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Productivity isn’t everything, but in the long run, it’s almost everything.

– Paul Krugman (1997, p11)

1 Introduction

Perceptions of productivity growth play a key role in many macroeconomic decisions, in-

cluding households’ intertemporal consumption smoothing, firms’ investment, the sustain-

ability of government fiscal policy, monetary policy and the solvency of public pension

plans, among others.1 In addition to the interest in productivity growth, the level of trend

productivity is commonly used in the calculation of potential output, which in turn is used

in guiding monetary and fiscal policy decisions.2 The past several decades have seen a

nearly continuous stream of applied studies estimating recent trend rates of productivity

growth, as well as testing for evidence of changes in those rates.3 This has accompanied

important refinements in the measurement of productivity and its sources of growth.4

One feature of this applied work that is often overlooked is the extent to which estimates

of trend productivity growth may be revised over time. As a simple example, consider the

estimates of U.S. Total Factor Productivity (TFP) growth published by the Congressional

Budget Office (CBO).5 Figure 1 shows how CBO estimates of productivity growth trends

for specific calendar years (2000, 2002, 2008 and 2015) have been revised over time; the

horizontal axis shows when the estimates for each year were published.6 The red line shows

1For example, see Ghirono et al. (2008)) on consumption smoothing, (De Long (1992)) on private
investment, Duarte Lledo et al. (2018) and European Commission (2017) on the sustainability of fiscal
policy, (Laubach and Williams (2003) on monetary policy and Neumark 2006) on the solvency of public
pension plans.

2See European Commission (2017) or Carstensen et al. (2024) for examples.
3Kahn and Rich (2007) in particular noted some of the challenges inherent in timely detection of

persistent changes in growth rates.
4For overviews, see Coelli et al. (2005) (particularly Chapters 3, 4, 6 and 9), Syverson (2011), Grifell-

Tatjé et al. (2018) or Zelenyuk (2023)).
5The terms Multi-Factor Productivity (MFP) and Total Factor Productivity (TFP) have both been

used to refer to productivity in a two-factor model of aggregate production using inputs of labor and
capital services. We use the terms interchangeably.

6The data for the Figure are from the CBO’s Budget and Economic Data page, specifically the Historical
Data and Economic Projections and the Potential GDP and Underlying Inputs sections. We used all
available releases for TFP in the Non-Farm Business sector at Potential, which covered the period from
August 2002 through January 2025. Although those sources also include forecasts and nowcasts, Figure 1
contains only “historical” estimates. For example, the first estimate shown for TFP growth in 2008 is that
from the January 2009 estimate (which was before the first BLS release for TFP in that year.)



that growth in 2000 is estimated to be 1.3% in early 2002, this is revised up to 1.5% by

2004, followed by a series of downward revisions to 1.2% by 2010. The minor revisions

continued until Jan 2017, when the estimate of growth in 2000 is revised from 1.5 to 2.1%

(more than 50% higher than the lowest previous estimate.) Other years have shown greater

revisions: the blue line shows that estimates of growth in 2002, while initially slightly lower

than those of 2000, were soon revised upwards and by 2010 were thought to be double

those of 2000. This was abruptly reversed in January 2017 when estimates for 2002 were

revised to below those of 2000. Results for 2008 and 2015 show that more recent estimates

may also undergo economically important revisions many years after the fact.7 The point

here is not to single out the CBO’s estimates for criticism, but to show the extent to which

the perception of historical productivity growth may continue to evolve through time.

[Figure 1 about here.]

The fact that perceptions of productivity growth evolve over time has several import-

ant implications. First, it raises the question of what drives these changes. Second, since

expected rates of productivity growth may differ substantially from historical estimates,

care must be taken when empirical work requires a proxy for expectations of productiv-

ity growth. Third, decision makers may care both about point estimates or forecasts of

productivity growth as well as the uncertainty around them.

In this paper, we offer an original linear modeling framework that provides time-varying

estimates of productivity growth trends and explains how such estimates may evolve as time

passes. It also provides econometrically efficient forecasts and historical estimates of growth

trends as well as estimates of their varying estimation uncertainty. It does so by allowing

for two key sources of changes in perception: data revision and hindsight.

As Jacobs and van Norden (2016) pointed out, productivity revisions are large relative

to those in series used to calculate productivity (such as output or hours worked). This

stems in part from the fact that productivity is measured as a residual: it is the variation

7The latter results also hint at a change in policy at the CBO. Potential TFP growth was assumed to be
constant over many calendar years, although the constant rate would be revised slightly from one release
to the next. As of January 2025, the CBO’s estimated growth rate of TFP at potential is 1.0% for every
year from 2009 to 2024.
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in output that is not explained by variations in inputs.8 The modeling of data revisions

has made important advances in recent years, which we draw upon below.9

To illustrate the extent of data revision, Figure 2 shows growth rates of one of the

two productivity growth measures we analyze in this paper: U.S. MultiFactor Productivity

(MFP). As in Figure 1, each series shows the estimate for a particular year and traces how

the estimate for that year varies over time. Substantial variations are visible in the graphs

for some years, while those for others are more modest. 10

[Figure 2 about here.]

It is also interesting to compare the CBO estimates in Figure 1 with the BLS estimates

in Figure 2. The former estimate MFP growth at Potential Output whereas the latter

are official estimates of actual MFP growth. Comparing the estimates for 2000 and 2002

in Figure 2, we see that MFP growth in 2002 has been consistently reported to be above

that in 2000, and that the difference between them has been relatively constant. This

suggests that the highly variable difference between the CBO estimates for these years

shown in 1 are due to changing estimates of potential output, including the major change

in 2017 (15 years after the event.) Revisions to MFP growth estimates for 2008 and 2015

have been relatively larger but are not directly reflected in the CBO’s estimates of MFP

growth at Potential for those years. The BLS sharply revised their growth estimate for 2008

downwards in 2011, holding it roughly constant for the next decade; the CBO initially made

little change to their estimate, but gradually lowered it over the following eight years. The

BLS estimates for 2015 are consistently much higher than those for 2008 and were initially

revised upwards substantially, but the CBO estimates for the two years were the same from

early 2017 through the end of 2023. Thereafter, as the BLS revised growth in 2008 upwards

and 2015 downwards, the CBO increased its estimate of 2015 over that of 2008.

8The correlation between revisions in the input and output series also plays an essential role. See Jacobs
and van Norden (2016, Section 2).

9A key insight from this literature is that revisions are typically “noisy” and somewhat predictable. One
implication is that there are potential gains from taking weighted averages of individual “noisy” releases
to produce more efficient estimates. This contrasts with the conventional practice of using only the most
recently published estimates, which are assumed to be the best available.

10Revision analyses of U.S. productivity measures are provided by Aruoba (2008), Jacobs and van Norden
(2016), Bognanni and Zito (2016), Asher et al. (2021, 2022) and Glaser et al. (2024). Below we provide
further analysis of the revisions shown here, particularly in Table 2.
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To understand what else could cause changes in the CBO’s perceptions of productivity

growth, we turn to consider the role of hindsight in revising estimates. To illustrate the

role of hindsight, Figure 3 shows estimates of the trend growth rate of MFP. 11 Because

the trend and cycle components are not directly observed, their estimates (as in any linear

state-space model) are based on weighted averages of the available observations. However,

the weights vary depending on the point from which the estimates are made. In Figure

3, the red line shows estimates made at the end of the sample period (i.e. using the full

sample) of the trend for each point in time. The blue line shows estimates of the trend in

year t based only on the sample up to and including year t. The former are referred to as

“Smoothed” estimates while the latter are known as “Filtered” estimates. The difference

between the two sets of estimates shows the extent to which observations after year t (i.e.

“hindsight”) caused us to revise our estimates for year t.12 This source of revision has been

studied in other macroeconomic contexts. For example, Orphanides and van Norden (2002)

examine revisions in estimates of U.S. output gaps and find that the difference between

filtered and smoothed estimates is the dominant source of revisions.13 Cyclically-adjusted or

Capacity-Utilization-adjusted series (Fernald (2014)) may also undergo additional revision

as assessments of potential output or capacity utilization are adjusted with the benefit of

hindsight (Kurmann and Sims (2021)).

[Figure 3 about here.]

In this study, we show how taking into account data revision and filtering methods (as

well as publication lags and parameter instability) affects the estimation of trend productiv-

ity growth, leading to changing perceptions of historical multi-factor and labor productivity

growth trends. We provide an original framework for efficient trend-cycle decompositions

11Specifically, the model assumes that (1) productivity growth is the sum of a trend and cycle, (2) the
cyclic component follows a stationary AR(2) process, (3) the trend follows a random walk, and (4) shocks
to the trend and the cycle are uncorrelated and i.i.d. Gaussian. The model is fit to the “final” release of
MFP (described below), and therefore is unaffected by data revision.

12The figure ignores the effects of publication lags. As we explain below, these increase the importance
of ex post revisions by causing decision makers to rely on forecasts or “nowcasts.” Publication lags for
MFP have been variable and particularly long.

13The output gap is similar to productivity growth in the sense that it too is constructed as a residual
(the difference between observed and potential or trend output). Their study differs from ours in several
important respects however; it examines the cyclical component rather than the trend, the level of output
rather than productivity growth, and they do not model data revision.
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using advances in state-space modeling that allow for data revisions that may be a com-

bination of both news and noise.14 Standard tools for linear state-space models can then

produce updated estimates and forecasts of trend growth, as well as calculate their con-

fidence intervals, while allowing for missing observations due to publication lags or other

sources.

Using original-vintage data on both multi-factor and labor productivity, our model

prefers to estimate trends using a weighted average of many releases that puts relatively

little weight on initial estimates compared to revisions released one or more years later.

This results in uncertainty around the estimate of trend growth that dissipates substantially

as years pass. In addition to showing how uncertainty and the optimal revision weighting

change as time passes, we also document the extent to which “real-time” trend estimates

tend to lag retrospective estimates in detecting changes in trends.

The applied productivity literature typically employs the most recent vintage to under-

stand the sources of changes in trend productivity.15 Models analogous to ours which only

use the most fully-revised release (Figure 3) produce trend productivity growth estimates

that are much smoother than most commonly accepted estimates. Compared to several

vintages of trend productivity estimates from the Congressional Budget Office (CBO), our

real-time estimates capture similar broad trends but with periods of significant deviations.

In the next section we detail the data used for our analysis, which are among the most

widely studied U.S. productivity series. We also show the extent to which the series are

revised over time, and distinguish regular and “benchmark” revisions. Thereafter we lay

out the statistical model we use to estimate trend productivity growth for each series.

The model is a conventional linear state space model with uncorrelated Gaussian errors

that may be estimated and manipulated with conventional tools. Readers less interested

in econometric details may pass lightly over this section. We then look in detail at the

14The concepts of“news”and“noise”in the data revision literature differ from the ones adopted in the
“news”-driven business cycle literature. As will become clear in section 3, in the data revision liter-
ature“news ”are“noise”are measurement errors, whereas in the news-driven business cycle literature, a
“news”shock refers to signals that economic agents receive about future productivity growth (e.g. Beaudry
and Portier (2004) and Fujiwara et al. (2011)). For a reconciliation of these concepts see Goodwin and
Tian (2017).

15For example, Feenstra et al. (2015) present a new generation of the Penn World Table with new estim-
ates of total factor productivity figures across countries. Pinkovskiy and Sala-i-Martin (2016) comment,
however, that “newer need not be better”.
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historical estimates of trend growth that the model produces. In addition to comparing

them to CBO estimates, we compare them to the degree of uncertainty surrounding the

estimates and discuss the weights that they place on various releases and revisions of the

MFP and OPHA series. The subsequent section contrasts these historical estimates with

those made under conditions resembling those faced by decision makers, who effectively face

a forecasting problem. We show how this affects the weights assigned to various releases

and revisions, and how the estimates of trend growth and their uncertainty evolve as time

passes and more information arrives. Finally, we consider the role that instability in the

estimated parameters of our model may influence our results.

2 Data

Our analysis uses 32 vintages of the MultiFactor Productivity (MFP) series for the U.S.

Non-Farm Business Sector covering the years 1949 to 2021 and published between February

1995 and November 2022.16 In addition, 408 vintages from May 1968 to June 2023 of

Output per Hour (OPH) series are used, covering the quarters from 1947Q2 to 2023Q1.

Both series are from ALFRED; historical releases for MFP were provided by the Bureau

of Labor Statistics.17 We use log differences of the level of both series to mitigate effects

of benchmark revisions (see Croushore 2011).

We initially compared revisions in annual estimates of MFP to those in quarterly es-

timates of OPH and found strikingly dissimilar results.18 To eliminate artifacts due to

differences in their reporting frequencies we instead compare MFP to annualized OPH

data (OPHA), which is calculated as the annual averages of OPH.19 Figure 4 shows the

MFP, OPH and OPHA series for the last vintage in our sample. The patterns in MFP and

OPHA are similar, but the quarterly OPH series is much more volatile.

16The November 2022 release of preliminary estimates for 2022Q3 incorporated the 2022 update of
the National Income and Product Accounts (NIPA) and included a new methodology for estimating hours
worked. Accordingly, we ended our sample with that benchmark revision. For details on the methodological
changes, see Eldridge et al. (2022).

17The authors thank Corby Garner at the BLS for help in accessing early vintages.
18Results for quarterly OPH are available on request.
19OPHA retains the quarterly releases of OPH, but the use of annual averages means that our last

observation is for 2022.
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[Figure 4 about here.]

While both series are subject to a fairly regular revision cycle (e.g. the publication of

preliminary and then “revised” estimates, and perhaps annual revisions of seasonal factors)

they are also subject to irregular “benchmark” revisions. These are due to methodological

or definitional changes and typically revise several decades of previously published estim-

ates. Table 1 displays the release dates for benchmark revisions.

Due to their irregular nature, we treat them differently from regularly occurring revi-

sions. The value of the benchmark release for period t is defined as the value for period t

in the first benchmark revision published for that period. If the initial release for period t

coincides with a benchmark revision, the value of the next benchmark revision for period

t is used. For example, in the case of MFP, the value of the benchmark release for 1996

corresponds to the year 2000 vintage, the value of the benchmark release for 1997 also

corresponds to the year 2000 vintage, but the value of the benchmark release for 1998

corresponds to the year 2004 vintage. We also define the pre-benchmark release, which is

simply the last release published before a benchmark release, as well as a “Final” release,

which is simply the last release in our data set.20

[Table 1 about here.]

Table 2 shows descriptive statistics for our productivity growth measures and their

revisions. Regarding the variation in the series, we see similar results using Std. Dev. and

MA. Dev. The temporal decomposition of revisions shows that initial revisions (2nd - 1st)

are relatively much more important for the MFP series than for the OPHA series. They

also show that revisions may continue long after the initial release; variation more than 5

years after the initial release (Final - 5Yr) is roughly 60% or more of the size of the observed

aggregate variation. Similarly, revisions after the initial benchmark revision (Final - BM)

also appear to be substantial.

The extent to which these revisions simply reflect “noise” or may lead to initial misper-

ceptions of longer-term productivity growth trends requires careful modeling, to which we

turn in the next section.
20This usage of the term “Final” has become endemic in the data revision literature; see Orphanides

and van Norden (2002) or Croushore (2011) for examples.
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[Table 2 about here.]

3 Methodology

The model introduced here builds on work by Jacobs and van Norden (2011), Jacobs

et al. (2022) and Goto et al. (2023) on modeling time series that are subject to periodic

revision.21 All use a linear state-space framework to model multiple series that are assumed

to be estimates of the same (unobserved) “true” series ỹt. The jth estimate of ỹt, yj,t, is

assumed to be equal to the target series ỹt but for the presence of two kinds of measurement

errors:

Noise errors (ξj,t) which are mean zero and independent of ỹt.

News errors (νj,t) which are mean zero and are independent of all information available

at the time of their publication.

While noise errors follow classical assumptions for the behavior of measurement errors,

news errors mirror the behavior of rational forecast errors. Among other things, this implies

that cov(ξj,t, ỹt) = 0, but cov(νj,t, ỹt) > 0.22 The presence of noise errors also implies that

some positive fraction of the variance of data revisions is predictable, while revisions due

to news errors are unpredictable (by definition).

The framework that we present below further distinguishes between cycles (ct) and

trends (τt) so that

ỹt ≡ ct + τt = yj,t + νc
j,t + ντ

j,t + ξj,t,

21Other advances in estimation and forecasting with data subject to revision include Koenig et al. (2003),
Garratt et al. (2008), Kishor and Koenig (2012), Cunningham et al. (2012), Aruoba et al. (2013, 2016),
Jacobs, et al. (2022), Anesti et al. (2022), Goto et al. (2023), Koop et al. (2023), and Almuzara et
al. (2024). Jacobs and van Norden (2011) introduce the basic state-space framework for news and noise
revisions. Although they discuss how to incorporate trend-cycle decompositions in their framework, this
is not examined in their application and our modeling of noise shocks is slightly different. Anderes et al.
(2024) also consider the problem of trend-cycle decomposition when data are subject to revision, but focus
on the estimation of the cyclical component (the output gap) rather than the trend. Jacobs et al. (2022)
and Goto et al. (2023) consider how to reconcile estimates subject to revision, using bivariate models
where two series provide alternative estimates of the same underlying quantity, such as US GDP (Jacobs
et al. (2022)) or US employment (Goto et al. (2023)).

22This also implies that cov(νj,t, νi,t) ≥ 0, and if yj,t is published after yi,t, then var(νj,t) ≤ var(νi,t).

8



for the jth release, so that news errors have distinct cycle and trend components, while

noise errors are assumed to be independently distributed. Therefore a key challenge for

decision makers will be to decide whether surprises in yj,t are due to measurement noise,

news about cyclical variation in productivity, or news about productivity growth trends.

3.1 A State-Space Model

For simplicity, our model assumes that the (true, unobserved) cycle ct follows a stationary

AR(2) process while the trend is assumed to be a random walk. While we use five distinct

data releases in our application, for compactness we specify the model below for the case

where we have only two releases y1,t and y2,t.

State vector

The state vector αt ≡ [ct, ct−1, τt, (ν
c
t )

′, (ντ
t )

′]′, where ct, ct−1, τt are all scalars and νc
t and

ντ
t are 2× 1 vectors. Note that the news errors, but not the noise errors, form part of the

state vector.

Measurement Equation

Yt ≡

1 0 1 −1 −1 −1 −1

1 0 1 0 −1 0 −1

 ·αt +

ξ1,t
ξ2,t


where Yt ≡ [y1,t, y2,t]

′ and [ξ1,t, ξ2,t]
′ ∼ i.i.d.N(0,H) and H is a diagonal matrix with

elements [σξ
1, σ

ξ
2]. We see that noise errors appear exclusively as random errors in the

measurement equation.

State Equation

αt = T ·αt−1 +R ·


νc
1,t

νc
2,t

ντ
1,t

ντ
2,t

 ,
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where T ≡



ρ1 ρ2 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, R ≡



1 1 0 0

0 0 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



and


νc
1,t

νc
2,t

ντ
1,t

ντ
2,t

 ∼ i.i.d.N

0,


σc,ν
1 0 0 0

0 σc,ν
2 0 0

0 0 στ,ν
1 0

0 0 0 στ,ν
2



 .

The first two rows of the T matrix determine the dynamics of the cyclical component

ct, while the third row is responsible for the random walk trend τt. The remaining rows of

T are filled with zeros as the properties of the news errors are determined via R and the

measurement equation.

3.2 Estimation

Our estimated model includes five releases in the measurement vector: [1st, 2nd, 3rd,

benchmark, final] vintages for MFP, and [1st, 2nd, 1yr, benchmark, final] vintages for

OPHA.23 Our earliest release of MFP ends in 1993, while that for OPHA ends at 1968Q2.

Consequently, any releases prior to 1993 for MFP and prior to 1968Q1 for OPHA are

treated as missing values. Recent periods also contain missing values for some releases.

For example, for MFP in 2021, our sample only includes the 1st and 2nd releases, so the

3rd and benchmark releases are treated as missing.

23We also experimented with four releases (excluding final vintage.) The Bayes factor preferred five
releases.
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Estimation uses a random-walk Metropolis-Hastings algorithm with a diffuse prior. The

prior information is detailed in Table 3.24 We generate 100,000 draws, discarding the initial

80,000. For each parameter draw, latent variables are estimated.

[Table 3 about here.]

We report the median and 50% credible bands for the parameters based on our full

data sample in Table 4. The AR coefficients for the cyclical component are similar for

the two series and they display the “hump-shape” (opposite signs) often associated with

simple business cycle models. The first and final releases for MFP are the noisiest, while

the fourth and final release noises are the noisiest for OPHA. News about the trend is

evenly distributed across the various releases for MFP while that for OPHA is largest in

the 1 Yr release while the initial release contains relatively little information. News about

the cycle is dominated by the last release included in the model.

[Table 4 about here.]

To better understand what the above full-sample estimates imply for changing percep-

tions of productivity growth trends, we consider a variety of measures in the next section,

before turning to consider the effects of publication lags and parameter instability there-

after. The former gives a better sense of the model’s properties and its historical assessments

of productivity growth trends, while the latter shows how the model behaves when used to

inform decision making and current analysis.

4 Full Sample Results

4.1 Productivity Growth Trends

Figure 5 shows the model’s estimates of the trend growth rate of productivity. These

are based on the full-sample parameter estimates shown in Table 4 and are smoothed

estimates. These should be interpreted as the model’s best “historical” perspective on trend

24We use the same prior for both measures of productivity growth. Given the small sample size for MFP,
we also investigated an inverse gamma distribution as the prior for the standard deviation parameters. The
alternative prior is specified in Table 7 and results are presented in Appendix A.
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productivity growth, a mostly retrospective view that takes into account the full sample

for all five releases of each variable. The red bands around the estimates indicate the 68%

credible interval for the trend. These intervals are slightly wider near the beginning and

end of the sample, but are generally narrow enough to imply very statistically significant

variation in productivity growth trends, particularly for OPHA.

The trends for MFP and OPHA are broadly similar until the 1980s, with growth not

far from 2% through to around 1970 before declining to near 0% by 1980. Although both

series show a gradual recovery over the next 20 years, the recovery in OPHA is slightly

more than double that in MFP and exceeds its previous peak in the early 1960s. After

2000, MFP stagnates somewhat while OPHA shows a much steeper decline. By 2022, both

are close to 1%.

[Figure 5 about here.]

This pattern (decline in the 1970s, recovery in the 1980s & 90s, decline thereafter) is

unremarkable and similar results may be produced by much simpler techniques. However,

note that these variations in trend growth are much larger than those we saw in Figure 3,

which were produced by an analogous model with the same dynamics for trend and cycle,

but which used only the “final” data release and ignored data revision. Figure 6 directly

compares the two models’ filtered estimates of trend (black for our multi-release model,

green for the No Revision model). While filtered estimates from the No Revision model

are more volatile than that model’s smoothed estimates, they largely miss the decline of

growth in both series to near zero around 1980 and much of the recovery in growth rates

thereafter.

[Figure 6 about here.]

Figure 6 also compares both of these model’s filtered estimates to several releases of the

CBO’s estimates of growth at potential for MFP and OPHA. While our model largely tracks

the CBO estimates for MFP from the 1960s through 1980, it provides smaller estimates of

the rebound in MFP growth through to 2000. For OPHA, the multi-revision model tracks

the CBO estimates more closely, with the exception of the 2000–2015 period where our

model produces substantially higher estimates of trend productivity growth.
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Weighing Revisions

To understand how our model arrives at its filtered estimates of trend growth and why

they differ from other estimates, we follow Koopman and Harvey (2003) and examine

the weights it places on the initial release and on each subsequent revision.25 Figure 7

shows these weights, with results for MFP in Figure 7a and those for OPHA below in

Figure 7b. Filter-implied weights for both series decay smoothly, with those for OPHA

decaying slightly faster than those for MFP, producing slightly more volatile growth trends

for OPHA. In both cases, several different releases receive substantial weight in estimating

the trend growth rate.26 The benchmark revision receives substantial weight. For OPHA,

it is the most important component of the estimated trend and receives a weight that is

slightly larger than that of the next two components combined, or just under half of the

total weight assigned to all five components. For MFP however, the revision from the 2nd

to the 3rd release receives a still greater weight. Together with the benchmark revision,

these two components account for about two-thirds of the total weight assigned to all five

components. Interestingly, revisions in the final available vintage receive relatively little

weight for either series, which contrasts with the conventional practice of using only the

most recent available vintage to estimate the trend. This suggests that filtered estimates

may continue to undergo important revisions for several years after the initial release but

should change little after the first benchmark revision, something we investigate in greater

detail below.

[Figure 7 about here.]

25In the following discussions of Kalman Gains and Weights, all calculations are based on our median
parameter estimates and assume the absence of missing observations. The formulas in Koopman and
Harvey (2003) provide a set of five linear weights [ω1, . . . , ω5] for the five releases [y1, . . . , y5] in our model.
We convert these into the implied weights on the first release and subsequent revisions using the fact that

ω1y1 + ω2y2 + ω3y3 + ω4y4 + ω5y5 =

 5∑
j=1

ωj

 y1 +

 5∑
j=2

ωj

 (y2 − y1) +

 5∑
j=3

ωj

 (y3 − y2)

+ (ω4 + ω5) (y4 − y3) + ω5 (y5 − y4)

26We found analogous results for estimates of the cyclical component of productivity growth ct+1, since
these are simply −1× the weights for τt+1.
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5 The View at the Leading Edge

The filtered estimates presented in the previous section for a given period t may differ from

what an analyst using our model in period t would have calculated in two important ways.

First, all the analysis presented above used the full-sample parameter estimates presented

in Table 4. The filtered estimates may therefore vary to the extent that the parameter

estimates are unstable and differ over shorter samples. Second, and more importantly, the

estimates presented above ignored publication lags. When estimating growth trends in

year t, the latest data available is that for year t − 1 at best; MFP estimates were often

published with multi-year delays. Analysts making a “nowcast” are therefore forecasting

one (or more) years into the future. The fact of missing observations due to publication

lags is commonly referred to as “the ragged edge”.

The ragged edge problem becomes much more serious when data revisions are used in

a model. Although the first estimate for year t may be published at t + 1, the second

estimate may not be available until t + 2, and the benchmark revision may be delayed

further still (see Table 1).27 The “final” estimate used in our model is also unavailable for

current analysis, although the results in Figure 7 show that it receives modest weight.

In this section we address the ragged edge and the parameter instability issues sep-

arately to understand how they may affect changing perceptions of productivity growth.

We begin by revisiting the filter weights shown above in Figure 7 to consider how they

vary when one or more series are unavailable. We then compare the filtered and smoothed

estimates from the previous section to filtered estimates with varying amounts of missing

information. We also examine how quickly the precision of the estimated trends improves as

more information becomes available. Thereafter we repeat our analysis using rolling estim-

ates of our model parameters to understand the degree to which estimates of productivity

growth trends are affected.

27Recalling that OPH estimates are published at a higher frequency and with shorter lags than those
for MFP, this problem is most serious for MFP. Note also that the BLS has increased the publication and
revision frequency for both series in recent years, which should mitigate this problem to some degree. See
the discussion, below.
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5.1 At the Ragged Edge

To understand how the estimation of the trend productivity growth rate τt+1 changes at

the ragged edge, we now consider how the weights on the observations at t change when

one or more releases are unavailable. Table 5 presents these results.28

The first point to note is that the weights assigned by the filter change only slightly as

more components are released. This implies that revisions to the estimated trend growth

rate largely reflect the incorporation of new revisions rather than a re-weighting of available

releases. Taken together with the weights assigned to the various revisions shown above

in Figure 7, this implies that much of the information needed to estimate the trend pro-

ductivity growth rate is not available until several years have passed. In the case of MFP,

the largest weight is on the revision from the 2nd to the 3rd release. When revisions are

released annually, this will typically imply a delay of 3 years before even half of the weight

in filtered series can be allocated.29 Even then, substantial weight (43% of the total) for

the filtered estimate must wait until the benchmark and then the final revisions are avail-

able. For OPHA, while revisions are released more frequently (quarterly), just over half

of the total weight (54%) is put on the benchmark and final revisions. This again implies

that several years may need to pass before much of the information needed for reliable

estimation of the trend growth rate is available.30

[Table 5 about here.]

The above analysis of the filter weights has an important shortcoming, however. Table

2 showed that some revisions tended to be much larger than others, so that the apparent

importance of a larger weight might be (partially or totally) offset by a lower variability

of the associated revision. Furthermore, as shown in Figure 7, estimates of the current

trend growth rate depend on a long distributed lag of past observations. The most recent

filter weights alone could therefore give a distorted view of how quickly or slowly statistical

28When all 5 releases are available, as shown in the first line of the table for MFP and for OPHA, the
weights correspond to those shown in Figure 7 at a lag of one period.

29Historically, MFP revisions have not always been released at regular intervals. There were no releases
in 1997 or 2005. In 2020, the BLS began releasing estimates in the spring and revising them in the fall of
the same year.

30As shown in Table 1, benchmark revisions for OPHA were released in 1971, 1981, 1990, 1996, 2010,
2013 and 2018.
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uncertainty about productivity growth trends dissipates over time as more information

becomes available.

An alternative approach is to compare estimates of the error variance of the trend

estimation. Specifically, consider var(τ̂t+1|Ω − τt+1), where τt+1 is now the unknown true

value of the growth rate and τ̂t+1|Ω is the estimated growth rate from our model conditional

on the information in Ω which contains model parameters Θ as well as data Y .31 Table

6 compares results for MFP and OPHA as more information is used to estimate τt+1.

Results in the table are shown relative to the 1-period ahead overall estimation uncertainty

var(τt+1|Ω = Yt), where Yt contains all releases for all years up to and including year

t. Note that in this case Ω does not include Θ; instead the distribution of Θ is inferred

from YT and the conditional variance var(τt+1|Ω = Yt,Θ) is integrated over the marginal

distribution of Θ. The first line of Table 6 shows how the uncertainty about the trend

growth rate changes when we condition on the median values of the estimated parameters

shown in Table 4. We see that the conditional variance drops just less than 8% for the

MFP trend and less than 3.5% for the trend in OPHA; this suggests that model parameter

uncertainty is not a major contributor to overall trend uncertainty (something that we

return to below.)

[Table 6 about here.]

The subsequent lines in Table 6 show how the error variance of our estimated trend at

t+ 1 is further reduced as we take account of preliminary productivity estimates for t+ 1

and their successive revisions. When all series are available for t+1 (Ω ≡ {ΘT ,Yt+1}), the

change in the relative uncertainty gives us a measure of the overall impact of data revision

at t+1. We see that the relative uncertainty for trend growth in MFP has decreased from

92.3% to 78.0%; just over three quarters of the uncertainty about trend growth from year t

remains. The situation is marginally better for OPHA, where the relative uncertainty falls

from 96.7% to 67.1%, implying that just over two thirds of uncertainty remains. While these

reductions show that productivity data revisions are economically significant, they are not

the only source of changes in productivity growth perceptions. The final line shows that

31This differs slightly from standard notation (such as that of Durbin and Koopman (2012, Section 4.3.1),
where Pt+1 ≡ var(αt+1|Yt) and αt+1 is the state vector and it is assumed that the parameters Θ of the
system matrices are known rather than estimated.
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after 12 additional years of data there remains just over one-third (36.1%) of the original

uncertainty for MFP and just over one-quarter (26.1%) for OPHA. This shows that the

future evolution of productivity (i.e. “hindsight”) provides somewhat greater information

about current growth trends than data revisions will.

A way to visualize the effect of ragged edges on estimated productivity growth trends is

to compare the filtered and smoothed trend estimates shown above (which ignored ragged

edges) with their ragged-edged counterparts. Figure 8 presents the results. It shows the

same smoothed estimates shown in Figure 5 (red solid line with credible bands) alongside

the filtered estimates shown in Figure 6 (brown solid line) and adds several sets of ragged-

edge filtered estimates for comparison. For example, when the sample ends in 2000, we

include the first release of the 2000 value, the first and second releases of the 1999 value, the

first, second, and third/one-year releases of the 1998 value, and so forth. We then retain

the estimate for 2000 as the ragged-edge series with one release, the estimate for 1999 as

the ragged-edge series with two releases, the estimate for 1998 as the ragged-edge series

with three releases, and so on. We then proceed to the next year where the sample ends

in 2001. All are calculated using the same median parameter estimates from Table 4.

[Figure 8 about here.]

For MFP, we see that the ragged edge estimates lie close to the filtered estimates which

ignore ragged edges, implying that the overall effects of publication lags are modest. This

is consistent with the results of Table 6 which suggested that smoothing over several years

is more important to trend estimation than the replacement of missing observations. It is

also interesting to note that nearly all the filtered estimates lie within the 68% credible

interval around the smoothed estimates. Finally, all the filtered estimates appear to lag the

smoothing estimates in the detection of turning points (seen most clearly around 2001).

There is also some suggestion that estimates with more missing observations have slightly

longer lags. The latter effect is seen most clearly around the 2001 turning point in OPHA

where the lag at the peak decreases steadily as we receive the 1st, 2nd, 1yr and BM

releases in turn. The ragged edge estimates now follow the filtered estimates that ignore

ragged edges a bit less closely, and they more frequently depart from the 68% credible
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interval around the smoothed estimates. This is consistent with the more modest degree

of smoothing of the OPHA data that we saw in Figure 7.

5.2 Real-Time Behavior

As noted at the outset of this section, parameter instability may also contribute to changing

(model-based) estimates of trend productivity growth. This question is of potentially great

concern to decision makers, so we now investigate the extent to which this may contribute

to variability in our model’s trend growth estimates. We do so via a (pseudo) real-time

simulation.

To this point our results have been based on full-sample estimates of our model para-

meters Θ̂ as shown in Table 4. We now compare the resulting estimates of trend growth

rates with those produced using rolling estimates of Θ. Estimation uses an expanding win-

dow whose end-point starts in 1999 and ends in 2021 for MFP and 2022 for OPHA, and

includes the ragged edge effects considered in the previous section to make the simulation

as realistic as possible. As an example, when estimating the trend component of MFP

growth for a given year, say 2000, the available data includes values from the 1st release

for 1998, the 1st, 2nd, and benchmark releases for 1997, the 1st, 2nd, 3rd, and benchmark

releases for 1996, and so on.

Figure 9 compares the full-sample smoothed estimates of trend growth shown above in

Figure 5 with the results of our real-time simulation. The real-time filtered estimates it

shows for each year t are based solely on data and parameter estimates that were available

to agents in that year. Because the preliminary data for year t are not yet published at t,

the filtered estimates shown reflect a real-time “nowcast” of trend productivity growth. We

see that, like their full-sample counterparts, the real-time filtered estimates are somewhat

more volatile than the smoothed estimates and appear to lag turning points somewhat, but

again mostly lie within the 68% credible intervals for the full-sample smoothed estimates.

[Figure 9 about here.]

However, there is no clear analogue to the smoothed estimate in a real-time simulation:

at the end of the sample, “smoothed” estimates are identically equal to the filtered estim-

ate. As an approximate analogue therefore, the figure compares the full-sample smoothed
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estimates for year t− 5 with our real-time smoothed estimates for the same year based on

information as of year t. Figure 9 shows that the two series are tightly bound together, as

we would expect from stable parameter estimates.32

Figure 10 provides more evidence on the convergence of real-time filtered estimates to

the full-sample smoothed estimates. It includes the full-sample smoothed series previously

shown in Figures 5 and 8 (red solid line with credible bands), as well as the real-time

filtered estimates (Yt|t, blue solid line) together with their 68% credible bands. The green

line (denoted Yt−2|t) shows real-time estimates for year t−2 conditional on the information

available in year t. At that point at least one release for period t− 2 is typically available.

Again, the corresponding 68% credible bands are shown.

For both measures of productivity, we again see that the real-time filtered estimates

lag the smoothed series, with Yt|t exhibiting the greatest lag, followed by Yt−2|t. A sim-

ilar pattern appears in the ragged-edge results of Figure 8, where filtered releases lag the

smoothed estimate, and additional releases gradually bring the latent series closer to the

smoothed series. The credible bands for the filtered estimates are wider than those of the

smoothed estimates, with Yt|t being the widest, followed by Yt−2|t, showing how additional

data releases and revisions help reduce estimation uncertainty.

[Figure 10 about here.]

As expected, the full-sample smoothed estimates of trend productivity growth are not

particularly volatile around NBER recessions. In contrast, the real-time filtered estimates

often (though not always) exhibit considerable volatility around recessions, leading to eco-

nomically significant differences between the two approaches. For MFP, the three recessions

for which we have real-time estimates (2001, 2008–2009, 2020) show notable declines in the

trend productivity growth rate before and after recessions, without corresponding move-

ments in the full-sample smoothed estimates. For OPHA, aside from a sharp but transitory

rebound following the 2008 recession, this pattern does not appear in other recessions.

32This is also consistent with the results in the first line of Table 6, which showed that conditioning on the
median parameter estimates rather than their full distribution did little to reduce estimation uncertainty,
as one would expect if parameters were estimated with good precision. This also gives indirect evidence
that smoothed estimates of trend growth have largely converged after 5 years.
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6 Conclusion

As we showed in Figure 1, the extent to which perceptions of productivity growth trends

are revised over time is sometimes puzzling. To help understand the importance of various

factors that may shape the changing perceptions of productivity growth trends, we presen-

ted a simple linear model that produces statistically efficient estimates of those trends

even after taking account of data revisions, publication lags, and the uncertainty stem-

ming from trend/cycle decompositions. Unlike analogous models that ignore data revision,

the historical trends for the U.S. that it estimates match the widely-accepted narrative of

high-growth through the mid-1960s, a slowdown through the 1970s to near zero, a period

of recovery peaking around 2000 and a renewed slowing of growth thereafter. It finds that

the variations in trend growth are much more pronounced for annual labor productivity

(OPHA) than for multi-factor productivity (MFP).

We then use the model to understand how we should expect perceptions of productivity

growth trends to be revised over time as more data become available and existing series

are revised. We compare contemporaneous and historical estimates, estimates from models

with and without data revision, from models with and without publication lags, and from

models with and without rolling parameter estimates. We also examine how the standard

errors of the growth trend estimates vary as we increase the information available to the

model.

Because of the noisy character of productivity series, our model prefers to use a weighted

average of several different releases, with relatively higher weights on those associated with

benchmark revisions and only modest weights on subsequent changes. With relatively low

weights for initial releases, this increases the imprecision of early trend estimates. Publica-

tion lags, particularly for MFP, tended to be long and variable, adding further uncertainty

to trend growth estimates used for decision-making. However, the most important reduc-

tions in uncertainty around growth trends came not from the elimination of publication

lags, nor the use of fully revised data, but from the ability to observe the future evolution

of the series.

This result has some implications for how decision makers should interpret recent pro-

ductivity growth trends. First, without minimizing the importance of providing timely and
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accurate data, and the improvements that have been made in this regard in recent decades,

it suggests that there are diminishing returns to further improvements and that even rapid

and precise measurement may leave agents with considerable economic and statistical un-

certainty about the rate of trend productivity growth. Second, we found that preliminary

estimates of trend growth tended to detect shifts in trends with a few years delay, and

sometimes detected false changes in trends around recessions. However, these changes lay

well within the uncertainty bands surrounding even historical estimates, and so should not

be misleading to those mindful of the limited precision of preliminary estimates. Third,

our model’s growth trends estimates typically undergo little revision after five years, by

which time the most influential revisions have typically taken place. It therefore offers little

insight into major changes in perceptions that may occur a decade or more after the fact.

We chose to keep the model used here as simple as possible while addressing the multiple

sources of uncertainty that we highlighted above. No doubt it could be usefully extended

in a variety of ways. For example, one might prefer a mixed-frequency model that would

jointly model labor and multi-factor productivity, as they no doubt are subject to some

common cyclical and trend shocks. Alternatively, a three-factor model could be used to

jointly model output, labor, and capital services. To the extent that theory or applied

work have suggested variables that are predictors of future productivity growth, the extent

to which they can improve the precision of current trend estimates may produce useful

insights.33 Of course, there are a plethora of alternative trend/cycle decompositions or

selections of data vintages that might also be explored.

33For an example of a multivariate approach, see Zaman (2025).
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A Alternative prior: Inverse gamma distribution

Due to concerns about the small sample size of MFP, an inverse gamma distribution prior

has been imposed on the standard deviation parameters in addition to the benchmark

diffuse prior presented in Table 3 (see Table 7). This alternative prior is introduced to

mitigate potential issues associated with a diffuse prior, which is analogous to MLE. Results

are shown in Tables 8 and 9 and Figure 11.

[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]

[Figure 11 about here.]
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Figure 1: CBO’s Changing Estimates of U.S. Productivity Growth Trends

Total Factor Productivity Growth at Potential

The horizontal axis shows when the estimates for each year were published.
Shaded areas show NBER recessions.
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Figure 2: Revisions of U.S. MFP Growth Rates

Dashed vertical lines indicate changes in base year. For details, please refer to Section 2.
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Figure 3: MFP Growth Trend Estimates from a Simple Model
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Figure 4: MFP, OPH, and OPHA

32



Figure 5: Trend Productivity Growth
(Smoothed Estimates, Full Sample)

(a) MFP

(b) OPHA

Shaded areas indicate the 68% credible interval.
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Figure 6: Comparison to No-Revision and CBO Estimates (Full Sample)

(a) MFP

(b) OPHA

34



Figure 7: Kalman Filter Weights for τt+1

(a) MFP

(b) OPHA
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Figure 8: Trend Productivity Growth (Ragged Edge)

(a) MFP

(b) OPHA
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Figure 9: Real-Time Filter vs Full-Sample Smoother

(a) MFP

(b) OPHA
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Figure 10: Trend Productivity Growth (Real-Time)

(a) MFP

(b) OPHA

38



Figure 11: Trend Productivity Growth, Inverse Gamma Prior (Ragged Edge)

(a) MFP

(b) OPHA
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Table 1: Benchmark Revisions

Variable Base Year Start End

MFP 1995&96 = 100 1987
1998&99 = 100 1992
2000-2003 = 100 1996
2004-2009M3 = 100 2000
2010M8-2013M4 =100 2005
2014M4-2018M6 2009
2019M3-present (2022M11) 2012

OPH 1957-1959=100 1968-05-27 1971-02-01
Index 1967=100 1971-02-02 1981-01-29
Index 1977=100 1981-01-30 1990-08-05
Index 1982=100 1990-08-06 1996-02-07
Index 1992=100 1996-02-08 2010-08-09
Index 2005=100 2010-08-10 2013-08-15
Index 2009=100 2013-08-16 2018-08-14
Index 2012=100 2018-08-15 Current
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Table 2: Revision in Productivity Growth Rates

MFP OPHA MFP OPHA
[-.1in] Release Std. Deviation Mean Absolute Deviation
1st 0.012 0.016 0.010 0.016
Final 0.017 0.015 0.015 0.016

Revision RMS Revision Mean Absolute Revision
Final - 1st 0.57 0.63 0.56 0.49
2nd - 1st 0.47 0.12 0.44 0.07
1 yr - 2nd 0.18 0.38 0.10 0.28
5 yr - 1 yr 0.21 0.40 0.20 0.32
Final - 5yr 0.33 0.41 0.31 0.30
RBM - 1st 0.43 0.48 0.37 0.37
BM - PBM 0.24 0.21 0.23 0.09
Final - BM 0.43 0.38 0.41 0.29

Revision statistics are expressed as a fraction of the variability (Std. Deviation or Mean
Absolute Deviation) of the 1st release.

PBM indicates Pre-Benchmark Release (the last release prior to 1st Benchmark revision).

BM indicates Benchmark Release.
Final indicates the last release in our sample.
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Table 3: Prior Specification

Parameter Density Parameter 1 Parameter 2

ρ1 Normal 0.5 1
ρ2 Normal 0 1

σξ
i Uniform 0 1

σc,ν
i Uniform 0 1

στ,ν
i Uniform 0 1

Parameter 1 is the mean of the normal distribution and the minimum value of the uniform
distribution.
Parameter 2 is the standard deviation of the normal distribution and the maximum value
of the uniform distribution.
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Table 4: Model Parameter Estimates

Parameter MFP OPHA

ρ1 0.428 0.404
(0.420,0.439) (0.398,0.415)

ρ2 -0.158 -0.055
(-0.177,-0.142) (-0.065,-0.041)

σξ
1 3.206 0.661

(1.499,4.600) (0.337,1.068)

σξ
2 0.887 0.942

(0.441,1.444) (0.550,1.313)

σξ
3 0.965 1.285

(0.534,1.410) (0.632,2.022)

σξ
4 1.742 2.231

(1.264,2.148) (1.453,2.917)

σξ
5 2.795 4.514

(1.469,3.993) (2.747,5.379)

σc,ν
1 4.272 0.895

(2.392,5.203) (0.464,1.322)

σc,ν
2 1.358 5.029

(0.727,2.003) (4.364,5.602)

σc,ν
3 0.841 2.902

(0.388,1.387) (1.730,4.106)

σc,ν
4 2.584 2.817

(1.218,3.893) (1.387,4.539)

σc,ν
5 34.982 32.363

(33.553,36.740) (28.798,34.464)

στ,ν
1 1.306 0.756

(0.607,2.147) (0.377,1.166)

στ,ν
2 1.470 2.260

(0.810,2.007) (1.051,3.467)

στ,ν
3 0.945 3.974

(0.511,1.400) (3.011,4.720)

στ,ν
4 1.761 1.347

(0.949,2.604) (0.653,2.090)

στ,ν
5 1.343 2.199

(0.586,2.449) (1.101,4.268)

log-likelihood 689.957 1080.306

Values in ( )’s are 25th% and 75th% quantiles; σ’s are shown multiplied by 103.
Subscripts [1,2,3,4,5] refer to releases [1st, 2nd, 3rd, BM, Final] for MFP, and [1st, 2nd, 1 Yr,
BM, Final] for OPHA.
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Table 5: Kalman Filter Weights for τt+1 at the Ragged Edge

1st 2nd - 1st 3rd/1yr - 2nd benchmark - 3rd/1yr Final - benchmark

MFP 0.124 0.054 0.342 0.259 0.141
0.124 0.054 0.329 0.180
0.126 0.053 0.298
0.127 0.045
0.129

OPHA 0.148 0.155 0.043 0.345 0.060
0.148 0.155 0.042 0.336
0.149 0.148 0.024
0.157 0.132
0.159
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Table 6: Resolution of Estimated Trend Uncertainty

Relative Uncertainty
Conditioning Information MFP OPHA

Ω ≡ {ΘT ,Yt} 0.923 0.967
Ω ≡ {ΘT ,Yt, y1,t+1} 0.867 0.812
Ω ≡ {ΘT ,Yt, y1,t+1, y2,t+1} 0.836 0.808
Ω ≡ {ΘT ,Yt, y1,t+1, . . . , y3,t+1} 0.813 0.789
Ω ≡ {ΘT ,Yt, y1,t+1, . . . , y4,t+1} 0.800 0.686
Ω ≡ {ΘT ,Yt+1} 0.780 0.671
Ω ≡ {ΘT ,Yt+12} 0.361 0.261

Relative Uncertainty is defined as var(τt+1|Ω) / var(τt+1|Yt).
ΘT are the median full-sample estimates of model parameters.
Yt+j contains all elements of Y for periods 1 to t+ j.
yj,t+1 is the value at t+ 1 of the jth series in Y .
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Table 7: Inverse Gamma Prior

Parameter Density Parameter 1 Parameter 2

ρ1 Normal 0.5 1
ρ2 Normal 0 1

100σξ
i , i = 1, . . . , 4 Inverse Gamma 0.2 4

100σc,ν
i , i = 1, . . . , 4 Inverse Gamma 1 4

100στ,ν
i , i = 1, . . . , 4 Inverse Gamma 0.05 4

For the normal distribution, Parameter 1 is the mean and Parameter 2 is the standard
deviation.
For the inverse gamma distribution, parameter 1 is s and parameter 2 is ν where
pIG(σ|s, ν) ∝ σ−ν−1e−νs2/2σ2

.
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Table 8: Five Release Parameter Estimates, Inverse Gamma Prior

Parameter MFP OPHA

ρ1 0.428 0.503
(0.425,0.433) (0.474,0.510)

ρ2 -0.122 -0.102
(-0.129,-0.115) (-0.108,-0.098)

σξ
1 1.885 1.321

(1.578,2.346) (1.176,1.489)

σξ
2 1.586 1.348

(1.372,1.833) (1.179,1.540)

σξ
3 1.540 1.726

(1.320,1.832) (1.469,2.035)

σξ
4 1.585 1.885

(1.373,1.885) (1.610,2.221)

σξ
5 1.844 2.090

(1.527,2.242) (1.715,2.570)

σc,ν
1 6.399 3.354

(5.787,7.060) (3.134,3.588)

σc,ν
2 4.508 5.789

(4.117,4.962) (5.419,6.226)

σc,ν
3 4.584 5.616

(4.240,5.014) (5.182,6.075)

σc,ν
4 4.970 5.632

(4.651,5.330) (5.255,6.000)

σc,ν
5 27.509 25.410

(24.955,31.277) (24.390,26.506)

στ,ν
1 0.535 0.495

(0.416,0.710) (0.402,0.621)

στ,ν
2 0.519 0.583

(0.419,0.659) (0.448,0.796)

στ,ν
3 0.517 0.643

(0.419,0.661) (0.477,0.979)

στ,ν
4 0.535 0.556

(0.427,0.695) (0.441,0.734)

στ,ν
5 0.541 0.591

(0.428,0.708) (0.452,0.840)

log-likelihood 668.4275 1055.547

Values in ( )’s are 25th% and 75th% quantiles; σ’s are shown multiplied by 103.
Subscripts [1,2,3,4,5] refer to releases [1st, 2nd, 3rd, BM, Final] for MFP, and [1st, 2nd, 1 Yr,
BM, Final] for OPHA.
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Table 9: Trend Kalman Gain, Inverse Gamma Prior

1st 2nd - 1st 3rd/1yr - 2nd benchmark - 3rd/1yr Final - benchmark

MFP 0.072 -0.026 -0.028 -0.028 -0.026
0.072 -0.026 -0.028 -0.026
0.071 -0.025 -0.025
0.070 -0.023
0.069

OPHA 0.060 -0.019 -0.038 -0.036 -0.034
0.060 -0.019 -0.037 -0.033
0.058 -0.017 -0.033
0.057 -0.012
0.055
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