools, with public charter schools averaging
the least EIPL, followed by public non-charter, private non-religious, and private religious schools.

This ranking, which is not driven by other observable factors, may come as a surprise for two reasons.
First, public charter schools are typically independent whereas public non-charter schools belong to school
districts that, for some urban areas, are comprised of several hundred schools. One could have expected
that being independent would have made it easier for charter schools to reopen to in-person learning.
Second, according to Hanson [2021], tuition for non-religious private schools is on average more than
twice as high as tuition for religious private schools. The additional resources and resulting smaller class
sizes could have made it easier for non-religious private schools to reopen to in-person learning. Yet, in
both cases, exactly the opposite occurred.

Panel (b) of Figure 4 reports on differences in average EIPL between September 2020 and May 2021
by school type and school grade. Across all four school types, EIPL is highest for elementary schools and
lowest for high schools. For private schools, the difference in EIPL across school grades is smaller than
for public schools.13 In other words, the differences in EIPL between public and and private schools that
we observe in Panel (a) are in large part due to differences in EIPL at the middle and high school level.

5.2 Affluence, education, and race

The next dimension we consider is local affluence, education, and race. We measure local affluence either
as average household income in the zip-code of the school or school neighborhood poverty. Zip-code

13Note that for elementary schools, EIPL is slightly higher for public non-charter schools than for private non-religious
schools. This change in ranking of school types compared to the ranking across all school grades is due to geographical
differences in the relative prevalence of private non-religious elementary schools.
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average household income is based on a 2016-2019 average from the American Community Survey (ACS),
while school neighborhood poverty is an estimate constructed by NCES for public schools, also based on
data from the ACS. For education, we use the share of households with some college education or higher
in the zip-code of the school, again taken from the ACS. For race, finally, we use the school’s share of
non-white students, provided in the NCES data for the 2018-19 school year.

Figure 5: Effective in-person learning by local affluence, education, and race
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Notes: The figures show binned scatterplots of average EIPL from September 2020 to May 2021 for public schools and private
schools, respectively, by (a) zip-code average household income, (b) school neighborhood poverty, (c) zip-code average share
of college educated, and (d) school share of non-white students. The school neighborhood poverty index is available only for
public schools and ranges from 0 (poorest) to 1000 (richest). Observations are weighted with the school-specific sampling
weights discussed above.

We begin with nonparametric binned scatterplots of the unconditional relationship between average
school EIPL from September 2020 to May 2021 and the different measures of affluence, education, and
race. As shown in panel (a) of Figure 5, there is a striking inverse relationship between EIPL and household
income: schools in zip-codes with high average household income provided on average lower levels of EIPL
during the 2020-21 school year. Consistent with the above results, EIPL is on average higher for private
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schools than for public schools but interestingly, the relationship of EIPL with household income and
education is otherwise very similar. Panel (b) confirms that an equivalent inverse relationship between
EIPL and affluence holds with regards to neighborhood poverty: public schools in poorer neighborhoods
(i.e. school with a lower index) provided on average higher EIPL during the pandemic.14

Panel (c) makes a similar point for education: schools in zip-codes with a high share of college-educated
people provided on average lower levels of EIPL. Given that affluence and education are highly correlated,
this may be expected but it is still remarkable.

Finally, as shown in panel (d), there is also a striking inverse relationship between EIPL and the share
of non-white students of a school. For schools with close to 0% of non-white students, EIPL averaged
about 65% during the 2020-21 school year, independent of whether the school is public or private. For
schools with close to 100% of non-white students, in contrast, EIPL averaged only about 40% for public
schools and just below 55% for private schools. Interestingly, the gap between public and private schools
with respect to race is small for schools with up to about 50% of non-white students and then opens up
gradually as the share of non-white students increases towards 100%.

Given the general association of poverty with race, the inverse relationship of EIPL with both affluence
and race may come as a surprise. But according to our data, the share of a school’s non-white students
is essentially uncorrelated with local affluence and education (see Appendix C). In other words, the
negative relationship of EIPL with affluence and education is, at least on average, independent of the
negative relationship of EIPL with the share of non-white students.

To illustrate this result and assess the relative importance of affluence and education versus race, we
estimate OLS regressions of average school EIPL between September 2020 and May 2021 on the different
measures. Here and below, all estimates are weighted by the school-specific sampling weights to ensure
that the sample is representative of the full set of schools; standard errors are clustered at the county
level; and the coefficients are scaled so that they show directly the implied change in EIPL of going from
the 25th percentile to the 75th percentile of the distribution of a variable.15

Table 4 reports the results of regressing EIPL separately on each of the three affluence measures
together with the share of non-white students and controls for school type and school grade.16 Adding
these controls does not change the results noticeably, and the estimates on these controls are in line with
the results shown in Figure 4.

14The poverty index ranges from 0 (poorest) to 1000 (richest). This index is not available for public schools.
15More precisely, all right-hand side variables are expressed as deviations from the mean, normalized by the interquartile

range. Appendix C provides descriptive statistics for the different variables.
16Since local affluence and education are highly correlated with each other, regressing EIPL on all of them jointly would

not noticeably increase the explanatory power but would make it difficult to interpret the different estimates.
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Table 4: The inverse relationship of effective in-person learning with affluence and race

Dependent variable Effective in-person learning (EIPL)

(a) Public schools (b) Private schools
(1) (2) (3) (1) (2)

Zip-level average household income -6.07*** -4.51***
(0.61) (0.62)

Zip-level share of college educated -7.52*** -5.17***
(0.71) (0.80)

School neighborhood poverty -6.03***
(0.47)

School share of non-white students -13.97*** -14.02*** -17.13*** -5.75*** -6.03***
(2.11) (2.19) (1.85) (1.08) (1.11)

School type and grade controls " " " " "
R-squared 0.07 0.06 0.07 0.04 0.04
Observations 55,036 55,037 53,996 11,280 11,280

Notes: Each column reports coefficients from a weighted OLS regression with standard errors clustered at the county level in paren-
theses and school weights calculated as explained in Appendix A.3. The regressions are estimated on average school EIPL for the
period from September 2020 to May 2021. Columns (1) to (3) show estimates for the public school sample, and columns (4) and (5)
show estimates for the private school sample. The school type fixed effects consists of indicators for charter school and non-charter
school for the public school sample, and religious school and non-religious school for the private school sample. The school grade
fixed effects consist of indicators for elementary vs. middle vs. high. vs. combined school for both samples.

Panel (a) shows the estimates for the public school sample. The estimates all tell the same story as
the unconditional scatterplots above. EIPL is inversely related to local affluence, local education, and
the school’s share of non-white students in statistically significant and quantitatively important ways.
According to Column (3), for instance, a school located in a zip-code at the 75th percentile of the income
distribution and with a student body at the 75th percentile of the non-white distribution is predicted to
have had 20% lower EIPL during the 2020-21 school year than a school at the 25th percentile of the two
distributions. Almost three quarters of this difference comes from racial composition of the school, which
is remarkable.

Panel (b) shows the estimates for the private school sample (estimates for school neighborhood poverty
index are missing because this index is not available for private schools). As for public schools, EIPL of
private schools is inversely related to affluence and race. Consistent with the binned scatterplot shown
above, however, the estimated association of EIPL with the share of non-white students is only about one
third as important for private schools as for public schools.

The regressions confirm the nonparametric result of Figure 5 that there are large differences in EIPL
by local affluence, local education, and racial composition of a school. At the same time, the R-squared
remains below 0.1 for all of the regressions, which means that differences in local affluence and race
account for only a relatively small share of the variation in EIPL across schools. We therefore proceed by
adding other observable school characteristics to explore how they affect the results.
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5.3 Public school/district size and school funding

The additional school characteristics we consider are school/district size and school funding. We have also
considered other observables such as pre-pandemic school test scores and several alternative demographic
and socio-economic indicators describing the neighborhood of the school. All of these variables are highly
correlated with the above measures of local affluence and therefore do not add significant explanatory
power.

For school size, we use school enrollment, and for district size, we use the number of schools in the
district. Both variables are available for the 2018-19 school year from the NCES data and are close to
orthogonal with local affluence. In turn, district size is positively correlated with share of non-white
students, reflecting the fact that school districts are typically larger in urban areas that are racially more
diverse.

For school funding, we consider both pre-pandemic school spending per student and district-level
ESSER funding by student. Pre-pandemic school spending per student is available for the 2018-19 school
year from the National Education Resource Database on Schools of the joint Edunomics lab / Massive
Data Institute at Georgetown University. Interestingly, this variable is only weakly correlated with the
different measures of local affluence above. ESSER funding by public school districts is available from
Malkus [2021b] and the Return2Learn team. Quite surprisingly, district-level ESSER funding per student
is essentially unrelated to pre-pandemic school spending per student – an observation to which we return
below – but it is negatively correlated with local affluence and education and positively correlated with
the share of non-white students.

Except for school enrollment, the different variables are not available for private schools. We therefore
focus here on public schools and report a limited set of results for private schools in Appendix C. As above,
we estimate OLS regressions of EIPL on affluence and race and then add the different school funding and
school/district size variables. This allows us to assess their association with EIPL conditional on affluence
and race. See the appendix for nonparametric binned scatterplots of the unconditional relation with EIPL.

Table 5 shows the results. Since local affluence and education are highly correlated with each other,
we report regression estimates where we include each of these measures one-by-one. The estimates for
the other left-hand side variables (race, school/district size, and school funding) barely change across the
regressions; so for these variables, we report estimates controlling for local affluence and education jointly.
Column (1) repeats the results from Table 4 above as a reference.17 Column (2) adds school and district
size to the regression; column (3) adds school spending and ESSER funding; and column (4) adds the
four variables jointly.

17The estimates for household income, share of college educated and school neighborhood poverty are exactly as in columns
(1) - (3) of Table 4. The estimate for share of non-white students is slightly different because this estimate is obtained while
controlling jointly for all three measures.
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Table 5: The (un)importance of public school/district size and school funding

Dependent variable Effective in-person learning (EIPL)

(1) (2) (3) (4)

Zip-level average household incomea -6.07*** -5.31*** -5.46*** -4.15***
(0.61) (0.56) (0.60) (0.58)

Zip-level share of college educateda -7.52*** -6.87*** -8.37*** -6.74***
(0.71) (0.81) (0.61) (0.70)

School neighborhood povertya -6.03*** -5.40*** -6.40*** -5.00***
(0.47) (0.47) (0.50) (0.49)

School share of non-white studentsb -17.10*** -15.09*** -12.93*** -10.02***
(1.83) (1.49) (1.81) (1.64)

Student enrollmentb -1.63*** -3.37***
(0.40) (0.35)

District number of schoolsb -0.60* -0.42
(0.34) (0.30)

School spending per studentb -4.82*** -5.92***
(0.68) (0.68)

ESSER funding per studentb -3.91*** -3.75***
(0.60) (0.59)

School type and grade controls " " " "
R-squared 0.08 0.08 0.09 0.10
Observations 53,978 53,978 51,043 51,043

Notes: Each column reports coefficients from a weighted OLS regression on the public school sample, with standard
errors clustered at the county level in parentheses and school weights calculated as explained in Appendix A.3. The
regressions are estimated on average school EIPL for the period from September 2020 to May 2021. The school type
fixed effects consists of indicators for charter school and non-charter school, and the school grade fixed effects consist
of indicators for elementary vs. middle vs. high. vs. combined school for both samples. The coefficient estimates for
the affluence measures, denoted by a, are the result of separate regressions with each one of the measures in combina-
tion with the other variables below. The coefficient estimates for the other regressors denoted by b are the result of
regressions where the three affluence measures are included jointly.

EIPL is estimated to be lower for larger schools and for schools belonging to larger districts although
this latter estimate is not significant.18 Interestingly, EIPL is also negatively associated with school
spending and ESSER funding per student. The former result may have been expected given the positive
correlation of school spending per student with local affluence and the inverse relation of EIPL with
local affluence found above. Nevertheless, it raises the question as to why public schools with higher
per-student spending prior to the pandemic were less likely to reopen for in-person learning than lesser
funded schools. The negative association of EIPL with ESSER funding per student, in turn, is remarkable
because ESSER, which was appropriated by Congress in three waves totaling $190 billion or almost five
times the annual federal K-12 spending prior to the pandemic, was advertised primarily as support for
schools to reopen to in-person learning. We return to both of these points below.

The final important observation about these regressions is that adding school/district size and school

18The negative yet insignificant estimate for district size is not driven by public charter schools, which are typically
independent or part of a small network, since the regressions control for school type. To the contrary, as we have seen above,
public charter schools provided on average lower and not higher EIPL.
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funding reduces the negative relation of EIPL with local affluence, education, and race only modestly.
Even after controlling for these additional school characteristics, a school located in a zip-code at the 75th
percentile of the income distribution and with a student body at the 75th percentile of the non-white
distribution is predicted to have had about 14% lower EIPL during the 2020-21 school year. This suggests
that affluence and race are not simply proxies for school size or school spending per student.

5.4 Geography

In the last part of the analysis, we return to geography and ask how much of the relation of EIPL with
school characteristics and local conditions is driven by systematic regional differences, and what factors
not directly related to schools can account for these differences.

Table 6: The importance of geography

Dependent variable Effective in-person learning (EIPL)

(1) (2) (3) (4)

Zip-level average household incomea -4.15*** -3.51*** -1.25*** -0.12
(0.58) (0.57) (0.28) (0.22)

Zip-level share of college educateda -6.74*** -5.85*** -3.53*** -1.47***
(0.70) (0.71) (0.35) (0.28)

School neighborhood povertya -5.00*** -4.35*** -1.82*** -0.46**
(0.49) (0.50) (0.27) (0.20)

School share of non-white studentsb -10.02*** -8.68*** -10.80*** -6.85***
(1.64) (1.55) (0.65) (0.62)

Student enrollmentb -3.37*** -3.09*** -3.05*** -3.24***
(0.35) (0.33) (0.21) (0.20)

District number of schoolsb -0.42 -0.37 -0.28 0.08
(0.30) (0.31) (0.23) (0.12)

School spending per studentb -5.92*** -5.73*** -0.16 0.49**
(0.68) (0.69) (0.27) (0.21)

ESSER funding per studentb -3.75*** -3.92*** -2.83*** -3.18***
(0.59) (0.58) (0.32) (0.39)

School type and grade controls " " " "

Locale FE " " "

State FE "

County FE "
R-squared 0.10 0.10 0.26 0.31
Observations 51,043 51,043 51,043 51,043

Notes: Each column reports coefficients from a weighted OLS regression on the public school sample, with stan-
dard errors clustered at the county level in parentheses and school weights calculated as explained in Appendix A.3.
The regressions are estimated on average school EIPL for the period from September 2020 to May 2021. The school
type fixed effects consists of indicators for charter school and non-charter school, and the school grade fixed effects
consist of indicators for elementary vs. middle vs. high. vs. combined school for both samples. The coefficient esti-
mates for the affluence measures, denoted by a, are the results of separate regressions with each one of the measures
in combination with the other variables below. The coefficient estimates for the other regressors denoted by b are
the result of regressions where the three affluence measures are included jointly.
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Table 6 reports the results of reestimating the above regressions with various geographic controls.
As before we perform these estimations for the sample of public schools and relegate results for private
schools to the appendix. Column (1) repeats the final regression in Table 5 above for reference. In
column (2), we add controls for whether a school is located in a city, a suburb, a town, or a rural area, as
designated in the NCES data. The estimates for affluence and race become somewhat smaller, reflecting
the fact that schools in suburban and town/rural areas provided on average higher EIPL, and suburban
and town/rural areas are on average less affluent, have a smaller share of college-educated households,
and have a smaller population of non-white students. But overall, these reductions in the coefficients and
the additional explanatory power of these geographic locale controls remain modest, indicating that the
results above are not driven by systematic differences between cities, suburbs, and town/rural areas.

Columns (3) and (4) add fixed effects for the state, respectively the county in which the school is
located. The consequences of controlling for these more detailed geographical effects are important,
raising the explanatory power of the regressions to almost one third, and can be summarized as follows.

First, the inverse relation between EIPL and local affluence is cut in half when the state fixed effect
is added, and essentially disappears when the county fixed effect is added. Similarly, the association
of EIPL with local education is substantially reduced although it remains negative, implying that even
within counties, schools located in zip-codes with a higher share of college-educated households provided
on average somewhat lower EIPL. We conclude from these estimates that EIPL is negatively related to
affluence and education primarily because less affluent and less educated areas of the county have public
schools that provided more EIPL during the 2020-21 school year.

Second and contrary to affluence and education, the inverse relation between EIPL and the share of
non-white students is unaffected by state fixed effects and is reduced by only about one third by the
county fixed effect. So, even within counties and controlling for affluence, education and other school
characteristics, there are clear racial differences in that schools with a larger share of non-white students
provided on average substantially lower EIPL.

Third, the negative coefficient estimate on school size remains unaffected by the state and county fixed
effect. The result is interesting because it suggests that smaller schools reopened to in-person learning
more quickly than larger schools, perhaps because the logistical challenges of reopening or equity concerns
about reopening only certain grades were less important.19

Fourth, the state fixed effect completely absorbs the negative association of EIPL with pre-pandemic
school spending per student, while the county fixed effect turns the association between the two variables
mildly positive. This indicates that school spending per student did not play a decisive role for EIPL
overall but instead picked up systematic differences across states. In contrast, the inverse relation between
EIPL and ESSER funding per student remains unaffected by geography. In other words, even within
counties, schools in districts with more ESSER funding per student provided on average less EIPL.

The remaining question is what factors explain why schools in some states and counties of the U.S.
provided substantially higher EIPL than others. From Figure 3 we know that these places are located
primarily in the central and southern parts of the U.S. – places that in general were more favorable
towards reopening the economy despite potential health risks and at the same time have seen lower

19As noted above, the regressions control for whether the school is an elementary school, high school, or combined school;
but these controls are relatively coarse and there may substantial variations in the number of grades served by a school even
within these categories.
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COVID vaccination rates. To assess the relative importance of these factors for EIPL, we re-estimate
the above regression as a school-week panel and extract the county-week fixed effect.20 Then we regress
the resulting county-week fixed effects on party affiliation of the state governor and the Republican vote
share in the 2020 presidential election as proxies for the general stance towards reopening schools as
well as weekly vaccination rates.21 In addition, we control for the county’s COVID health situation with
pre-pandemic ICU bed capacity, two-weeks lagged COVID case and death rates, and maximum weekly
county temperature. As before, right-hand side variables except the indicator for state governor are scaled
so that the estimated coefficients directly reflect the predicted change in the county fixed effect of moving
from the 25th percentile to the 75th percentile of a variable’s distribution. All regressions are weighted
by pre-pandemic county population.

Table 7 reports the results.

Table 7: Accounting for systematic geographical differences

Dependent variable County-week fixed effect

(1) (2) (3) (4)

Republican governor 21.55*** 22.89*** 21.52***
(1.64) (1.76) (1.82)

Share of 2020 Republican voters 11.31*** 11.96*** 12.39***
(0.91) (1.03) (1.06)

Lagged COVID vaccination rate 7.18*** 12.32*** 10.65***
(1.44) (1.15) (1.50)

ICU bed capacity 0.91*
(0.54)

Lagged COVID case rate -0.74*
(0.39)

Lagged COVID death rate 0.37
(0.25)

Maximum weekly temperature 3.24**
(1.26)

NPI controls
R-squared 0.32 0.02 0.37 0.38
# of counties 2,829 2,819 2,819 2,814
# of weeks 35 35 35 35

Notes: Each column reports coefficients from a weighted OLS regression of the county-week fixed effects, with
standard errors clustered at the county level in parentheses and observations weighted by county population.
The county-fixed fixed effect is extracted from the regression of EIPL against school and local characteristics
(see Column (5) of Table 6) for the period from September 2020 to May 2021. The NPI controls consist of
county-week indicators for stay-at-home orders, restrictions on public gatherings and mask mandates.

We begin in Column (1) with a regression of the county-week fixed effect on party affiliation of the
state governor and the Republican vote share in the 2020 presidential election. The estimated coefficients

20Running the regression as a county-week panel does not affect any of the reported estimates since all of the left-hand
side variables are time-invariant and predetermined.

21County-level data on the presidential elections is obtained from the MIT election lab. Data for COVID cases, deaths,
and vaccination rates come from the New York Times, the Johns Hopkins Coronavirus Resource Center, and the Centers
for Disease Control and Prevention, and county-level counts of ICU beds are obtained from the Kaiser Health News; see
Appendix A.1 for details about the data sources.
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are large and together account for one third of the variation in the county fixed effects. Everything
else constant, schools located in a county with a Republican governor provided more than 20% higher
EIPL during the 2020-21 school year. Likewise, schools located in a county at the 75 percentile of the
distribution of share of Republican voters in the 2020 presidential election provided more than 10% higher
EIPL than schools located in a county at the 25th percentile.

Column (2) considers the effect of vaccination rates for the 2021 part of the sample. All else equal,
schools in counties at the 75th percentile of the distribution of COVID vaccination rates averaged 7%
higher EIPL than schools in counties at the 25th percentile. However, the explanatory power of this
regressor is weak, indicating that vaccination rates leave most of the variation in county-week EIPL
unaccounted.

Columns (3) combines the two different factors. Since Republican party voting preferences and vacci-
nation rates are negatively correlated, this pushes up the respective estimates. Column (4), finally, adds
the COVID health controls. Except for temperature, the effect of these health controls are quantita-
tively unimportant and surrounded by considerable uncertainty, suggesting that the local COVID health
situation on average did not play an important role for school reopenings and EIPL.

6 Conclusion

Using a new empirical approach that combines comprehensive data on school visits with information on
school learning modes, we construct a measure of effective in-person learning (EIPL) during the pandemic
for both public and private schools. We document large differences in EIPL over time, across regions, as
well as school characteristics and local conditions.

While the results from our regression analysis should not be interpreted as causal, they nevertheless
reveal interesting patterns that raise important questions on why EIPL in some areas and for some
students was so much lower during the 2020-21 school year. We highlight three questions in particular
that merit further investigation:

1. Why did schools in more affluent and more educated areas with higher funding per student provide
less EIPL? The simple answer is that this inverse relationship is in large part about systematic
geographic differences, which in turn are correlated with political preferences. But why would more
democratic-leaning areas have been more reluctant to return students to in-person learning? One
potential explanation is that independent of political preferences, more affluent and educated par-
ents were on average more likely to be able to work from home and therefore considered the cost
of supervising students’ virtual learning from home (either in person or by hiring help) more man-
ageable. This explanation contrasts, however, Another potential explanation is that more affluent
and educated parents had a different perception of the risk of sending students back to in-person
school, for instance due to different news and social-media exposure. Both of these explanations
contrast, however, with the observation that even within counties, private schools (which generally
attract students more affluent and educated parents) provided more EIPL than public schools. So,
clearly more work is needed on this front. But no matter the explanation, it remains that students
in less affluent and less educated areas of the U.S. received on average more EIPL, which may
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mitigate some of the negative consequences of school closures for long-term earnings inequality (see
Fuchs-Schündeln et al., 2021 for a simulation of these effects).

2. Why did schools with a higher share of non-white students provide less EIPL, even within a given
county and controlling for neighborhood poverty and other school characteristics? This striking
result defies a simple explanation and yet seems key given the large and persistent educational
achievement gaps between white and non-white students that existed already before the pandemic.

3. Why did schools in districts with more ESSER funding per student provide less EIPL? One possible
reaction to this remarkable result is that without ESSER funding, schools would have been closed
for even longer. Yet, the negative relationship arises even within counties and despite controlling
for neighborhood poverty and race, which makes this an unlikely explanation. Another potential
explanation is that Congress imposed few constraints on how ESSER funding could be used, and
according to estimates by Malkus [2021a], less than 20% had been spent by August 2021. If these
funds were spent primarily to improve students’ remote learning capacities (e.g. providing students
with computers and wireless connections) instead of upgrades to the school buildings and personal
protection equipment, then ESSER funding would have primarily facilitated remote learning instead
of a return to in-person learning; i.e. its main advertised purpose.22

Exploring these questions goes beyond the scope of the paper but they are clearly important to understand
the causes and consequences of school closings during the pandemic.
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Appendices

A Data appendix

This appendix presents additional information about our data sources (Subsection A.1); the Safegraph
foot traffic data and our algorithm to match NCES datasets to the Safegraph data (Subsection A.2); the
procedure to construct school weights (Subsection A.3); a comparison between the matched data and
NCES datasets (Subsection A.4); and an examination of the school-level visits data (Subsection A.5).

A.1 Data sources

NCES data. The U.S. Department of Education’s NCES is the primary federal entity for collecting
and analyzing data related to education. The NCES regularly publishes statistics on both public and
private schools and also makes available different datasets on individual schools. We mainly make use of
two NCES dataset. The first one is the Common Core of Data (CCD; see https://nces.ed.gov/ccd/).
CCD is a comprehensive annual database of all public elementary and secondary schools and school
districts (including public charter schools). The CCD consists of five surveys completed annually by state
education departments from their administrative records. The information includes a general description
of schools and school districts, including name, address, and phone number; number of students and staff,
demographics (including the gender and racial makeup of the schools students); and fiscal data, including
revenues and current expenditures. We use the 2019-2020 CCD school data files released in March 2021.
The second dataset is the Private School Universe Survey (PSS; see https://nces.ed.gov/surveys/
pss/), which is a biennial survey that collects data on private schools and serves as a sampling frame for
other NCES surveys of private schools. The PSS data include a general description of schools, teachers,
and students (including the gender and racial makeup of the schools students) in the survey universe.
The schools surveyed in the PSS come with a survey weight. We use the 2017-2018 data files released in
August 2019 (there is no more recent version of these data as of this writing).

EDGE data. The Education Demographic and Geographic Estimates (EDGE; see https://nces.
ed.gov/programs/edge/) is a program run by the NCES to create and assign address geocodes (esti-
mated latitude/longitude values) and other geographic indicators to public schools, public local education
agencies, private schools, and post-secondary schools, and create are type indicators (City, Suburban,
Town, and Rural). We use EDGE data to complement the NCES datasets. First, we use the 2019-2020
geocodes to improve the reliability of the match between the CCD/PSS files and Safegraph data (see
Subsection ??). Second, we use the school neighborhood poverty estimates from EDGE. The estimates
are constructed based on the data from the Census Bureau’s American Community Survey which allow
to compute income-to-poverty ratio (IPR). IPR is the percentage of family income that is above or below
the federal poverty threshold set for the family’s size and structure. IPRs are then aggregated to the
levels of the school neighborhood as identified by EDGE.

ACS data. The socio-demographic and income variables (household income at the county and ZIP-
code levels, share of individuals with some College or higher educational attainment) are based on
the American Community Survey (ACS) 5-year estimates for the release years 2016-2019. The esti-
mates are computed at the Census Block Group (CBG) level. There is a one-to-one mapping from
CBGs to county FIPS codes, allowing us to directly aggregate the estimates to the county level. For
the ZIP-code level, on the other hand, we use the ZIP-TRACT crosswalk provided by the U.S. Hous-
ing and Urban Development (HUD)’s Office of Policy Development and Research (see https://www.
huduser.gov/portal/datasets/usps_crosswalk.html). We aggregate to the ZIP-code level using the
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so-called total ZIP ratio, which is the ratio of all addresses for each Census tract associated with each
ZIP code. To measure population density, we combine the ACS population estimates with land area
data from the U.S. Department of Agriculture (USDA; see https://www.ers.usda.gov/data-products/
atlas-of-rural-and-small-town-america/). From the USDA, we also use the Rural-Urban continuum
codes (see https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx).

NERD$ data. Data on spending per student at the school level come from NERD$, the National
Education Resource Database on Schools. NERD$ is a data initiative of the Edunomics lab and the
Massive Data Institute at Georgetown University (see https://edunomicslab.org/). It builds on the
federal Every Student Succeeds Act (ESSA) passed in December 2015 which, among other provisions,
stipulates that states must report for every public school (and local educational agency) the total per-
pupil spending of federal, state and local money disaggregated by source of funds for the preceding fiscal
year. In practice, the school spending data tends to be scattered across different states’ website, but
NERD$ gathers these data together. The data we use are from the latest update of NERD$ dated from
October 8th, 2021 and contain school-by-school actual spending amounts for the year of 2018-2019. The
data matches 94% of the public schools of our dataset.

ESSER data. Data on ESSER funding come from the compilation put together by Return2learn
and available on R2L’s website (see https://www.returntolearntracker.net/esser/). The raw data
covers all three waves of ESSER, that is to say the funds from the Coronavirus Aid, Relief, and Economic
Security (CARES) act, the Coronavirus Response and Relief Supplemental Appropriations (CRRSA) act
and the American Rescue Plan (ARP). Data are available at the level of school districts, and the R2L
database comes with the NCES identifier for school districts. When matched to our own, it covers about
91% of school districts that include 95% of the public schools in our dataset.

COVID data. Data for COVID cases and COVID deaths at the county level are based on the daily
count and rates from the New York Times, the Johns Hopkins Coronavirus Resource Center, and the
Centers for Disease Control and Prevention (CDC). Data on COVID vaccinations at the county level
are daily rates from the CDC. We download these data from the COVID from the Opportunity Insights
Economic Tracker repository (see https://github.com/OpportunityInsights/EconomicTracker). To
aggregate each variable to the weekly level, we take the mean of the daily values for each variable.
County-level counts of ICU beds come a report from Kaiser Health News accessed through a compilation
of county-level health data available at: https://github.com/JieYingWu/COVID-19_US_County-level_
Summaries/tree/master/data.

Election data. County-level results for presidential elections are downloaded from the MIT elec-
tion Data and Science Lab (see https://electionlab.mit.edu/data). We use results for the 2020
presidential elections in our main analysis and results for the 2016 presidential elections in robust-
ness analyses. State-level data on voter turnout rates are taken from the U.S. elections project (see
http://www.electproject.org/). We use turnout rates for the 2018 and 2020 general elections.

NPIs data. Data at the county-week level on Non-Pharmaceutical Interventions (NPIs) are down-
loaded from the repository of the Centers for Disease Control and Prevention (CDC; see https://data.
cdc.gov/). We use information on the following NPIs: 1) Stay-at-home orders, which can be advi-
sory/recommendation, mandatory only for individuals in certain areas of the jurisdiction, mandatory for
at-risk individuals, or mandatory for all individuals, 2) Gathering bans, which can be bans on gatherings
of more than 100 persons, more than 50 persons, more than 25 persons, more than 10 persons, or all
social/public gatherings, 3) Mask mandates, which is an indicator that takes the value of 1 when a mask
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is required in public and is 0 otherwise. All county-week time series are from the September 10, 2021
update of the CDC data.

A.2 Details on the Safegraph data and matching algorithm

Safegraph data. Each POI in Safegraph’s data is identified by a unique persistent safegraph_place_id.
A POI is essentially a polygon, and some of the polygons are encompassed into larger polygons. When it so
happens, the “child” polygon receives a parent_safegraph_place_id equal to the safegraph_place_id
of the encompassing “parent” POI. Except for a handful of POIs (about 1% of the universe of Safegraph’s
POIs), each safegraph_place_id comes with a 6-digit industry NAICS code.23 About 80-85% of Safe-
graph’s POIs come with information on visits. In our analysis of POIs with NAICS 611110 (“Elementary
and Secondary Schools”), about 5% have a parent_safegraph_place_id, which is almost always shared
with a POI that is classified as NAICS 624410 (“Child and Youth Services”) or NAICS 813110 (“Religious
organizations”). To reduce noise in visits data, we aggregate up these visits and attribute them to the
school that is paired to these non-611110 NAICS POIs.

Matching of Safegraph POIs with NCES school records. Our algorithm to match the Safegraph
dataset of elementary and secondary schools to the NCES’s CCD and PSS files works as follows:

1. Prior to matching schools data to Safegraph, we deduplicate and pre-treat the Safegraph data by
cleaning POIs’ names and addresses. For names, we convert the capital letters to lower case and
remove all the “%”, “&”, etc., numbers (if any), and spaces from the raw Safegraph location names.
More importantly, we replace abbreviated school information in the Safegraph names by a complete
descriptor using the following rules:24

Portion of the raw Safegraph name: Recoded as:
elemsch elementaryschool
highsch highschool
kindergsch kindergarten
middlesch middleschool
primarysch primarychool
schoolthe school

Last, we clean schools’ addresses by using Stata’s stnd_address command to standardize street
address names.

2. In the CCD files, we have information on school names and addresses that describe the physical
location of schools (street address and postal code). Firstly, we clean school names by converting
the capital letters to lower case and removing all the “%”, “&”, etc., numbers (if any), and spaces,
and standardize street addresses in a format similar to that applied to Safegraph data. Then, we
match files by attempting in the following order: (i) a direct merge on name/address/zip-code, (ii)
a direct merge on name/zip-code, then within each 5-digit zip codes: (iii) a fuzzy name match on
name/address, (iv) a fuzzy name match on name, (v) a fuzzy name match on address. For the fuzzy
name matching, we use Stata’s reclink2 command and retain only those with a matching score
higher than 0.85. We manually compare a random sample of the matched schools obtained through
steps (iii) to (v) of the algorithm to confirm that a threshold of 0.85 provides us with good enough
matches.25

23See https://docs.safegraph.com/docs/core-places#section-naics-code-top-category-sub-category for infor-
mation on Safegraph’s algorithm for attributing NAICS codes to the POIs covered by the Core places dataset.

24As an example, consider the Safegraph location called “Big Spring Lake Kinderg Sch”. After removing the spaces and
converting the capital letters to lower case, we obtain “bigspringlakekindergsch”. We then rename it as: “bigspringlakekinder-
garten”. This enables us to increase the quality of the match to NCES data where typically the word “Kindergarten” is not
abbreviated.

25Consider for instance Safegraph’s “Big Spring Lake Kinderg Sch” described in Footnote 24. The name of this school in
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3. In the PSS files, we have information on school names and GPS coordinates. Firstly, we clean
school names by converting the capital letters to lower case and removing all the “%”, “&”, etc.,
numbers (if any), and spaces. We then pool together all PSS and Safegraph schools that belong
to the same geographic area (defined by GPS coordinates rounded to the first decimal place), and
within the area we match each PSS school to the closest Safegraph school by measuring distance
as (i) the geographic distance based on GPS coordinates and (ii) the Levenshtein distance between
school names (normalized by the length of the longest string of school name). We retain only those
matches where the geographic distance is less than 250 meters or the string distance is under 0.250.
We manually compare a random sample of the matched schools to confirm that these thresholds
provide us with good enough matches.

Through this algorithm, we obtain high-quality matches for 102,774 schools (85,446 public schools and
17,328 schools).

Normalization and sample selection. When working with Safegraph’s foot traffic data, there is
an important concern that changes in visits counts over time can be driven by changes in the sample of
cell phone devices that Safegraph uses to detect foot traffic. Figure A1, which plots the total number of
residing Safegraph devices (in counties that contain POIs with NAICS code 611110) over the 2018-2021
period, illustrates the magnitude of these changes.26 As can be seen, following large variations in the

Figure A1: Safegraph: Number of residing cell phone devices
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Notes: The figures show the sum of Safegraph cell phone devices across all counties that contain POIs with NAICS code
611110 (“Elementary and secondary schools”).

first two quarters of 2018, the sample size expands until mid-2019, then drops during the second half of
2019 and expands again in January of 2020. More importantly, the sample sizes drops substantially at
the beginning of the pandemic and never recovers afterwards; in 2021 the sample size actually decreases

the CCD file is “Albertville Kindergarten and PreK”. through our algorithm, we obtain a fuzzy match at the name/address
level (within the same 5-digit zip code) because the street addresses in Safegraph and in the CCD file turn out to be exactly
the same. This, together with our update of the Safegraph’s school name, yields a matching score of 0.92 according to
reclink2 standard score metric.

26Residing devices are cell phones with a primary nighttime location. Counts of residing devices are released at the CBG
level. These counts are typically used for the purpose of normalizing visits data at a granular level.
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relative to the second half of 2020. Figure A2 illustrates the impact of these variations on counts of visits
to all Safegraph’s POIs with NAICS code 611110. In the upper panel, there is a clear upward trend
in raw visits throughout 2018, 2019, and early 2020, as well as an incomplete recovery of visits in 2021
relative to pre-pandemic levels of visits. The bottom panel shows that normalizing by county-level counts
of cell phone devices removes the trend in 2018 and 2020, while inducing visits at the end of 2019 and at
the beginning of 2020 to be higher than before the Summer of 2019. The effects of normalization is also
important for the recovery in 2021: normalized school visits return to their pre-pandemic levels, whereas
in the not normalized data they remain about 25% lower. Motivated by these observations, throughout
our analysis we normalize school visits with the weekly county-level counts of Safegraph cell phone devices.

In an effort to reduce measurement error, we implement the following sample restrictions. First, we
drop schools where the raw visits count on average during the base period is less than 10, and schools
where ∆ṽj,t is larger than 50 more than once during the based period. The goal of these first two
restrictions is to ensure that the measurement of school visits for the base period are reliable enough to
compare them with school visits in any other period. Together these restrictions reduce the sample size
by 20%. Then, we drop schools where ∆ṽj,t is larger than 75 more than once, either during the period
from beginning of September 2019 to November 2019 or the period from beginning of September 2020 to
the end of the sample period. This procedure intends to purge the data from extreme values that affect
the average of changes in visits in any given period. We use a larger threshold (75 instead of 50) to trim
the data because it is to expected that the visits time series for each school are more volatile outside
of the November 2019 to February 2020 period. This sample restriction reduces the sample size by an
additional 10%. The resulting “in-scope” dataset contains 69,910 schools or about 70% of all schools that
we successfully match to the CCD-PSS file.

A.3 School weights

As explained in Section 2 of the main text and Subsection A.2 of this appendix, the dataset of our analysis
includes about 60% of the schools from the pooled CCD/PSS file after filtering out schools with sparse
or noisy visit data. We augment the dataset with school-level weights to alleviate concerns about its
representativeness. We estimate a Probit model where the left-hand side variable is an indicator yj that
takes the value of 1 if school j is included in the dataset of our analysis and is 0 otherwise. The regressors
of the Probit model are: a polynomial of county population, population density, county-level shares of
High School and College workers, county-level shares of married adults, dummy variables for local area
types (i.e., city, suburban, town or rural area) and dummy variables for the nine U.S. Census divisions.
Then, we weight each public school by the inverse of the predicted probability P̂r {yj = 1}, and each
private school by its PSS sampling weight times the inverse of the predicted probability P̂r {yj = 1}.27

We check the quality of this adjustment by comparing the weighted counts of students, teachers, and
schools in the data to the same counts based on the pooled CCD/PSS file (i.e. those reported in the
second column of Table A1).

A.4 Comparison of selected sample to the NCES universe of schools

Table A1 compares aggregates from the CCD and PSS to the NCES’s digest of education’s statistics (see
https://nces.ed.gov/programs/digest/). The CCD files we are using were released only recently and
have not yet been used by the NCES to produce official statistics, but the close similarity between all

27Since the CCD contains the universe of public schools, the sampling weight of public schools is 1 and therefore the
adjusted weight is 1 divided by the probability of selection into the “in scope” dataset. Across all schools, the final weights
that we obtain range from 1.24 to 138.6 with an average of 1.73 and a median of 1.56. For public schools, the weights range
from 1.24 to 13.7 with an average of 1.64 and a median of 1.52. The larger weights of the “in scope” dataset are for private
schools, but the large values come from the PSS sampling weights (which can go all the way up to a value of 85), as opposed
to reflecting very small values of P̂r {yj = 1}.
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Figure A2: Safegraph: Aggregate time series of school visits

(a) Raw counts of visits

2018 2019 2020 2021

0

5,000

10,000

15,000

20,000

25,000

30,000

R
a

w
 c

o
u

n
ts

 o
f 

v
is

it
s
 (

in
 1

,0
0

0
s
)

D
ec

 2
4 

− 
D
ec

 3
0

Apr
 8

 −
 A

pr
 1

4

Ju
l 2

2 
− 

Ju
l 2

8

N
ov

 4
 −

 N
ov

 1
0

Feb
 1

7 
− 

Feb
 2

3

Ju
n 

2 
− 

Ju
n 

8

Sep
 1

5 
− 

Sep
 2

1

D
ec

 2
9 

− 
Ja

n 
4

Apr
 1

2 
− 

Apr
 1

8

Ju
l 2

6 
− 

Aug
 1

N
ov

 8
 −

 N
ov

 1
4

Feb
 2

1 
− 

Feb
 2

7

Ju
n 

6 
− 

Ju
n 

12

All visits Summer break / Winter break / Thanksgiving

Visits 240+ minutes

(b) Normalized counts of visits
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Notes: The figures show the raw (upper panel) and normalized (lower panel) counts of total weekly visits and counts of
visits longer than 240 minutes to all Safegraph POI with NAICS code 611110 (“Elementary and secondary schools”).
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Table A1: Comparison to the NCES digest of education’s statistics

Number of educational institutions
NCES table 105.50 CCD & PSS

(1) (2)
Public Schools 98,469 101,688
Elementary 67,408 68,953
Secondary 23,882 21,434
Combined 6,278 6,678
Othera 901 4,623
Private Schools 32,461 27,641
Elementary 20,090 17,378
Secondary 2,845 2,301
Combined 9,526 7,962
All 130,930 129,329

Number of students (in 1,000s)
NCES table 105.20 CCD & PSS

(1) (2)
Public Schoolsb 50,686 50,834
Prekindergarten to grade 8 35,496 33,415
Grades 9 to 12 15,190 17,419
Private Schools 5,720 4,090
Prekindergarten to grade 8 4,252 3,450
Grades 9 to 12 1,468 0.639
All 56,406 54,924

Number of teachers (in 1,000s, full-time equivalents)
NCES table 105.40c CCD & PSS

(1) (2)
Public Schools 3,170 2,911
Private Schools 482 401
All 3,652 3,312

Notes: NCES numbers refer to the year 2017-2018. (a) Includes special education, alternative,
and other schools not classified by grade span. (b) NCES enrollment numbers in public schools
include imputations for public school prekindergarten enrollment in California and Oregon.
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Table A2: Comparison between all schools and schools from the in-scope dataset

Public schools Private schools
All Matcheda In scopeb All Matcheda In scopeb
(1) (2) (3) (4) (5) (6)

Sample count 101,688 85,276 57,730 22,895 17,498 11,606

Student-teacher ratio 15.7 15.5 15.5 10.6 10.6 10.9

% Male 52.2 52.1 51.8 52.1 52.2 51.8

% Indian 1.84 1.68 1.20 0.68 0.66 0.63
% Asian 3.87 3.88 4.22 5.51 5.64 6.12
% Pacific 0.40 0.34 0.36 0.49 0.50 0.59
% Hispanic 25.2 24.6 25.0 12.1 12.4 13.7
% White 49.9 51.4 51.5 65.6 64.9 62.6
% Black 14.6 13.8 13.5 11.6 11.9 11.8
% Other 4.29 4.34 4.33 3.99 4.08 4.49

% Free lunch (c) 44.2 43.8 43.6 n.a. n.a. n.a.
% Reduced-price lunch (c) 5.07 5.13 5.33 n.a. n.a. n.a.

City 27.6 26.1 27.8 32.1 33.0 38.8
Suburban 31.4 31.9 30.8 36.7 37.7 40.1
Town 13.2 13.7 13.8 8.90 9.06 8.42
Rural 27.8 28.4 27.7 22.4 20.3 12.6

Notes: (a) Matched refers to schools matched to Safegraph data. (b) In scope refers to schools matched to Safegraph data and
with visits data that is neither too sparse or too noisy (see Subsection A.2). Except for the sample count, all the statistics for
the in scope data are based on the weights calculated in Subsection A.3. (c) % Free lunch and % Reduced-price lunch denote the
share of students who are eligible for free and reduced-price lunches, respectively.

counts (number of educational institutions, number of students, number of teachers) suggests that the
CCD and PSS files put together cover the universe of elementary and secondary schools.

Through direct merges, matching and fuzzy-name matching (see Appendix A), we combine the CCD-
PSS file to Safegraph data. Out of 124,583 schools in the CCD-PSS file, we obtain 102,774 matches to
the Safegraph data for which the quality of the match is high enough to be considered as reliable. We
call this subset of schools the “matched” sample. Out of those schools, we retain 69,336 schools in our
analysis and discard the remaining ones that suffer from excessively sparse or noisy ∆ṽj,t. The remaining
schools constitute the “in scope” dataset. Table A2 compares different observables in the full CCD-PSS
file (columns 1 and 4) with the schools that we match to Safegraph data (columns 2 and 5) and to the
subset of these schools that we retain in our analysis of school visits (columns 3 and 6). The characteristics
of the full CCD/PSS file and our matched dataset are very similar, suggesting that the algorithm does
not selectively pick certain schools while discarding others. In columns 3 and 6 all the entries (except
sample counts) are computed using the school weights described in Subsection A.3, which by construction
make the in-scope dataset representative of the universe of CCD-PSS schools.

A.5 A closer look at the school visits data

Figure A3 plots the distribution of average changes in visits ∆ṽj,t in September and October of 2019
(that is, before the base period) and in January and February of 2020 (during the base period) for schools
that we retain in our analysis. Despite the various adjustments (Sections 2 and Subsection A.2), we see
a substantial variation in school visits: each panel in Figure A3 uses 4 weeks of data for each school j,
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and yet a non-trivial share of changes in visits fall outside of the [-20%, +20%] interval. This said, some
of this dispersion may capture variations in school activity across months. For instance, some schools
may not reopen right in the beginning of September 2019, which would explain why the distribution is
shifted to the left. Similarly, in January 2020, some schools might start later than others and therefore,
the distribution is also shifted to the left.

Figure A3: Distribution of changes in school visits before and during the base period
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Notes: The figures show the distribution of the average change in school visits during 4 months prior to the pandemic.

Figure A4 plots the distribution of average ∆ṽj,t during different months of the COVID-19 pandemic.
The upper panel focuses on the first 4 months of the pandemic. The top left plot in this panel shows that
∆ṽj,t does well in capturing week-to-week variations: most schools were open during at least the first two
weeks of March 2020 before being shut down, and as a result the change in school visits averaged over the
4 weeks of this month is -46 on average. In the other plots of the upper panel, the shift closer to -100%
is obviously indicative of school closures.28

The middle and lower panels of Figure A4 show the distribution of average ∆ṽj,t during the Fall of
2020 and Spring of 2021. Note that the vertical scale is the same in the two panels. We see a slight
decrease in November and December relative to September-October 2020, which is partly due to the fact
that both months include a week of vacation (Thanksgiving in November 2020, Christmas in December
2020). The lower panel shows a gradual recovery in school visits, though with substantial mass around
0 or higher. In fact, the distributions plotted in the lower panel are better thought of mixtures of two
distributions: one for the still closed schools similar to the distribution of April 2020, and another one for
re-opened schools that is thus similar to the distributions in Figure A3.

28In April, May and June in the upper panel of Figure A4, we observe some schools with changes in visits not lower
than -60% or -80%. To understand how this relates to the upper map of county-level loss of EIPL (Figure 3), recall that:
1) these changes in visits are translated into EIPL by being multiplied by a coefficient that can be greater than 1, and 2)
week-to-week variations in visits at the individual school level imply that a school might have ∆ṽj,t between, say, -60% and
-80% in May and between -80% and -100% in April and June. The latter source of variation is not present in Figure 3 since
the data is averaged over longer periods of time.
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Figure A4: Distribution of changes in school visits during the pandemic

(a) March 2020 to May 2020
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(b) September 2020 to December 2020
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(c) January 2021 to May 2021

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0

2

4

6

8

10

12

−100 −80 −60 −40 −20 0 20 40 60 80 100 −100 −80 −60 −40 −20 0 20 40 60 80 100

February 2021 March 2021

April 2021 May 2021

P
e
rc

e
n
t

% change in school visits (relative to Nov 2019 − Jan 2020)

Notes: The figures show the distribution of the average change in school visits at points in time during the pandemic.
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B Comparison with other Safegraph-based indicators
This section overviews two approaches to measuring school activity during the pandemic using visit data
from Safegraph. The first one is from Bravata et al. [2021] who indirectly measure school closures using
Safegraph data through:

ln4schoolct = ln (schoolct,2020)− ln (schoolct,2019) (B.1)

(Equation (1) in their paper). In Equation (B.1), schoolct denotes the sum of visits to all POIs with NAICS
611110 within county c in week t, and ln4schoolct is then the log-transformed county-level difference in
school visits between each week t in 2020 and the same week in 2019. There are obvious important
differences with our approach, such as the level of aggregation (county- vs. school-level) and the focus
on year-over-year variation (as opposed to variation relative to a fixed, base period). The year-over-
year variation is useful to address seasonal variations, but note that in our analysis we omit data that
correspond to the Summer and Winter breaks and data for the week of Thanksgiving. Another difference
is that the metric of the indicator in Equation (B.1) is not interpretable in terms of EIPL, but this issue
is irrelevant to Bravata et al. [2021]’s analysis because they use ln4schoolct as a right-hand side variable
to proxy for school closures in a predictive regression of COVID transmission rates.

Parolin and Lee [2021] measure school closures with Safegraph data through:

school closuresj,m = 1

{
vj,m

vj,m−12
− 1 < −ϑ

}
. (B.2)

In this equation, vj,m denotes visits to school j during month m, ϑ denotes some threshold value, and
1 {.} is the indicator function. Thus it flags school j as being closed in 2020 if its year-over-year growth
rate in visits drops by at least ϑ%. In their paper (and in the Internet repository providing their data)
Parolin and Lee [2021] use a threshold value ϑ of 50%.29 Their data cover public schools, and according
to their data description they do not control for changes in Safegraph’s sample size (i.e. changes in
the number of cell phone devices) nor purge the data from potential outliers.30 More importantly, this
threshold-based approach can be problematic when working with cell-phone based foot traffic data: its
high volatility implies that the growth rates repeatedly cross the threshold ϑ and thereby generate many
false positives and false negatives. To illustrate this problem, we apply Equation (B.2) to the Safegraph
data and combine it with information from Burbio and R2L.31,32 Our calculations, reported in Table B1,
indicate substantial disagreement between the different indicators of school closures: 32.1% of schools are
not closed according to Equation (B.2) but are located in counties that are operating in “Virtual” learning
mode. Part of this could be explained by differences between school districts within counties. However,
the R2L’s estimates show that the rate of disagreement remains high (15.7%) when we identify schools in
“Virtual” learning mode based on school district information. The middle and lower panels of the table
further show that false positives and false negatives vary by geographic locations and school size. This
suggests that the extent of disagreement between Equation (B.2) and school tracker information depends
at least partly on the underlying quality of the Safegraph data.

29In data posted in their Internet repository, they also report the mean year-over-year growth rate of visits as well as the
indicators from Equation (B.2) based on ϑ = 25% and ϑ = 75%.

30When reporting year-over-year growth rates in visits, i.e. vj,m
vj,m−12

− 1, the median rather than the mean value might
be a more robust statistics because these growth rates unavoidably jump to extremely large values due to the denominator
being closed to 0 in some months. These outlier values have a non-negligible impact on the growth rates averaged across
schools (even in a large sample like the Safegraph sample of schools).

31We use ϑ = 50%, but adjusting the threshold ϑ changes little the conclusions of our analysis.
32We restrict the analysis to the public schools of our dataset (to match the sample of Parolin and Lee [2021]’s analysis)

during the weeks of the Fall term of 2020. The data contains 76,077 public schools and 16 weeks.
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Table B1: Assessment of Equation (B.2) using data from Return to Learn

(a) Burbio (b) Return2Learn

Tracker: Virtual learning Not virtual Virtual learning Not virtual
Eq. (B.2): Not closed Closed Not closed Closed

(1) (2) (3) (4)

All public schools 32.1 39.5 15.7 56.7

Schools in: Cities 32.4 37.5 29.7 48.3
Suburbs 29.1 38.9 20.9 51.4
Towns and rural areas 33.6 42.5 7.9 72.5

School size: Small 38.7 43.5 10.2 75.4
Medium 32.9 37.8 17.8 54.3
Large 17.9 41.4 14.7 52.8

Notes: The table reports the share of schools× weeks in which schools not flagged as closed according to Equation (B.2) but are operat-
ing in “Virtual” learning mode according to Burbio or R2L (Columns (1) and (3)); and share of schools× weeks in which schools flagged
as closed according to Equation (B.2) but not operating in “Virtual” learning mode according to Burbio or R2L (Columns (2) and (4)).
Small: schools with fewer than 250 students; Medium: schools with between 250 and 750 students; Large: schools with more than 750
students. Data are public schools during the weeks of the Fall term of 2020.

C Additional tables and figures

C.1 Mapping from School visits to EIPL at the region level

To create a tighter mapping from Safegraph school visits to EIPL, we re-estimate Equation (2) separately
for each U.S. Census division. We proceed in two steps. We first search for the sample time window
(starting from the week of September 6, 2020) that yields the better mapping as measured by the R2 of
the regression. Indeed, recall from Section 3 that in order to estimate the relationship between traditional
learning (Tc,t) and school visits while controlling for the hybrid learning (Hc,t), we require the variation
of Tc,t to be not perfectly related to that of Hc,t. The extent to which this condition applies depends on
how hybrid school policies have been implemented, and thus is likely to vary across regions. In the second
step, we estimate (2).

Table C1 reports the results. First, in all regions with exception of the West South Central division
(and East South Central division in Burbio), we obtain R2 that are comparable to or even higher than
the R2 of the base regressions from Table 1. Second, we observe variations across regions in the coefficient
on Hybrid learning, consistent with the idea the implementation of hybrid school policies displays some
regional variation. Third, with exception of the West South Central division, the region-specific coefficients
on changes in school visits are in line with those from Table 1 estimated nationwide.

C.2 Regional disparities in EIPL over time

Figure C1 summarizes the temporal and geographic variation in EIPL by averaging weekly student-
weighted EIPL for each of the nine U.S. Census Divisions. While EIPL drops to near zero for all divisions
between March and May 2020, we see large differences during the 2020-21 school year. EIPL in states
in the West North Central, East South Central and West South Central division quickly increase to 60%
from September 2020 through December 2020 and climb to over 80% from January through May 2021.
In contrast, EIPL in states in the New England, the Middle Atlantic and especially the Pacific division
remains below 50% for most of the 2020-21 school year.
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Figure C1: Weekly effective in-person learning, by Census divisions
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Notes: The figure shows student-weighted, weekly effective in-person learning for the different U.S. Census Divisions. U.S.
Census Divisions are: New England (CT, MA, ME, NH, RI, VT), Middle Atlantic (NY, NJ, PA), East North Central (IL,
IN, MI, OH, WI), West North Central (IA, KS, MN, MO, NE, ND, SD), South Atlantic (DE, FL, GA, MD, NC, SC, VA,
WV), East South Central (AL, KY, MS, TN), West South Central (AR, LA, OK, TX), Mountain (AZ, CO, ID, MT, NM,
NV, UT, WY), Pacific (CA, OR, WA).
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C.3 Relation between EIPL and cities vs. rural areas

We find that schools that are located in a city have on average lower EIPL than schools in suburbs, which
themselves have lower average EIPL than schools located in a town or a rural area. This relationship is
very robust. As shown in Figure C2, it holds true for each school type (public non-charter, public charter,
private religious, and private non-religious) within all four regions of the U.S. Interestingly, the relation
is much weaker in the South for private schools; and the difference between public non-charter and public
charter schools is reversed in the western part of the country. Figure C2 also shows that the magnitude
of the EIPL gap between public and private schools differs across regions; for instance it is larger in cities
of the Northeast region of the country.

C.4 Description of school-level regression variables

In Section 5, we measure the effects of local and school/district variable on EIPL by looking at the effects
of going from the 25th to the 75th percentile of the distribution of a variable. Table C2 presents descriptive
statistics for the sample of public and private schools used in these regressions. In particular, observe
that private schools are on average located in more affluent areas, have a lower proportion of nonwhite
students and are much smaller than public schools in terms of student enrollment.

Table C2: Descriptive statistics of the school-level regression variables

Mean St. Dev. 25th pctile 50th pctile 75th pctile Min. Max.
(1) (2) (3) (4) (5) (6) (7)

(a) Public schools

Zip-level average household income 75,046 29,740 55,784 67,297 86,235 7,770 432,067
Zip-level share of college educated 0.56 0.15 0.46 0.55 0.67 0.11 0.97
School neighborhood poverty 318 159 210 278 382 40 997
School share of non-white students 0.47 0.32 0.18 0.42 0.75 0.00 1.00
School spending per student 12,321 4,476 9,413 11,336 14,087 112 49,957
ESSER funding per student 3,228 2,390 1,534 2,804 4,177 0 30,189
Student enrollment 616 467 339 503 734 6 8,327
District number of schools 44 93 5 12 39 1 735

(b) Private schools

Zip-level average household income 86,503 39,765 59,828 75,054 103,386 22,512 397,509
Zip-level share of college educated 0.62 0.15 0.51 0.62 0.74 0.15 0.97
School share of non-white students 0.37 0.31 0.12 0.28 0.56 0.00 1.00
Student enrollment 211 260 42 138 272 6 4,312

Notes: The table reports the mean, standard deviation (St. Dev.), the 25th, 50th, 75th percentiles (pctile), and the minimum (Min.) and max-
imum (Max) values of the right-hand side variables of the school-level regressions. All statistics are computed with the school weights calculated
as explained in Appendix A.3.

To complement panel (a) of Table C2, Figure C3 presents the correlations between the regressors. As
the top left corner shows, the affluence measures are highly correlated with each other, with correlation
coefficients ranging between 0.71 and 0.83. The school share of non-white students is negatively related to
the affluence measures. The correlations range from -0.19 (correlation with school neighborhood poverty)
to -0.10 (correlation with zip-level average household income). The other interesting correlations in this
figure are those between ESSER funding per student and the affluence measures. The correlations are
negative and within the -0.5 to -0.4 range. Since the share of non-white students is negatively related to
the affluence measures, it is positively correlated with ESSER funding per student (correlation of 0.43).
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Figure C2: Effective in-person learning by school type, locale and U.S. region
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Notes: The figures show student-weighted average EIPL by school type and and by locale for the different U.S. regions.
U.S. regions are: the Northeast (CT, MA, ME, NH, RI, VT, NY, NJ, PA), the Midwest (IL, IN, MI, OH, WI, IA, KS, MN,
MO, NE, ND, SD), the South DE, FL, GA, MD, NC, SC, VA, WV, AL, KY, MS, TN, AR, LA, OK, TX), the West (AZ,
CO, ID, MT, NM, NV, UT, WY, CA, OR, WA).
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Figure C3: Cross-correlations of the school-level regression variables
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Notes: The figure show the cross-correlations of the variables used in the school-level regressions. Correlations are computed
with the school weights calculated as explained in Appendix A.3.
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C.5 Additional regression results

Regression results for private schools. Table C3 presents regression results for the sample of private
schools. Columns (1) and (2) of the table repeat the results of panel (b) of Table 4 for reference. Columns
(3) and (4) add controls for schools size, as measured by student enrollment, and indicators for whether a
school is located in a city, a suburban, a town, or a rural locale. In line with our analysis of the effects of
school/district size for public schools, these controls have no impact on the measures of local affluence and
race of the school’s student body. The effect of school size is generally negative but imprecisely estimated.
In Columns (5) and (6), we introduce fixed effects for the county in which the school is located. As with
our analysis of public schools, we find that the role of affluence is substantially reduced (the coefficient on
average household income becomes not statistically different from zero), and the coefficient on the share
of non-white students decreases too. The fixed effects raises the explanatory power of the regressions
to above 20%. In sum, Table C3 supports the conclusion that the negative relation between EIPL and
affluence and education is driven by less affluent and less educated areas of the county having schools
(public, but also private) that provide more EIPL during the 2020-21 school year.

Table C3: Robustness: The importance of geography for private schools

Dependent variable Effective in-person learning (EIPL)

(1) (2) (3) (4) (5) (6)

Zip-level average household income -4.51*** -4.19*** -0.17
(0.40) (0.43) (0.45)

Zip-level share of college educated -5.17*** -4.52*** -1.45**
(0.56) (0.60) (0.60)

School share of non-white students -5.75*** -6.03*** -5.22*** -5.57*** -3.23*** -3.57***
(0.59) (0.60) (0.58) (0.59) (0.52) (0.53)

Student enrollment -0.48 -0.62* -0.38 -0.33
(0.34) (0.34) (0.25) (0.25)

School type and grade controls " " " " " "

Locale FE " " " "

County FE " "
R-squared 0.04 0.04 0.04 0.04 0.21 0.21
Observations 11,280 11,280 11,280 11,280 11,280 11,280

Notes: Each column reports coefficients from a weighted OLS regression with standard errors in parentheses and school weights cal-
culated as explained in Appendix A.3. The regressions are estimated on average school EIPL for the period from September 2020 to
May 2021. The school type fixed effects consists of indicators for religious school and non-religious school. The school grade fixed
effects consist of indicators for elementary vs. middle vs. high. vs. combined school. The locale FE consists of indicators for cities,
suburbs, towns and rural areas.

County-week fixed effects regressions. Table C4 presents several robustness checks of the regression
of the county-week fixed effects against party affiliation, vaccination rates, and COVID health controls.
The first column repeats column (5) of Table 7 for reference. In Column (2), we use the Republican
vote share in the 2016 presidential election among our proxies for the general stance towards reopening
schools. The results barely change, which is unsurprising given the strong persistence in county-level
Republican vote shares in the 2016 and 2020 presidential elections. In Columns (3) and (4), we change
the number of time lags used to measure COVID vaccination, infection and death rates. When using
contemporaneous values as is done in Column (3), the effect of vaccination rates is less pronounced – it
is reduced by half –, and infection rates exert a negative effect on EIPL. The effects of party affiliation of
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the state governor and of the Republican vote share remain unchanged. On the other hand, with a lag of
one month (Column (4)), the effect of COVID vaccination rates is very close to the baseline estimates. It
is unclear how bets to measure the dynamic relationships between the COVID health variables and EIPL,
but in all instance the regressions show that the vaccination campaign is positively related to EIPL in a
statistically and economically significant way. Last, in Column (5) of Table C4, we assess the sensitivity
of the results to sample size, by restricting the analysis to counties with at least 10 public schools. This
reduces the sample size almost threefold. The results remain unchanged, with exception of pre-pandemic
ICU bed capacity that exert a positive role on EIPL.

Table C4: Robustness: Accounting for systematic geographical differences

Dependent variable County-week fixed effect

Baseline 2016 votes No lag 4-weeks lag ≥ 10 schools
(1) (2) (3) (4) (5)

Republican governor 17.08*** 17.04*** 16.84*** 16.75*** 16.76***
(1.71) (1.71) (1.69) (1.70) (1.88)

Share of Republican voters 11.34*** 11.52*** 11.59*** 10.97*** 12.44***
(0.96) (0.93) (0.95) (0.93) (1.07)

Lagged COVID vaccination rate 9.26*** 9.30*** 4.65*** 8.14*** 10.12***
(1.31) (1.31) (1.19) (1.18) (1.49)

ICU bed capacity 0.81* 0.76* 0.86* 0.79* 2.24***
(0.48) (0.45) (0.51) (0.47) (0.48)

Lagged COVID case rate -0.02 0.13 -1.87*** 0.73* 0.12
(0.33) (0.34) (0.32) (0.42) (0.37)

Lagged COVID death rate 0.44* 0.54** -0.08 0.80*** 0.37
(0.24) (0.24) (0.22) (0.24) (0.33)

Maximum weekly temperature 2.40** 2.65*** 2.58*** 3.06*** 2.07*
(1.00) (0.98) (0.88) (1.09) (1.07)

NPI controls " " " " "
R-squared 0.43 0.43 0.42 0.42 0.46
# of counties 2,814 2,814 2,814 2,814 1,078
# of weeks 35 35 35 35 35

Notes: Each column reports coefficients from a weighted OLS regression of the county-week fixed effects, with standard errors in
parentheses and observations weighted by county population. The county-fixed fixed effect is extracted from the regression of EIPL
against school and local characteristics (see Column (5) of Table 6) for the period from September 2020 to May 2021. The NPI con-
trols consist of county-week indicators for stay-at-home orders, restrictions on public gatherings and mask mandates.
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