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1 Introduction

Obesity has reached epidemic proportions in children and adolescents in the United States,
increasing from 5% in 1980 to over 19% in 2018 (Skinner et al. 2019; Fryar, Carroll, and
Afful 2020). Mounting evidence suggests that the extra pounds often start children on the
path to health problems such as cardiovascular diseases, diabetes, and cancer (Bendor et al.
2020) raising the medical cost due to obesity among adults in the U.S. to $260.6 billion
in 2016 (Cawley et al. 2021). To explain such an alarming phenomenon, a large number
of studies have focused on socio-economic factors such as growing unhealthy eating habits
and the decline in time spent doing physical exercise (Papoutsi, Drichoutis, and Nayga
2013).

Complementary to these views, health economists have also attempted to investigate
the obesity epidemic from the perspective of social interactions (Christakis and Fowler 2007;
Halliday and Kwak 2009; Trogdon, Nonnemaker, and Pais 2008; Yakusheva, Kapinos, and
Eisenberg 2014; Cohen-Cole and Fletcher 2008; Fortin and Yazbeck 2015). Most of these
studies document the presence of positive and significant peer effects which could increase
the prevalence of obesity by changing reference norms for body image and/or by boosting
the social transmission of unhealthy habits related to diet and physical activity.1 Our paper
follows the second strand of the literature by exploring the role of gender heterogeneity
in the social diffusion of Body Mass Index (BMI) outcomes among teenagers,2 and its
consequences in terms of anti-obesity interventions.

Most studies on peer effects assume social interactions to be homogeneous (Manski
1993; Bramoullé, Djebbari, and Fortin 2009; Blume et al. 2015; De Paula 2017). This
means that the effects of all peers are equal regardless of the particular type, such as race
or gender. However, this assumption is restrictive and may not be realistic when speaking
of the weight of adolescent students, arguably a period in life in which social interactions
are important to structure an individual’s body. In this context, heterogeneity in peer
effects along gender lines could operate through different channels. One channel relates to
the activities teenagers do together: for example, students may go to fast-food restaurants
with peers of the same gender, or conversely, they may practice sport together with same-
gender friends.3 However, adolescents are also responsive to the BMI of opposite-gender
peers for a variety of reasons related for instance to the influence of good eating habits and
maturity of these peers.

The aims of this paper are threefold. First, we propose an econometric model which
allows for heterogeneous peer effects along gender lines. Second, building on our identifica-

1Despite some studies have pointed to a virus (Rogers et al. 2007), the standard channel of social
propagation of obesity is thought to be related to complementarities in behavior and/or self-image.

2Although various methods exist to measure excess body fat, BMI (kg/m2) is the most widely utilized
measure of excess adiposity and risk for related diseases.

3Rees and Sabia (2010) document the heterogeneity in sport participation along gender lines, using the
same Add Health data we use.
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tion analysis, we estimate this model using detailed network data on teenagers’ friendship
from the Add Health dataset. Third, based on simulations using our model results, we
show that ignoring gender-based heterogeneity of peer effects may lead to inefficient health
interventions to curb obesity. Let us focus on each of these goals in turn.

Firstly, to our knowledge, we are the first to explore gender heterogeneity in peer effects
on teenage body size. While the literature on dietary choices and weight outcomes of ado-
lescents is sizable (Kapinos and Yakusheva 2011; Mora and Gil 2013; Corrado, Distante,
and Joxhe 2019; Fortin and Yazbeck 2015; Angelucci et al. 2019), studies focusing on the
heterogeneity of peer effects are rare. Some contributions suggest that female adolescents
are more responsive than male ones to their peers’ weight-related outcomes (Arduini, Io-
rio, and Patacchini 2019; Renna, Grafova, and Thakur 2008; Yakusheva, Kapinos, and
Eisenberg 2014). However, none of these studies allow heterogeneity in between-gender
peer effects, as we do. In our model, two types of individuals ( i.e., male vs. female
students) interact within the same network (i.e., a school). This defines an (augmented)
‘heterogeneous’ model with two within-gender and two between-gender peer effects, with
respect to the ‘homogeneous’ setting with one peer effect term. We characterize our model
econometrically and theoretically. We first derive sufficient identification conditions for the
instrumental variable strategy, and we propose an efficient GMM estimator with additional
quadratic moments.

Our methodological approach is closely related to the ones developed by Hsieh and
Lin (2017) and Arduini, Patacchini, and Rainone (2020), but with important differences.
Hsieh and Lin (2017) model peer effects via Bayesian methods, and estimate them through
Markov Chain Monte Carlo sampling techniques. Similarly to us, Arduini, Patacchini,
and Rainone (2020) derive a set of identification conditions that generalize the standard
linear model of Bramoullé, Djebbari, and Fortin (2009) to allow for heterogeneous peer
effects. Their paper puts a strong accent on the asymptotic and finite-sample properties
of the 2SLS estimator. In contrast, as we are interested in analyzing the impact of policy
interventions on outcomes, our paper puts more emphasis on the micro-foundation of our
econometric model. In particular, we show that our approach is consistent with the best
response functions of a Nash non-cooperative model when social interactions display ‘social
synergy’. We show that our micro-theoretic model is identifiable as long our econometric
model is identified and we have some information (proxy) on an individual’s effort to
influence his or her BMI outcome.

Secondly, we illustrate our econometric model using the 1996’s saturation sample of
the National Longitudinal Study of Adolescent Health (Add Health) which provides cen-
sus data on 16 selected schools. Respondents from the sample reported their height and
weight (which we use to compute the BMI), and they were also asked to name up to five
male friends and up to five female friends within their school, which allows us to map the
friendship networks. We first provide test-based evidence that homophily in link formation
is not a concern in our setting: once we control for school-level fixed effects, the network
appears to be conditionally exogenous for BMI determination. Our main results show that
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that peers’ outcomes (and characteristics) affect BMI in a way that is gender-specific. In
particular, we find that the ‘male-female’ endogenous peer effect (that is, the effect on male
students’ BMI of the BMI of their female friends) is significantly larger than the other es-
timated peer effects (for male-male, female-male, female-female interactions respectively).
This result is in line with Kooreman (2007) and Hsieh and Lin (2017) who find that the
influence of female students on male students is generally larger than the reverse for a num-
ber of documented adolescent behaviors. This effect could be due to the fact that girls are
more mature and presumably more influential than boys at the same age during childhood
and adolescence. This hypothesis is consistent with recent studies in neuroscience (e.g.,
Gong et al. 2009; Lenroot and Giedd 2010; Lim et al. 2015; Goyal et al. 2019) suggesting
that girls tend to optimize brain connections earlier than boys.

Thirdly, we present a simulation exercise to show that acknowledging gender hetero-
geneity in the social diffusion of obesity could help design efficient interventions. We
simulate the impact of an intervention proposing one balanced meal per week in replace-
ment of one fast-food type serving. On the basis of our most conservative findings, we
conclude that the social spillovers of offering meal replacement to female students on the
BMI of others are 50% higher than the spillovers of males. This suggests that returns
from (resources spent on treating) females are 9% larger than returns from males in terms
of overall BMI decrease in the student population. If we further assume that females
are more responsive to the intervention, we conclude that the social spillovers of females
are twice the spillovers of males, which translates into a 55% gain in terms of aggregate
BMI decrease from reaching out to female students. Our analysis indicates that ignoring
gender-based heterogeneity of peer effects may lead to severe biases in the analysis of the
impact of anti-obesity policies. More generally, while ex-ante evaluations which rely on
structural models are common in other fields of economics (e.g., Wolpin 2007), they are
novel in the context of social interactions. By providing the infrastructure to evaluate
how interventions interplay with heterogeneous social diffusion, we think that our paper
brings an important contribution to policy making and can be of considerable interest in
a wide variety of contexts where peer effects differ along individual dimensions (e.g., race,
education).

The rest of the paper is organized as follows. In section 2, we describe our econometric
model. In section 3 we introduce the data and provide test-based evidence of network
exogeneity. Section 4 presents our main results. Section 5 describes a simulation exercise
to evaluate anti-obesity policies in presence of heterogeneous social spillovers along gender
lines. Section 6 concludes. Appendix A shows how the heterogeneous model is micro-
founded into an identifiable non-cooperative game of social synergy. Appendix B formalizes
the identification conditions and illustrates the estimation techniques.
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2 The Model

2.1 Setting

We study a setting where n agents (e.g., students) are distributed across R social networks

(e.g., schools), with r = 1, . . . , R. In a given network r of size nr there are n
f
r female agents

and nmr male agents (nfr + nmr = nr).
4 These agents interact with both own-gender and

other-gender peers and their outcome (e.g., the BMI) can be influenced by their behavior.
For each network we define four fixed and known adjacency matrices: AAAz,r(z = 1, · · · , 4).

The matrix AAA1,r is such that a1,r,ij = 1 if in network r the male student i is influenced
by the male student j, and 0 otherwise.5 The matrix AAA2,r is such that a2,r,ij = 1 if in
network r the male student i is influenced by the female student j, and 0 otherwise. The
matrices AAA3,r and AAA4,r are similarly defined for female students, that is, AAA3,r represents the
impact of female friends on female students, and AAA4,r the impact of male friends on female
students in network r. These matrices are directed: the fact that i influences j does not
necessarily imply that j influences i (e.g., we could have a1,r,ij ̸= a1,r,ji).

6

Let us call nmi,r and nfi,r the number of male and female individuals influencing i in
the network r respectively. The social interaction matrix GGGz,r is the weighted version of

matrix AAAz,r such that one has g1,r,ij = 1/(nmi,r + nfi,r) if i is a male student in network r
and is influenced by the male student j, and 0 otherwise. Since we allow for individuals
to be ‘isolated’, that is, not influenced by anyone in their network (i.e., nmi,r = nfi,r = 0),
the GGGz,r’s matrices are not row-normalized ( i.e., not all matrix’s rows sum up to one).
Thus, the social interaction matrix for the whole population in network r could be written
as GGGr = GGG1,r +GGG2,r +GGG3,r +GGG4,r. Our heterogeneous peer effect model for the network r
writes as

yr = ιnrαr + βmmGGG1,ryr + βmfGGG2,ryr + βffGGG3,ryr + βfmGGG4,ryr +

γ xr + δmmGGG1,r xr + δmfGGG2,r xr + δffGGG3,rxr + δfmGGG4,r xr + ϵr, (1)

where yr is the BMI vector and ιnr is a nr × 1 vector of ones. αr stands for a fixed effect
specific to network r, which takes into account the unobserved factors which commonly
influence the BMI of all students within a school. The βs coefficients represent the ‘en-
dogenous’ peer effects ( i.e., the effect of peers’ outcomes) which are heterogeneous. For
instance, βmm measures the effect of the outcome of male peers on (the BMI of) male
students. In the same way, βmf stands for the effect of the outcomes of female peers on
male students, βff of female peers on female students, and βfm of male peers on female

4In what follows, we order all vector and matrices so that the first nf
r rows correspond to female agents

of network r, and the remaining nm
r rows are for male agents in network r.

5The student i is excluded from his/her own reference group.
6This is because in our illustration we choose to use information on social links as declared by respondents

and the two reports may not coincide within a dyad. Nevertheless, our estimation strategy is also compatible
with undirected network data.
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students. Without loss of generality and for notational simplicity, we assume a unique in-
dividual characteristic.7 We also allow for heterogeneous contextual effects δs that account
for the effect of the characteristic of peers on student’s outcomes that reads the same way
(e.g., δmm measures the effect of the characteristic of male peers on the outcome of male
students).

Finally, if we observe R > 1 distinct networks, we can stack up the data and write the
heterogeneous model succinctly as

y = ḠGG(β)y + γx+ ḠGG(δ)x+ ια+ ϵ (2)

under the assumption that E(ϵ|x, ια, ḠGGz, z = 1, · · · , 4) = 0, and where y = (y
′
1, ...,y

′
R)

′,
x = (x

′
1, ...,x

′
R)

′, ι = D(ιn1 , ..., ιnR) where D indicates a block diagonal matrix, α =
(α1, ..., αR)

′, ϵ = (ϵ
′
1, ..., ϵ

′
R)

′, β = (βmm, βmf , βff , βfm)′, δ = (δmm, δmf , δff , δfm)′, ḠGGz =
D(GGGz,1, ...,GGGz,R)(z = 1, · · · , 4), ḠGG(β) = βmmḠGG1 + βmfḠGG2 + βffḠGG3 + βfmḠGG4 and ḠGG(δ) =
δmmḠGG1 + δmfḠGG2 + δffḠGG3 + δfmḠGG4.

The conditional exogeneity assumption E(ϵ|x, ια, ḠGGz, z = 1, · · · , 4) = 0 means that the
network represented by the social interaction matrices ḠGGz, for z = 1, · · · , 4 is taken as
exogenous relative to the random term ϵ, once we control for individual characteristics x
and school-level fixed effects. This issue will be discussed in Subsection 3.3.

Note that if we impose βmm = βmf = βff = βfm = βh and δmm = δmf = δff = δfm =
δh in equation (2), we obtain the so-called ‘homogeneous’ model

y = βhḠGGy + γx+ δhḠGGx+ ια+ ϵ. (3)

This corresponds to the specification by Bramoullé, Djebbari, and Fortin (2009) with
fixed effects and will be used as benchmark for our empirical analysis in Section 4.

In Appendix A we micro-found Equation 2 in a non-cooperative model where peer
effects work through the channel of strategic complementarity (‘social synergy’) in BMI
within the social network. The assumption of social synergy is plausible in our context,
because body size can only be indirectly chosen through effort, that is, healthy life habits
(e.g., good dietary behavior, physical exercise). We show that we can identify all parame-
ters of the utility function, provided that we have a good proxy for individuals’ effort, and
discuss the relevance of that in terms of policy evaluation.

2.2 GMM Estimation Procedure

This section describes the details of our estimation procedure. We first derive the conditions
under which the parameters of equation (2) are identified. We then discuss the efficient
GMM estimator with additional quadratic moment restrictions. The methods we detail
here will be the basis for our empirical exercise in Section 4. All proofs are relegated to
Appendix B.

7In our empirical analysis (section 4), we allow for many individual characteristics.
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Assuming that the matrix S(β) = (I− ḠGG(β)), where I is the identity matrix, is invert-
ible,8 we can write the reduced form of equation (2) as

y = S(β)−1
[
γx+ ḠGG(δ)x+ ια

]
+ S(β)−1ϵ. (4)

Equation (4) allows us to rewrite

ḠGGzy = Wz(β)
[
γx+ ḠGG(δ)x+ ια

]
+Wz(β)ϵ,

where Wz(β) = ḠGGzS(β)
−1 and z = 1, · · · , 4. This illustrates that the right-hand side

terms in equation (2) are endogenous (E [(Wz(β)ϵ)
′ϵ] ̸= 0), so that the model cannot be

consistently estimated by OLS. However, it can be estimated with instrumental variables
techniques, as we explain in what follows. Let us rewrite equation (2) more succinctly as

y = Zθ + ια+ ϵ, (5)

with Z =
[
ḠGG1y, ḠGG2y, ḠGG3y, ḠGG4y,X

]
, X =

[
x, ḠGG1x, ḠGG2x, ḠGG3x, ḠGG4x

]
, θ = (β, γ, δ)′. In order

to eliminate the fixed effects ια avoiding the incidental parameters problem, we perform a
global transformation on equation (5).9 For that purpose we define the global transforma-

tion matrix J = D(J1, ...,JR) where Jr = (Ir − ιrι′r
nr

) ∀ r ∈ {1, ..., R}, such that Jια = 0.10

The transformed model reads as

Jy = JZθ + Jϵ. (6)

Following Liu and Lee (2010), one can write

Q∞ = J
[
{Qz,∞}{z=1,2,3,4},X

]
(7)

where Qz,∞ = [Q0
z,∞x,Q0

z,∞ι] and Q0
z,∞ contains all products of the social interaction

matrices of arbitrary order11

Q0
z,∞ = [ḠGGzḠGG1, ḠGGzḠGG2, ḠGGzḠGG3, ḠGGzḠGG4, ḠGGzḠGG

2
1, ḠGGzḠGG1ḠGG2, ḠGGzḠGG2ḠGG3, ḠGGzḠGG2ḠGG4,

ḠGGzḠGG
2
3, ḠGGzḠGG3ḠGG4, ḠGGzḠGG4ḠGG1, ḠGGzḠGG4ḠGG2, ḠGGzḠGG

3
1, ...]

8 A sufficient condition for this assumption to hold is that |βmm| < 1, |βmf | < 1, |βff | < 1 and |βfm| < 1.
This condition also implies that the matrix S(β) is uniformly bounded in absolute value. See a discussion
on this point in Arduini, Patacchini, and Rainone (2020).

9The incidental parameters problem, as it was defined by incidental, and discussed at length in Lan-
caster (2000), occurs whenever the data available for each group or network are finite.

10Note that this transformation only captures the selection bias stemming from the fact that individuals
in the same network face a common environment. It does not address the problem of network endogeneity,
which is discussed in section 3.3.

11Recall that the matrix ordering leads by construction to the following identities: ḠGG1ḠGG4 = 0nr , ḠGG3ḠGG2 =

0nr , ḠGG1ḠGG3 = 0nr , ḠGG3ḠGG1 = 0nrḠGG2ḠGG1 = 0nr , ḠGG4ḠGG3 = 0nr ,ḠGG
2
2 = 0nr ,ḠGG

2
4 = 0nr .
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Defining Qz
K as a subset of Qz,∞ of size K and QK = J

[
Q1

K ,Q
2
K ,Q

3
K ,Q

4
K ,X

]
, the

2SLS estimator of model (2) is

θ̂2sls = (Z′PKZ)−1Z′PKy,

where PK = QK(Q′
KQK)−Q′

K and where

QK = J
[
ḠGG2

1x, ḠGG
2
3x, ḠGG1ḠGG2x, ḠGG2ḠGG3x, ḠGG2ḠGG4x, ḠGG3ḠGG4x, ḠGG4ḠGG1x, ḠGG4ḠGG2x

]
.

QK includes matricial products up to the second order only, which is the set of instruments
we use in Section 4. This is a particular case of the lagged-friend instrumental strategy
which has been widely used in presence of network data (Calvo-Armengol, Patacchini, and
Zenou 2009; Kelejian and Prucha 1998; Patacchini and Zenou 2012). Under plausible
regularity conditions (Liu and Lee 2010), this approach provides a consistent estimator,
provided that the model is identified. The identification conditions for equation (2) are
formalized in Proposition 1 below, which extends the conditions derived by Bramoullé,
Djebbari, and Fortin (2009) to the case of peer effects heterogeneity. For a detailed discus-
sion, we remand to the proof in Appendix B.

Proposition 1 Suppose model (2) holds with no correlated effects. Suppose that ḠGG(β)
is invertible and that (δmm + γβmm) ̸= 0, (δff + γβff ) ̸= 0, (δmf + γβmf ) ̸= 0 and
(δfm + γβfm) ̸= 0. If vector columns of matrix QK are linearly independent, then social
effects are identified.

Following Liu and Lee (2010) in the context of homogeneous best-response functions, we
propose a GMM estimator of our heterogeneous model with additional quadratic moment
equations. These quadratic moments exploit the existing correlations between the error
term of the reduced form model, thus provide more precision compared to the traditional
2SLS estimators.12

Let the IV moments be given by the expression g1(θ) = Q′
Kϵ(θ) where ϵ(θ) =

J (y − Zθ − ια). The additional quadratic moments are given by the expression g2(θ) =[
U′

1ϵ(θ),U
′
2ϵ(θ), ...,U

′
qϵ(θ)

]′
ϵ(θ), where Uj is such that tr(JUj) = 0.13 In addition,

let the combined vector of linear and quadratic empirical moments be given in g(θ) =
[g′1(θ), g

′
2(θ)]. Finally, let Ω̃ = Ω̃(σ̃2, µ̃3, µ̃4) where σ̃2, µ̃3 and µ̃4 are initial estimators

of the second, third and fourth moments of the error term of our model. Following Liu,
Patacchini, and Rainone (2017), extented to the case of heterogeneous peer effects, the
optimal weighting matrix associated with our GMM estimation strategy is given by

Ω = V ar [g(θ)] =

σ̃2Q′
KQK µ3Q

′
Kω

µ3ω
′QK (µ4 − 3σ4)ω′ω + σ4Υ

 ,
12An additional advantage is that the objective function of the GMM estimator uses the optimal weighting

matrix that increases efficiency with respect to the 2SLS case.
13Following Liu and Lee (2010), we use Uk = ḠGGk − tr(JGk)I/tr(J) for k = 1, ..., 4.
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where ω = [vecD(U1), vecD(U2), ..., vecD(Uq)], E
s = E+E′, ∀ square matrix E of size n,

vecD(A) = (a11, a22, ..., ann) and Υ = 1
2

[
vec(Us

1), vecD(U
s
2), ..., vecD(U

s
q)
]
. The feasible

optimal GMM estimator is given by

θ̂gmm = argmin θ∈Θg
′(θ)Ω̃−1g(θ)

which will be implemented in our estimates of Section 4.

3 Data

3.1 Add Health

In this section we use data from the National Longitudinal Study of Adolescent Health (Add
Health) to study the heterogeneous influences of peers on the body weight of adolescents.
Add Health is a panel study of a nationally representative sample of adolescents in grades
7-12 in the United States, conducted by the Carolina Population Center. It combines
information on respondents’ social, economic, psychological and physical well-being with
data on family, neighborhood, community, school, friendships, peer groups, and romantic
relationships. The richness of this information puts Add Health among the largest and
most comprehensive longitudinal surveys of adolescents ever undertaken.

Wave I of Add Health consists of an In-school questionnaire that was filled out by
90,118 students in 145 schools and 80 communities during the 1994-1995 school year. A
subset of these students was then chosen for an in-depth survey: Wave II, which was
held in 1996, includes a detailed In-Home questionnaire that was completed overall by
14,738 students out of the original Wave I pupils. Students who were selected for the In-
Home survey were asked for information on their height and weight, which can be used to
compute body mass indices (BMI). Wave II also provides information on social interactions,
because respondents are asked to name up to five male friends and up to five of their female
friends within their school. Other notable covariates include age, racial background, grade
variables, parents’ education and health status.

For the purpose of our analysis, we use the saturated sample of Wave II that focuses
on 16 selected schools. Every student attending these 16 schools answered the In-Home
questionnaire, thus providing information on BMI and social links. We construct student
BMI according to the formula: BMI = (weight in kilograms)/(height in meters)2.14 Having
a census of the schools’ population (rather than a random sample of students within a given
school) is crucial for our estimation strategy, because we can fully reconstruct friendship

14We do not use self-declared body mass indices, although declared BMIs are shown to reflect real variables
in the context of Add Health.
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interaction matrices. In fact, our estimation strategy crucially relies on the whole network
topology (because friends of friends could have an indirect influence on one’s behavior).15

3.2 Descriptive statistics

The saturation sample comprises 2220 students in all 16 schools of the Wave II In-Home
survey. For the purpose of our estimation, we retain 1914 students (so 87% of the whole
sample) for which we can trace some social interaction. This means that these 1914 students
either mention some friends within the school or they are mentioned as friends by someone
within the school (or both). Note, however, that our interaction matrices represent directed
links (e.g., gij > 0 if student i is influenced by student j, but not necessarily vice versa).
Thus we still retain in our sample 203 students that are ‘isolated’ because they are not
influenced by any peer within the boundaries of their school.16

Table (1) provides descriptive statistics of our estimation sample of 1914 students.
Average BMI is 23.1 with a standard deviation of 4.79. This reveals that on average, the
population considered is normal in terms of weight. In terms of individual characteristics,
we can see that the male-female population is equally distributed, and that mean age is
about 16. White students are more represented (64%) than the other racial communities.
The percentage of Black, Asian and Hispanic students is 14%, 14% and 16% respectively.
61% of students in our sample attend grade 11 or 12 and 27% are in grade 9 or 10. Most
of the parents hold at least a high school degree and 19% of mothers hold a college degree
compared to 16% for fathers of the students in our sample. 92% of mothers report being
in good health compared to 78% of fathers.

Statistics about the directed network point to more links with same-gender friends:
males have on average 1.72 links with males and 0.84 with females, while females have 1.63
links with females and 0.91 with males. The total number of friends is similarly distributed
between male and female friends. This also suggests that the constraint put in the number
of friends by the Add Health study is not binding, as individuals actually report having
fewer friends than the number of allowed nominations during the survey.17

3.3 Network endogeneity

In everyday life individuals with common preferences or characteristics tend to associate
together. This well-documented tendency which is named ‘homophily’ could be a source

15Thanks to census data, we avoid making strong distributional assumptions to deal with sampled dyadic
observations (Chandrasekhar and Lewis 2016).

16Following Lin (2010), we exclude those students who do not cite anyone and are not cited by anyone
(13% of the sample). These observations could in fact disguise measurement errors in social links or
differences in underlying preferences.

17This alleviates the concern that the network may be only partially observed. Also, it is worth noting that
censoring leads to an underestimation of the magnitude of peer effects, as shown by Griffith (Forthcoming)
using Add Health data. This is reassuring in our context where peer-effect estimates are significantly
positive.
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Table 1: Descriptive statistics

Mean s.d. Min Max

Weight status
BMI 23.1 4.79 13 46
Males’ BMI 23.4 4.72 15 45
Females’ BMI 22.8 4.83 13 46

Individual characteristics
Age 16.34 1.43 13 20
Female 0.50 0.50 0 1
White 0.64 0.48 0 1
Black 0.14 0.35 0 1
American Indian 0.03 0.17 0 1
Asian Pacific 0.14 0.34 0 1
Hispanic origin 0.16 0.37 0 1
Grades 7-8 0.11 0.32 0 1
Grades 9-10 0.27 0.45 0 1
Grades 11-12 0.61 0.49 0 1

Mother education and health status
No high school 0.12 0.33 0 1
High school 0.36 0.48 0 1
Some college 0.19 0.39 0 1
College 0.18 0.38 0 1
Advanced 0.07 0.25 0 1
Don’t know 0.04 0.19 0 1
Good health status 0.92 0.27 0 1

Father education and health status
No high school 0.11 0.31 0 1
High school 0.26 0.44 0 1
Some college 0.15 0.35 0 1
College 0.16 0.37 0 1
Advanced 0.07 0.25 0 1
Don’t know 0.05 0.22 0 1
Good health status 0.78 0.42 0 1

Network statistics
Average number of friends 2.55 1.96 0 10
Males: Number of male friends 1.72 3.80 0 5
Males: Number of female friends 0.84 1.33 0 5
Females: Number of male friends 0.91 1.21 0 5
Females: Number of female friends 1.63 1.49 0 5

N=1914

of estimation bias when individuals self-select into social links. In particular, endogeneity
arises whenever individual-level unobservables simultaneously determine link formation and
the outcome of interest. As in equations (2) or (3) we assume that the social network is
exogenous, it is essential to provide evidence that this assumption is not rejected in the
context of our analysis.
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The issue of network endogeneity has recently been addressed by a number of papers.
One strategy uses a control approach and adopts a Bayesian method based on a full para-
metric specification of the network formation and the outcome equation ( e.g., Goldsmith-
Pinkham and Imbens 2013; Patacchini and Rainone 2017; Hsieh and Lee 2016). Another
approach also controls for the endogeneity of the social links using a control function but
adopting a frequentist approach based on a nonparametric specification of the network
formation (e.g. Johnsson and Moon 2021). Our approach is test-based, in the sense that
we implement two different testing strategies that suggest that network endogeneity is not
a concern in our setting. More precisely, our results indicate that once we control for
school-level effects, our network appears to be exogenous. We discuss the results for the
homogeneous peer-effect model, which should reassure the reader for the heterogeneous
model too.

The first strategy follows Liu, Patacchini, and Rainone (2017), Goldsmith-Pinkham
and Imbens (2013), and Boucher and Fortin (2016). The intuition goes as follows. Let
us focus on equation ( 3) for a given network r, and suppose that ϵr = πvr + er, where
vr is an unobserved attribute at the individual level and er is a vector of random distur-
bances. We further assume that the likelihood of a link between students i and j can be
represented as a function of their characteristics, such as in latent space models used in the
statistical literature (Hoff, Raftery, and Handcock 2002) and introduced in economics by
Goldsmith-Pinkham and Imbens (2013). More precisely, let us suppose that the link forma-
tion process between any two individuals depends on distances in observed and unobserved
characteristics as in equation (8) below:

gij,r = κ+
K∑
k=1

ζm|xki,r − xkj,r|+ ϕ|vi,r − vj,r|+ κr + uij,r. (8)

If there is homophily along unobserved characteristics, then we must observe that ϕ < 0,
i.e., the closer two individuals are in terms of unobservables, the higher the probability
that they become friends. If, in addition, one has π ̸= 0, these unobservables have a
direct effect on yr as well. Thus, if data reveal a positive and statistically significant
correlation between the predicted probability to observe a link between the two individuals
(ĝij,r) and the difference between their residuals in the outcome equation (|ϵ̂i,r − ϵ̂j,r|),
conditional on whether the link is observed or not (gij,r = 1 vs. gij,r = 0), then we cannot
reject the presence of endogeneity in network formation. Following this idea, we first
perform a naive OLS regression of the predicted probability to observe a link (ĝij,r) and
differences in residuals for the entire sample (|ϵ̂i − ϵ̂j |). We also include a binary variable
gij indicating whether the link is formed, and we differentiate between cases where school-
level fixed effects are included and cases where there are no fixed effects.18 Our results
reported in Table (2) suggest that, in the absence of fixed effects, there is a negative and

18Bramoullé, Djebbari, and Fortin (2009) suggested to introduce network fixed effects in the model to
take into account network formation endogeneity in peer effects analysis.
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significant effect of differences in residuals and the predicted probability to observe a link.
However, whenever fixed effects are accounted for, the effect is no longer significant. This
suggests that these fixed effects capture all unobserved heterogeneity that is relevant for
BMI determination and common to all students within the same school.

Table 2: Endogenous network - Dep. var.: predicted link probability

(1) (2)

——————————– ——————————–

Coefficient Coefficient height
|ϵ̂i − ϵ̂j | -0.00008 -0.0000002

(0.0000024) (0.00000025)

gij 0.01972 0.00015

(0.00016) (0.000016)

Intercept 0.00643 0.09544

(0.000019) (0.000025

Network fixed effects No Yes

Observations 790,524 790,524

We then refine the testing strategy by focusing on the whole distribution of predicted
probabilities to observe a link.19 Our non parametric test is based on a visual observation
strategy aiming at detecting the presence of endogeneity in network formation. The idea
is that if the estimated Kernel densities are visually similar for both gij,r = 1 and gij,r = 0,
then there is no evidence of network endogeneity. Figure (1) summarizes the results of our
nonparametric estimation without fixed effects. We can see that the two Kernel density
estimates are not similar without the inclusion of school fixed effects. However, once we
control for school fixed effects (Figure 2), densities get visually similar.

19This follows Liu, Patacchini, and Rainone (2017), who split the overall sample into buckets according
to the thresholds of values of the predicted probabilities to observe a link. We concentrate on the whole
distribution to avoid defining arbitrary thresholds.
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Figure 1: Kernel densities without school fixed effects

gij,r = 1 gij,r = 0

Figure 2: Kernel densities with school fixed effects

gij,r = 1 gij,r = 0

Overall, based on the results above we conclude that the fixed-effect strategy is rather
efficient in reducing the selection bias associated with confounding correlates, and there
is no evidence of the residual endogeneity as related to students’ BMI in our data. This
is in line with several recent papers concluding against a severe assortativity bias in Add
Health data (Goldsmith-Pinkham and Imbens 2013; Boucher 2016; Badev 2021).20

20Boucher and Fortin (2016) suggest that with a rich set of control variables as those that can be used in
our data set, the impact of homophily may be small. Other studies using different data sets and different
outcomes reach the opposite conclusion (e.g., Carrell, Sacerdote, and West (2013) and Hsieh et al. (2020)).
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4 Results

4.1 Homogenous peer effects and BMI

Table (3) presents the GMM estimates from the homogeneous peer effects model of equation
(3), with fixed effects at the level of the school. The set of characteristics x comprises:
student attributes (age, race, grade),21 education level and health status of mother and
father respectively.22 We use as instruments for ḠGGy all lagged-friends characteristics of
the second degree, that is, the (average) attributes of friends of friends ḠGG2x. The weak
instrument test statistic is reported at the bottom of the table.

Results indicate that the coefficient associated with the endogenous peer effect (ḠGGy) is
significant at 1%. Its estimated magnitude suggests that, ceteris paribus, a 1-unit increase
in the average BMI of peers induces an increase of 0.208 units in the student’s BMI. This is
aligned with the recent literature reporting evidence of positive but small endogenous peer
effects on weight. Under social synergy preferences, this implies a so-called social multiplier
equal to 1.23, i.e., the total impact of a common shock on the aggregate outcome in a
network is 1.23 times the sum of its direct effects at the individual level.23

We also remark that several individual and peer attributes appear to influence one’s
BMI. The first two columns report the estimates and standard errors of individual own
characteristics x, and columns 3 and 4 refer to the contextual effects, that is, effects of
friends’ characteristics ḠGGx. We notice that white and black students have a lower BMI (rel-
ative to their Hispanic, Asian or American Indian friends), and the same holds for students
in lower grades and whose father is in good health. Regarding contextual effects, several
estimates appear statistically significant, including peers’ age and parents’ education. In
particular, having friends whose mother has a college or an advanced level of education
strongly reduces a student’s BMI, which may indicate transmission of information via
learning good health habit.24

21The omitted category for race includes Hispanic, Asian and American Indian respondents, while the
omitted category for grade is “7 or 8”.

22The reference category for parents’ education is“I don’t know”. The variable representing parents’
health status (as reported by the student) is a dummy.

23This is computed as 1
1−0.208

× 0.89 + 1× 0.11 because for isolated students (11%) the social multiplier
is 1. This is in line with the results of Fortin and Yazbeck (2015) who estimate the social multiplier to 1.15
in a model where peer effects are homogeneous across gender and limited to fast food consumption.

24We also perform a robustness analysis of our results when using the zBMI instead of absolute BMI,
and the GMM estimation strategies reveals similar patterns.
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Table 3: GMM estimation of homogeneous peer effects

(1) (2) (3) (4)

Individual effects Contextual effects

Coef. SE. Coef. SE.

Endogenous peer effect 0.208 0.022 — —

Personal characteristics

Age 0.145 0.098 -0.301 0.058

White=1 -0.456 0.274 0.680 0.326

Black=1 -0.661 0.358 0.830 0.439

Grade 9-10 0.557 0.574 0.764 0.651

Grade 11-12 1.306 0.644 0.341 0.719

Mother education

No high school -0.419 0.371 -1.979 0.579

High school -0.081 0.314 -1.300 0.509

Some college 0.117 0.336 -1.043 0.550

College 0.311 0.344 -2.177 0.542

Advanced -0.132 0.428 -3.182 0.701

Father education

No high school 0.749 0.321 0.000 0.478

High school 0.133 0.252 -0.645 0.384

Some college 0.321 0.284 -1.270 0.414

College 0.108 0.287 0.301 0.445

Advanced 0.400 0.372 -0.388 0.578

Parents health status

Mother Good health -0.315 0.307 0.950 0.485

Father Good health -0.572 0.231 -0.263 0.344

Weak instruments test (Kleibergen-Paap/Cragg-Donald statistics): 6.931

N = 1914

4.2 Gender heterogeneity and BMI

In this subsection, we present the estimates from the model allowing for within- and
between-gender heterogeneity in peer effects. We also provide Wald statistics to test the
homogeneous model against the heterogeneous model.
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Table (4) provides the results from the GMM estimation of equation (2), with fixed
effects at the level of the school. The set of instruments now includes all exogenous at-
tributes of friends at distance 2, per category,that is: ḠGG2

1x and ḠGG1ḠGG2x (the attributes of
males/female friends of males friends of male students); ḠGG2ḠGG4x and ḠGG2ḠGG3x (the attributes
of males/female friends of females friends of male students); ḠGG4ḠGG1x and ḠGG4ḠGG2x (the at-

tributes of males/female friends of males friends of female students), ḠGG3ḠGG4x and ḠGG2
3x (the

attributes of males/female friends of females friends of female students). The weak instru-
ment test statistic is reported at the bottom of the table. The upper panel provides the
four endogenous peer effects coefficients (standard errors of the estimates are reported in
the adjacent columns), namely: the effects of male peers’ BMI on the BMI of male students
(m−m, columns 3 and 4), the effects of female peers’ BMI on the BMI of male students
(m− f , columns 5 and 6), the effects of female peers’ BMI on the BMI of female students
(f −f , columns 7 and 8) and the effects of male peers’ BMI on the BMI of female students
(f −m, columns 9 and 10).

As in the case of the homogeneous model, the endogenous peer effect estimates are
positive and highly significant, suggesting that interaction with peers of all types influences
a student’s BMI. The within-gender point estimates are similar (the m − m and f − f
coefficients are 0.214 and 0.225 respectively), and they are slightly larger but comparable
for magnitude to the f−m coefficient (0.184) which represents the effect of the average BMI
of male peers on female student’s BMI. On the other hand, the estimated coefficient for
the between-gender effect from females to males is noticeably larger (0.392). This suggests
that males respond more to the average BMI of their female friends that the reverse, a
result which is also obtained by Kooreman (2007) and Hsieh and Lin (2017) for several
adolescent behaviors. As mentioned in the introduction, in our context this may be partly
due to the fact that girls become mature and their brain reaches their peak volume earlier
than boys in the adolescence.25

We report the estimates and standard errors related to individual characteristics in
columns 1-2, and the ones for contextual effects (within- and between- gender) in columns
3 to 9. Grade 11-12 students are the ones who report a higher BMI (in line with the
results from the homogeneous model), together with those whose father has no high school
education (effect significant at 10% only). Our results also reveal an important number
of differences in the estimates of contextual effects depending on the nature (within- or
between-gender) of social interactions. However, some regularities emerge in line with the
results of the homogeneous model. For instance, the educational level of male-peer parents
has a negative impact on a male student’s BMI. Again, this may reflect the transmission of
information on the benefits of good health habits. Furthermore, having male peers whose
father holds some college degree negatively affects male students’ BMI.

25According to a neuroscience study by Lim et al. (2015), the optimizing of brain connectivity usually
occurs during ages 10-12 in girls and 15-20 in boys. Girls also mature faster than boys on a physical level:
girls undergo puberty earlier than boys by about 1-2 years and generally finish the stages of puberty quicker
than males.
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Table 5: Wald Statistics for Gender Homogeneity in Peer Effects

GMM - BMI

Full Homogeneity: βmm = βmf = βff = βfm/δmm = δmf = δff = δfm 120.71

Only-Endogenous Homogeneity: βmm = βmf = βff = βfm 107.77

Full-gender model: 54 d.o.f.. threshold values respectively 81.06, 72.15 and 67.67 for

0.01%. 0.05% and 10% significance. Only-endogenous model: 6 d.o.f.. threshold values

respectively 16.81, 12.59 and 10.64 for 0.01%. 0.05% and 0.10% significance.

Table (5) reports the results from a Wald test which rejects joint homogeneity in con-
textual and endogenous effects (statistics =120.71 as compared with a critical χ2 value of
81.06 at the 1% significance level), as well as homogeneity in endogenous effects only (statis-
tics =107.77 as compared with a critical χ2 value of 16.81 at the 1% significance level).
One thus concludes that gender heterogeneity is the appropriate hypothesis in our context.
This result has potentially important consequences in terms of public policy evaluation,
which we illustrate in the next section through a simulation exercise.

5 Gender-based Policy Evaluation

Interventions to curb obesity among teenagers may take various forms, aiming at improving
health habits through action (i.e., by changing the cafeteria menu, subsidizing gym access,
etc.) or information (i.e., educational campaigns about nutrition and healthy lifestyle).
In what follows, we present a simulation exercise to illustrate the point that efficient in-
terventions should account for gender heterogeneity in peer effects. We first show how to
estimate the total treatment effect of an intervention when peer effects are heterogeneous
along gender lines. We then describe the simulation procedure and discuss the results
under different hypotheses regarding the design and the response to the intervention.

5.1 Treatment effect

Let us assume we observe one population of teenage students with social synergy preferences
connected in a social network where endogenous peer effects are at work. We want to assess
the effect of an intervention designed to curb the prevalence of obesity among the target
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population, whose allocation is represented by the intent-to-treat vector itt (itti = 1 if
student i is offered the intervention). We now assume that the intervention induces a
gender-dependent shift in the BMI intercept, and look at the model:

y = ια+ γitt+ ḠGG(β)y + ϵ (9)

where the coefficients γ = (γf , γm) represent the response to the intervention of (male,
female) students.26 In a linear intent-to-treat model without peer effects (GGGz = 0nr for
z = 1, ..., 4), the total treatment effect would be given by the coefficients γ. In models
with social lags in the dependent variable, the interpretation of the estimated parameters
is complicated by the fact that the treatment status of an individual affects not only his
own outcome (the direct effect), but also the outcome of others (the indirect effect). To
define a measure of the treatment effect in our context, we start from the reduced form of
equation (9):

y = S(β)−1[ια+ γitt] + S(β)−1ϵ (10)

where S(β) = [I − ḠGG(β)], and derive the closed-form of the N × N matrix of partial

derivatives with respect to the intervention, which we call ∂E(y|itt)
∂itt . The kth column of

∂E(y|itt)
∂itt is an N × 1 vector that represents the effect of the treatment of individual k =

1, ..., N on the outcomes of all other individuals and writes

∂E (y|itt)
∂ittk

= S(β)−1[γek] (11)

where ek is an N × 1 vector with 1 at the kth element and 0 elsewhere. Following the
practice in spatial and network econometrics (Hsieh and Lee 2016; LeSage and Page 2009;
Comola and Prina 2021), we compute the treatment effect of the intervention as follows:

the direct treatment effect is the average of the diagonal elements in ∂E(y|itt)
∂itt . The indirect

treatment effect, which operates through the change in the treatment status of peers, is
the average of the column (or row) sums of the non-diagonal elements of ∂E(y|itt)

∂itt .27 The
total treatment effect is then calculated as the sum of the direct and the indirect effects.28

26For the sake of simplicity, the only individual attribute we include is the treatment status, and we rule
out contextual peer effects. This latter condition implies that the treatment status of peers only impacts
own BMI through the changes in peers’ BMI. Imposing positive contextual peer effects would increase the
estimates of social spillovers in Section 5.3.

27The row sum represents the impact of changing the treatment status of all other individuals on the
outcome of one particular individual, while the column sum represents the impact of changing the treatment
status of one particular individual on the outcome of all other individuals. These two quantities coincide.

28 Note that the estimates of both the direct and indirect effects result from complex interactions between
the parameters and the social-interaction structure. For instance, an arbitrary diagonal element does
not necessarily equal the estimated coefficient γ, because the former also includes feedback loops (where
observation i affects observation j, and observation j also affects observation i) and longer paths that might
go from observation i to j to k and back to i. This is because the series expansion of S(β)−1 contains terms
(GGG)k that, for k ⩾ 2, have non-zero elements on the diagonal.
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Note that the formula of equation (11) also applies to the homogeneous peer effect model
of equation (3), once we replace βmm = βmf = βff = βfm = βh in S(β).

5.2 Simulation Procedure

We now describe the details of our simulation exercise.

Routine

For given values of γ,β we implement the following procedure:

1. Generate a dataset with N nodes, equally distributed between males and females,
and multiple intent-to-treat vectors ittk for k = 1, ...,K;

2. generate the interaction matrices as follows: first, we draw the binary matrices AAAz

as random graphs where each link exists independently with a probability pz (Erdös
and Rényi 1959). We then row-standardized AAAz to obtain GGGz for z = 1, ..., 4;29

3. compute the (direct, indirect, total) treatment effect from equation (11) for the ho-
mogeneous and heterogeneous model respectively, for: all students, males, females;

4. compute the aggregate decrease in BMI associated to each treatment vector ittk;

5. repeat the procedure of steps (1) to (3) for s = 1, ..., 500 times.

Calibration

In order to calibrate γ we think of an intervention that replaces one fast-food type serving
option with one balanced meal, following an experimented tradition of school-level inter-
ventions (e.g., a weekly vegetarian menu in the cafeteria). We assume that the response
to the intervention is given by

γg = impactg ∗ complianceg for g = m, f (12)

where impact represents the gender-specific impact of the intervention (e.g., one less fast-
food meal could induce different changes on females’ body size for reasons related to nu-
trition and biology), and compliance represents the propensity of students to comply with
the intervention which may also depend on gender (e.g., females could be more or less likely
to choose the healthy meal rather than looking for fast-food options within or outside the
cafeteria).30

29Note that the randomness of the network structure is the source of variation for the quantities of interest
(points 3 and 4 below).

30For the sake of simplicity, we are ruling out complications related to non-random attrition.

21



We rely on the estimates of the weight production function related to eating habits by
Fortin and Yazbeck (2015), which are computed using longitudinal data from Add Health.
In our context, their estimate suggest that (in absence of social interactions) if a student
eats one fast-food meal less per week, his/her BMI decreases by 0.85 in the long term.31

Our first set of results assumes that the impact of the intervention is the same for males and
females, and all individuals comply with the intervention, which gives γf = γm = −0.85.
In our second set of results, we assume that γf > γm, which could be rationalized either
with a differential impact or with differential compliance by gender.

The remaining population parameters are calibrated in line with our Add Health sample
and estimation results, as follows:

• we fix N = 120, p1 = p3 = 0.03 and p2 = p4 = 0.015. This gives an expected number
of within- and between-gender links of 1,8 and 0.9 respectively, as in our sample;

• we set the peer effect estimates for the heterogeneous model to βmm = 0.21, βmf =
0.39, βff = 0.23, βfm = 0.18 in line with the results of Table (4), and we pick
βh = 0.24 accordingly.32

5.3 Simulation Results

5.3.1 Gender-neutral response

Panel A of Table (6) reports the results from the simulation exercise assuming γf = γm =
γ = −0.85, i.e., full compliance and same impact across gender. The upper part of the panel
reports the average value of the treatment effect (direct, indirect, total) for all students
together and by gender for the homogeneous and heterogeneous model respectively (mean
and standard deviation over 500 draws).

The estimate of the direct effect is −0.85 throughout, meaning that one less fast-food
meal per week has a long-term ‘direct’ effect of decreasing student’s own BMI by 0.85 units.
This is the same as the response parameter γ in absence of the intervention (although these
two quantities do not need to coincide precisely, as explained in footnote 28, they often
do). This estimate is stable across models (homogeneous and heterogeneous) and across
gender (males and females) as it is expected to be.

31In their preferred estimates of the BMI production function controlling for lagged BMI, Fortin and
Yazbeck (2015) find that an extra day of fast food restaurant visit per week increases zBMI (that is, the
BMI standardized for gender and age) by 0.02 points in the long term. This result is estimated by pooling
together female and male students. This is also consistent with the results by Niemeier et al. 2006. Since the
average zBMI in our sample is 0.55, we have transposed their result in our metric as (23.1∗0.02)/0.55 ≈ 0.85.

32βh is the weighted average of the four values above, which ensures internal consistency (i.e. the two
models deliver comparable outcome vectors y for any arbitrary α). This does not need to coincide with the
peer-effect coefficient from Table (3) because the estimation on Add Health data includes covariates and
fixed effects.
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Table 6: Simulation results

Panel A: γf = γm = −0.85

model: homogeneous PE heterogeneous PE

mean y 23.21 23.23

(1) (2) (3) (4) (5) (6)

all females males all females males

TE: direct
-0.85 -0.85 -0.85 -0.85 -0.85 -0.85

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

TE: indirect
-0.25 -0.25 -0.24 -0.25 -0.29 -0.20

(0.01) (0.02) (0.02) (0.01) (0.02) (0.01)

TE: total
-1.10 -1.10 -1.09 -1.10 -1.14 -1.05

(0.01) (0.02) (0.02) (0.01) (0.02) (0.01)

Aggregate effect on BMI

without PE with PE

itt1: 50% students at random -51 -65.7 (5.98)

itt2: 50% students, females only -51 -68.5 (1.36)

itt3: 50% students, males only -51 -63.1 (0.88)

Panel B: γf = −1, γm = −0.7

model: homogeneous PE heterogeneous PE

mean y 23.21 23.23

(1) (2) (3) (4) (5) (6)

all females males all females males

TE: direct
-0.85 -1 -0.7 -0.85 -1 -0.7

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

TE: indirect
-0.25 -0.29 -0.20 -0.25 -0.34 -0.17

(0.01) (0.02) (0.02) (0.01) (0.03) (0.01)

TE: total
-1.10 -1.29 -0.90 -1.10 -1.34 -0.87

(0.01) (0.02) (0.02) (0.01) (0.03) (0.01)

Aggregate effect on BMI

without PE with PE

itt1: 50% students at random -51 -66.1 (6.13)

itt2: 50% students, females only -60 -80.6 (1.60)

itt3: 50% students, males only -42 -51.9 (0.72)

Note: average values computed over 500 draws. Standard errors in parenthesis.

The indirect treatment effect represents the social spillover through network lines. The
estimate of the indirect treatment effect for the homogeneous model is −0.25 for all students
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confounded, males and females. This means that treating a randomly chosen student has
on average an indirect effect of −0.25 units on the BMI of the others, given the existing
social synergies. This indirect effect is sizable, as it represents approximately a 30% increase
with respect to the direct effect. That is, on the basis of the evidence from Add Health,
we conclude that social interactions amplify the impact of the intervention by about 30%
with respect to the benchmark scenario of no interpersonal links and/or no social synergies
among students. When we turn to the heterogeneous model (columns 4-6) we notice that
the overall indirect coefficient is still −0.25, but this is actually a weighted average of an
estimated effect of −0.20 for males vs. −0.29 for females. This suggests that, once gender-
based heterogeneity is accounted for, the social spillovers (in term of BMI decrease among
peers) of the intervention on female students are 50% higher than the corresponding social
spillovers from males.

The bottom part of panel A reports the aggregate effect of the intervention on BMI for
three intent-to-treat vectors representing different partial-intervention designs. itt1 depicts
a scenario where 50% of students were randomly selected for the obesity-curbing interven-
tion, regardless of their gender. itt2 represents a scenario where only female students were
selected for the intervention, while itt3 represents a case where only male students were
selected. In all three scenarios, the expected number of treated students stays the same
(i.e. 60 out of 120). The aggregate effect reported in Column 4 (‘without PE’) does not
take into account the social spillovers driven by peer effects.33 Columns 5 and 6 (‘with PE’)
report the aggregate effect on BMI accounting for social spillovers. Since the intent-to-treat
vectors are drawn independently for each simulated network, we report the average BMI
decrease accounting for social spillovers (column 5) and its standard deviation (column 6)
over the 500 simulations.

The estimated decrease in BMI without social spillovers is the same across all treatment
vectors (51 BMI points throughout column 4). Once we account for social spillovers, results
from itt1 suggest that treating 50% of students at random (i.e. regardless of gender)
decreases aggregate BMI by 65.7 points.34 This corresponds to a decrease of 0.55 BMI
points per student, or 11.5% of BMI standard deviation in Add Health. However, the
magnitude of the impact is larger (−68.5 BMI points) when we treat female students only
in itt2. Conversely, the magnitude of the impact is smaller (−63.1 BMI points) when we
treat male students only in itt3. These numbers represent a ‘natural’ metric of efficiency
in the context of our policy evaluation exercise: returns from treating females are 9%
larger than returns from treating males. This means that monetary resources spent on
females generate a decrease in BMI over the student population which is 9% above the one
generated by males.

To summarize, even in the ‘neutral’ setting of Panel A where all students are affected
by the intervention to the same extent, we find that social spillovers from females are

33This boils down to summing up the direct effect over treated individuals.
34This statistics is by construction the same for the heterogeneous peer-effect model under itt1 and for

the homogeneous peer-effect model under all three intent-to-treat vectors.
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about 50% larger than the ones from males, which results in an additional 9% returns from
treating females in terms of aggregate decrease in BMI. This result is entirely driven by the
heterogeneity of peer effects along gender lines: all students respond to the intervention in
the same way, but females generate more social spillovers.

5.3.2 Gender-heterogeneous response

Panel B of Table (6) explores a scenario where females are more responsive to the inter-
vention, that is, γf > γm. This could be due to the fact that the intervention is more
effective on female compliers, or to the fact that compliance is higher among females – the
practical relevance of the issue will be discussed below. In particular, we have calibrated a
mean-preserving spread of γf = 1; γm = 0.7 so that the resulting BMI vector is comparable
to panel A.

Results from Panel B for Column (1) (homogeneous peer effect model, males and fe-
males confounded) are comparable to Column (1) in Panel A, as expected. Columns (2)
and (3) report the estimates of the homogeneous peer effect model for females and males
respectively: the estimated direct effects are −1 and −0.7, in line with the γf , γm from
the data-generating process. The indirect effects are now −0.29 and −0.2 respectively for
females and males: even if peer effects are homogeneous within and across gender, females
now have a larger impact on their peers because they experience a larger BMI decrease
following the intervention. As before, the estimated effect of −0.25 in Column (1) is a
weighted average of the gender-specific effects in columns (2) and (3) respectively.

When we turn to the heterogeneous model (columns 4 to 6) we see that all three
estimates of the direct effect are comparable to the ones for the homogeneous model, as
expected. However, we can see that the difference in the estimated indirect effects across
gender lines becomes even wider. The indirect effect for females is now double that the one
for males, −0.34 in Column (5) versus −0.17 in Column (6). This is due to the fact that
when γf > γm and peer effects are allowed to be heterogeneous across gender, females loose
more weight and also influence more their peers so that the estimated spillovers are sensibly
larger. The weighted average of these estimates is still 0.25 (as in Column 1), meaning that
if we assume gender-homogeneous peer effects and consider a random sample of students
regardless of their gender, we expect an indirect effect of 0.25 on average. However, this
overall estimate hides a large disparity across gender lines, as the expected social spillovers
from females are double the ones from males.

The bottom part of Panel B reports the effect of the intervention on aggregate BMI.
Results show that treating 50% of students at random induces an aggregate decrease of
−66.1 BMI points under itt1, which hinders a large disparity between the aggregate BMI
decrease from treating females only (−80.6 under itt2) and the corresponding value from
treating males only (−51.9 under itt3). This suggests that, because of social synergies,
keeping the budget constant, the returns from treating females only are 55% larger than
returns from treating males only (from -51.9 to -80.6 BMI points).
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To summarize, we had seen in Panel A that the heterogeneity of peer effects along
gender lines has tangible consequences even in a setting where all students respond in the
same way to the intervention, regardless of their gender. If we further assume that female
students respond more to the intervention under scrutiny (Panel B), the estimated social
spillovers from females are double the size of male-generated spillovers. This translate into
a 55% gains in terms of aggregate BMI decrease from reaching out to female students.

5.4 Discussion

The simulation results above suggest that acknowledging peer-effect heterogeneity along
gender lines could increase the efficiency of policy interventions. In fact, by assuming
homogeneity we are failing to incorporate some important information that could be used
to optimize the allocation process whenever resources are scarce.

The last two decades have witnessed the implementation of a large variety of policy
instruments aimed at curbing obesity among teenagers in western countries. Those include
interventions administered remotely (e.g., online nutrition education program, email nudges
with tailored dieting advice or steps/day goal) and offline (e.g., face-to-face discussion
groups, interactive action planning, supply of fruits and vegetables, supply of wearable
sport activity trackers). Evidence from the literature on nutrition science suggests that
young adults respond differently to interventions depending on their gender (Poobalan et
al. 2010; Sharkey et al. 2020).35 In particular, females appear more motivated to undertake
dietary changes, while males are generally more responsive to incentives related to physical
activity. Since interventions are often constrained in terms of resources, one way to allocate
resources efficiently could be to design policy instruments implicitly tailored to address the
motivation and barrier of one specific gender. On the basis of our results above, it is
ceteris paribus preferable to invest in interventions aimed at educating teenagers towards
better dietary patterns, because the higher direct impact on the female population could
in turn spills over more effectively to their male peers. Such policy instruments are easy to
implement, and they do not aim at impacting the structure of social interactions directly.36

Finally, it is worth noting that, throughout the exercise above, we have modeled the
response to the intervention as a shift in the BMI. This benchmark assumption allows us
to be relatively agnostic with respect to the precise mechanism at work. However, policy
makers may have alternative assumptions, based on their knowledge of the policy under
scrutiny: for instance, they can hypothesize that the intervention affects the way peers
influence the marginal utility of own BMI. In order to do a policy-evaluation exercise on

35In an extensive meta-analysis, Sharkey et al. 2020 find that gender-targeted programs are more effective
to tackle youth obesity, but the results are not statistically significant due to the small sample size.

36According to our results, an increase in the frequency of between-gender links could also magnify the
effect of the anti-obesity campaign. However, interventions aimed at manipulating directly social links
(Goette, Huffman, and Meier 2012; Fafchamps and Quinn 2018) are widely seen as difficult to implement
and scale up.
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the basis of alternative assumptions, one could rely on the theoretical framework developed
in Appendix A.

6 Conclusion

This paper explores gender heterogeneity in the social transmission of BMI among teenagers,
and its policy consequences. We propose a model where social interactions allow for
between- and within-gender heterogeneity, and the Body Mass Index (BMI) results from so-
cial synergy among peers in a way that is micro-founded in a non-cooperative manner. We
characterize the model econometrically, showing how identification conditions generalize
those of the homogeneous model by Bramoullé, Djebbari, and Fortin (2009).

We illustrate the model using BMI and detailed social interactions of adolescents in
the Add Health dataset. Comparing the GMM estimates of a standard homogeneous
model of peer effects with our heterogeneous model, we show that Add Health data display
significant gender-dependent heterogeneity in peer effects. In particular, results suggest
that male students are more affected by the average BMI of their female friends that the
reverse. We argue that these results are not driven by the endogeneity of declared links, as
long as we control for fixed effects absorbing all unobserved heterogeneity which is common
to all students within a given school.

Designing interventions on the basis of recipients’ social interactions is a promising
avenue ahead. One interest of our approach is to introduce observable gender-dependent
heterogeneity in the model. This may help policy makers to evaluate the impact of reforms
on adolescent obesity and to find the most appropriate tracking of students to reach the
optimal outcome level, a point that we illustrate with a simulation exercise to evaluate an
intervention replacing one fast-food type serving with one balanced meal per week. Results
from our simulations show that, in the most conservative scenario where all students are
affected by the intervention to the same extent, the social spillovers stemming from female
students are 50% higher than the spillovers from males. This result is entirely driven by the
heterogeneity of peer effects along gender lines, and it translates into an 9% gain in terms
of aggregate BMI decrease from reaching out to females rather than males. If we further
assume that female students respond more to the kind of intervention under scrutiny (as
the literature on nutrition science seems to suggest), we conclude that social spillovers from
females are double the size of male-generated spillovers and that resources spent on females
generate a decrease of aggregate BMI which is 55% above the one generated by resources
spent on males.
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Appendix A

In this appendix, we develop a non-cooperative model to micro-found our estimating equa-
tion (2) through the channel of strategic complementarity (‘social synergy’) in BMI within
the social network. We develop the theoretical model for one network of non-isolated stu-
dents where heterogeneous peer effects only work through the ‘endogenous’ channel ( i.e.,
δs are set to zero). This is done to simplify the notation, and is aligned with the simulation
exercise of section 5. However, the discussion can be trivially extended to the most general
case.

Let us consider one population of students (nm + nf = n), interacting among them.
The student i’s reference group is non-empty: ni,m + ni,f > 0 for each i.37 The friendship
network is defined by four fixed and known binary adjacency matrices AAAz(z = 1, · · · , 4),
and their weighted version GGGz(z = 1, · · · , 4), defined as above. Every individual maximizes
a gender-dependent quadratic utility function which is separable in private and social sub-
utilities, subject to a linear production function for the BMI. The maximization program
of a type-m individual i is:

max
yi,m,ei,m

Ui,m(ei,m,y) = −yi,m −
e2i,m
2

+ ψmmyi,mg′
1iym + ψmfyi,mg′

2iyf , (13)

s.t. yi,m = α0 − α1ei,m + α2xi,m + ηi,m, (14)

where yi,m is the outcome (i.e., BMI) of individual i in category m, ym is the vector of
outcomes in m category, yf is the vector of outcomes in f category, y is the concatenated
vector of outcomes in f and m categories, ei stands for the effort of i, g′

zi is the ith row
of the social interaction matrix GGGz, and xi and ηi,m denote observable and unobservable
individual characteristics. The first two terms in the utility function describe the private
sub-utility: the first term assumes that an increase in BMI reduces the individual i’s util-

ity.38 The second term
e2i,m
2 represents the cost of effort to reduce weight and assumes that

the marginal cost of effort is increasing with effort. The social sub-utility corresponds to
the two last terms in the utility function: we assume that social interactions influence pref-
erences through the channel of social synergy in BMI between a student and his reference
group of each type (Fortin and Yazbeck 2015).39

37Note that the empirical illustration relaxes this assumption, allowing for isolated students.
38We are ignoring here a situation where very low weight negatively affects health (e.g., anorexia).
39This framework is also consistent with a mechanism of pure conformity in social interactions. In

that case, an individual’s utility is positively affected by the degree to which he conforms with his peers’
outcome or characteristics due for instance to the presence of social norms. However, while in a model such
as ours, the channels of social synergy and pure conformity are observationally equivalent (Blume et al.
2015; Boucher and Fortin 2016; Boucher et al. 2022), it seems plausible to assume that social synergy is
the mechanism at play in peer effects. Indeed, it means that an increase in the peers’ average BMI of a
given gender positively influences the marginal utility of his own BMI (ψfm > 0;ψmf > 0). Heterogeneity
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The maximization program of type-f individuals can be written using a similar utility
function, where social interaction parameters can differ from those of type-m ones. Hence,
a type-f individual solves the following program:

max
yi,f ,ei,f

Uf (ei,f ,y) = −yi,f −
e2i,f
2

+ ψffyi,fg
′
3iyf + ψfmyi,fg

′
4iym (15)

s.t. yi,f = α0 − α1ei,f + α2xi,f + ηi,f (16)

The first order conditions of the type-m maximization program lead to

ym = αιm + βmmGGG1ym + βmfGGG2yf + α2xm + ϵm (17)

where α = α0−µ, βmm = µψmm, βmf = µψmf , and ϵm = ηm, where µ = α2
1 represents the

squared marginal productivity of effort on weight level. Similarly, the first order conditions
for type-f individuals lead to

yf = αιf + βffGGG3yf + βfmGGG4ym + α2xf + ϵf (18)

where βff = µψff , βfm = µψfm, and ϵf = ηf . Assuming that the absolute value of the
β’s is less than one, if we concatenate Equations (17) and (18), we obtain the following
best-response functions for the whole population of students, given the others’ weight level
(Nash equilibrium):

y = αι+ βmmGGG1y + βmfGGG2y + βffGGG3y + βfmGGG4y + α2x+ ϵ, (19)

which coincides with equation (2). Notice that homogeneity implies that all ψ’s are equal
(= ψ), and thus βmm = βmf = βff = βfm = β (equation (3)).

This theoretical result has a practical relevance for the evaluation of exogenous shocks
and interventions (Section 5). In fact, the conditions above imply that we can separately
identify all the parameters of the utility function provided that we have a proxy for effort.
While effort is generally not observed, it is possible to find a good proxy for effort in
observational databases at the individual level (e.g., a measure of eating habits, physical
exercise, etc.). When no such data are available, one can always recover the parameters
of the preferences and the production function, for a given level of µ. Indeed, each of the
four social sub-utility parameters (the ψ’s) are proportional to its corresponding β, the
proportionality coefficient being µ−1.

Finally, throughout the simulation exercise of section 5 we have assumed that the
intervention shifts the intercept α0 of the BMI production function in equation (14) . This
is a benchmark assumption which allows us to be relatively agnostic with respect to the

in social interactions is reflected by the fact that ψfm and ψmf can be different. For instance, as mentioned
earlier, since girls are in general more mature and influencial than boys at the same age, it is natural to
assume that the former have more influence on the latter’s marginal utility than the reverse.
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underlying mechanism. However, we could have alternative hypotheses about the channels
through which the intervention affects the BMI in the population of interest: for instance,
policy makers may have good reasons to believe that the intervention affects either the
marginal productivity of effort (α1) of directly the way peers’ BMI influences the marginal
utility of own BMI (ψ’s). These different scenarios yield different conclusions in terms
of policy evaluation, and the amplitude of these discrepancies could be evaluated by an
appropriate calibration of the model above, following the footsteps of section (5).
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Appendix B

Proof of proposition 1: identification

To prove the proposition, we assume that S(β) is invertible (see footnote 8 for sufficient
conditions) and we use the formula of the inverse of matrix established using the Newton
Binomial formula. The following steps are necessary to prove our proposition:

1. Let k = 1, 2, 3, 4, ... and derive the expression of Sk(β)
−1 using:40

Sk(β) =

k≥1∑
i=0

(
k

i

)[
(βmmḠGG1)

k−i + (k − i)βmf (βmmḠGG1)
k−i−1ḠGG2

]
.
[
(βffḠGG3)

i + iβfm(βffḠGG3)
i−1ḠGG4

]

2. Sum over all k’s and re-write S(β)−1 such that S(β)−1 = I+
∞∑
k=1

Sk(β).

3. Using the latter expression, derive an expression ofWi(β) = ḠGGiS(β)
−1 andWi(β)ḠGG(δ)

∀i ∈ {1, 2, 3, 4}.

4. Write {Wi(β)
[
γx+ ḠGG(δ)x+ ια

]
}{i=1,2,3,4} as a function of instruments and ex-

tract intruments and the associated restrictions on the parameters of the model,
pre-multiplied by matrix J.

For sake of simplicity, let susbscripts mm, mf , ff and fm in β be replaced by 1, 2, 3, 4
respectively. Using the steps enumerated above and developing for k ∈ 1, 2, 3, 4, one can
write Sk(β) using the expression below:

S1(β) =
[
β1ḠGG1 + β2ḠGG2

]
×
[
β3ḠGG3 + β4ḠGG4

]

S2(β) =
[
β2
1ḠGG

2
1 + 2β1β2ḠGG1ḠGG2

]
+ 2

[
β1ḠGG1 + β2ḠGG2

]
×

[
β3ḠGG3 + β4ḠGG4

]
+
[
β2
3ḠGG

2
3 + 2β3β4ḠGG3ḠGG4

]

S3(β) =
[
β3
1ḠGG

3
1 + 3β2

1β2ḠGG
2
1ḠGG2

]
+ 3

[
β2
1ḠGG

2
1 + 2β1β2ḠGG1ḠGG2

]
×
[
β3ḠGG3 + β4ḠGG4

]
+ 3

[
β1ḠGG1 + β2ḠGG2

]
×

[
β2
3ḠGG

2
3 + 2β3β4ḠGG3ḠGG4

]
+

[
β3
3ḠGG

3
3 + 3β2

3β4ḠGG
2
3ḠGG4

]
S4(β) =

[
β4
1ḠGG

4
1 + 4β3

1β2ḠGG
3
1ḠGG2

]
+ 4

[
β3
1ḠGG

3
1 + 3β2

1β2ḠGG
2
1ḠGG2

]
×
[
β3ḠGG3 + β4ḠGG4

]
+ 6

[
β2
1ḠGG

2
1 + 2β1β2ḠGG1ḠGG2

]
×

[
β2
3ḠGG

2
3 + 2β3β4ḠGG3ḠGG4

]
+ 4

[
β1ḠGG1 + β2ḠGG2

]
×

[
β3
3ḠGG

3
3 + 3β2

3β4ḠGG
2
3ḠGG4

]
+
[
β4
3ḠGG

4
3 + 4β3

3β4ḠGG
3
3ḠGG4

]
40Recall that we order all matrices so that the first nf

r rows correspond to type-f individuals of network
r, and the remaining nm

r rows are for type-m individuals in network r. This leads by construction to the
following identities: GGG1,r.GGG4,r = 0nr , GGG3,r.GGG2,r = 0nr , GGG1,r.GGG3,r = 0nr , GGG3,r.GGG1,r = 0nr , GGG

k≥2
2,r = 0nr ,

GGGk≥2
4,r = 0nr , GGG4,r.GGG3,r = 0nr and GGG2,r.GGG1,r = 0nr .
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We then write S−1(β) = I+S1(β)+S2(β)+S3(β)+S4(β)+
∞∑
k=5

Sk(β) using the expres-

sions of Sk(β) given above. We are then able to write, ∀i ∈ {1, 2, 3, 4},Wi(β)
[
γx+ ḠGG(δ)x+ ια

]
as:

W1(β)
[
γx+ ḠGG(δ)x+ ια

]
= γḠGG1x + (γβ1 + δ1)

[
ḠGG2

1 + β1ḠGG
3
1 + β2

1ḠGG
4
1 + β5

1ḠGG
2
1

]
x

+ (γβ2 + δ2)
[
ḠGG1ḠGG2

]
x+ β1(2γβ2 + δ2)

[
ḠGG2

1ḠGG2

]
x

+ β2(2γβ3 + δ3)
[
ḠGG1ḠGG2ḠGG3

]
x+ β2(2γβ4 + δ4)

[
ḠGG1ḠGG2ḠGG4

]
x

+
[
ḠGG1 + β1ḠGG

2
1 + β2ḠGG1ḠGG2 + β2

1ḠGG
3
1 + 2β1β2ḠGG

2
1ḠGG2 + ...

]
ια

+ ḠGG1

∞∑
k=5

Sk(β)
[
(γ + ḠGG(δ))x+ ια

]

W2(β)
[
γx+ ḠGG(δ)x+ ια

]
= γḠGG2x + (γβ3 + δ3)

[
ḠGG2ḠGG3 + β3ḠGG2ḠGG

2
3 + β2

3ḠGG2ḠGG
3
3 + β3

3ḠGG2ḠGG
3
3

]
x

+ (γβ4 + δ4)
[
ḠGG2ḠGG4

]
x+ β3(2γβ4 + δ4)

[
ḠGG2ḠGG3ḠGG4

]
x

+ β2
3(3γβ4 + δ4)

[
ḠGG2ḠGG

2
3ḠGG4

]
x+ β3

3(4γβ4 + δ4)
[
ḠGG2ḠGG

3
3ḠGG4

]
x

+
[
ḠGG2 + β3ḠGG2ḠGG3 + β2

3ḠGG2ḠGG
2
3 + 2β3β4ḠGG2ḠGG3ḠGG4 + ...

]
ια

+ ḠGG2

∞∑
k=5

Sk(β)
[
(γ + ḠGG(δ))x+ ια

]

W3(β)
[
γx+ ḠGG(δ)x+ ια

]
= γḠGG3x + (γβ3 + δ3)

[
ḠGG2

3 + β3ḠGG
3
3 + β2

3ḠGG
4
3 + β3

3ḠGG
5
3

]
x

+ (γβ4 + δ4)
[
ḠGG3ḠGG4

]
x+ β3(2γβ4 + δ4)

[
ḠGG2

3ḠGG4

]
x

+ β2
3(3γβ4 + δ4)

[
ḠGG3

3ḠGG4

]
x+ β3

3(4γβ4 + δ4)
[
ḠGG4

3ḠGG4

]
x

+
[
ḠGG3 + β3ḠGG

2
3 + β4ḠGG3ḠGG4 + 2β3β4ḠGG

2
3ḠGG4 + ...

]
ια

+ ḠGG3

∞∑
k=5

Sk(β)
[
(γ + ḠGG(δ))x+ ια

]

W4(β)
[
γx+ ḠGG(δ)x+ ια

]
= γḠGG4x + (γβ1 + δ1)

[
ḠGG4ḠGG1 + β1ḠGG4ḠGG

2
1 + β2

1ḠGG4ḠGG
3
1 + β3

1ḠGG4ḠGG
4
1

]
x

+ (γβ2 + δ2)
[
ḠGG4ḠGG2

]
x+ β1(2γβ2 + δ2)

[
ḠGG4ḠGG1ḠGG2

]
x

+ β2(2γβ3 + δ3)
[
ḠGG4ḠGG2ḠGG3

]
x+ β2(2γβ4 + δ4)

[
ḠGG4ḠGG2ḠGG4

]
x

+
[
ḠGG4 + β1ḠGG4ḠGG1 + β2ḠGG4ḠGG2 + β2

1ḠGG4ḠGG
2
1 + ...

]
ια

+ ḠGG4

∞∑
k=5

Sk(β)
[
(γ + ḠGG(δ))x+ ια

]
The above expressions provide sufficient conditions of identification of our parameters

using the IV method. These conditions extend the ones obtained in Bramoullé, Djebbari,
and Fortin (2009) regarding the independence of the interaction matrices of our model and
restrictions on our parameters.
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Specifically, considering the expressions given above, we can see that naturally occuring
intruments of our endogenous variables include different order of our interaction matrices
and interactions of different orders of these matrices. For example, instruments of our
first endogenous variable include JG1x, JG1

2x, JG1
3x and higher degrees of the ma-

trix JG1 multiplied by vector x of characteristics if both (γβ1 + δ1) ̸= 0 and matrices
G1,G1

2,G1
3,G1

4, etc. are linearly independent. Following the same method and using
the other expressions above, we can see that minimal conditions for IV variables to work for
each of the four endogenous variables are (γβ2+δ2) ̸= 0 , (γβ3+δ3) ̸= 0 and (γβ4+δ4) ̸= 0.

In addition, γ needs to be different from zero and matrices ḠGG1, ḠGG2, ḠGG3, ḠGG4, ḠGG
2
1, ḠGG1ḠGG2,

ḠGG2ḠGG3, ḠGG
2
3, ḠGG

3
1, ..., I need to be independent, which corresponds to the condition that

vector columns of matrix QK of instruments should be linearly independent. Additional
conditions appear whenever one is concerned about adding instruments of higher order of
interaction matrices multiplication. In this case, the additional conditions on parameters
of the model take the form of βi ̸= 0 ∀i ∈ {2, 3, 4} and ((j − 1)γβl + δl) ̸= 0 and linear
independence of jth order interaction of social interaction matrices such that CGiḠGGl adds
up to the independence conditions stated above, where C is either a single interaction
matrix or a non-zero product of interaction matrices. For example, JG1ḠGG2ḠGG4x may be
used as an instrument if β2 ̸= 0, (2γβ4 + δ4) ̸= 0 and matrices ḠGG1, ḠGG2, ḠGG3, ḠGG4, ḠGG

2
1, ḠGG1ḠGG2,

ḠGG2ḠGG3, ḠGG
2
3, ḠGG

3
1, ..., I and ḠGG1ḠGG2ḠGG4 are linearly independent. Also, JG4ḠGG2ḠGG

2
3x may be used

as an additional instrument if β2 ̸= 0, β3 ̸= 0, (3γβ3 + δ3) ̸= 0 and matrices ḠGG1, ḠGG2, ḠGG3,

ḠGG4, ḠGG
2
1, ḠGG1ḠGG2, ḠGG2ḠGG3, ḠGG

2
3, ḠGG

3
1, ..., I and ḠGG4ḠGG2ḠGG

2
3 are linearly independent. ■
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