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Abstract/Résumé 

 

It is shown that the Mean Integrated Square Error (MISE) of a binary classifier is a weighted 
average of its probabilities of type I (α) and type II errors (β). This provides a foundation for 
minimizing a linear cost function consisting of a weighted average of α and β to design an optimal 
classifier. Such a cost function is shown to have the interpretation of a MISE of the classifier under 
a subjective probability distribution. We derive the closed-form expression of the optimal α for 
the mean test, provide an equation that can be solved numerically to find the optimal cutoff of 
the Probit classifier, and illustrate the relevance of the results by simulation. In general, the 
optimal α for a significance test is different from the conventional 0.05 or 0.01 and the optimal 
cut-off for probabilistic classifiers deviates from 0.5. 
 

 
Nous démontrons que l'erreur quadratique moyenne intégrée (EQMI) d'un classificateur binaire 
est une moyenne pondérée de ses probabilités d'erreurs de type I (α) et de type II (β). Ceci justifie 
la minimisation d’une fonction de coût linéaire, consistant en une moyenne pondérée de α et β, 
pour l’obtention d’un classificateur optimal. Une telle fonction de coût peut s’interpréter comme 
une EQMI du classificateur sous une distribution de probabilité subjective. Nous établissons 
l'expression analytique du α optimal pour le test de la moyenne, fournissons une équation 
résoluble numériquement pour la détermination du seuil optimal du classificateur Probit, et 
illustrons les résultats par simulation. En général, le α optimal pour un test de significativité est 
différent de 0,05 ou 0,01 utilisé conventionnellement, et le seuil optimal des classificateurs 
probabilistes est différent de 0,5. 
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1. Introduction 

It is customary for researchers in economics and social sciences to encounter binary choice 

problems where they must decide whether to act as if one of two statements is true given the 

available information. In statistical terms, this often boils down to telling whether an observed 

sample conforms to certain assumptions on the underlying data generating process (Fisher, 1925; 

Neyman and Pearson, 1933; Romano, 2005)1. In this context, the research question may be cast as 

the prediction of a binary variable Y that takes 1 when a given statement is true and 0 otherwise. 

However, the binary classification problem goes one step beyond the estimation of the conditional 

distribution of Y given the available information (X). It entails designing an oracle (or classifier, 

𝑌̂) that delivers the “best guess” of Y based on the realization of X.  

The cost of predicting 𝑌̂ = 1 while 𝑌 = 0 can be quite different from that of predicting 𝑌̂ = 0 

while 𝑌 = 1. For that reason, the two types of misclassifications are rarely treated symmetrically 

by the investigator: one outcome is often considered the default assumption that is held to be true 

until “proven” wrong while the alternative outcome carries the burden of proof. For instance, a 

banker will most likely assume that a client is insolvent until the data suggest otherwise. In this 

example, the choice of default assumption is guided by prudence: the outcome against which 

misclassification is the costliest is erected as default assumption2. In general, the research design 

should reflect where the investigator wishes to place the burden of proof (Lavergne 2014, pp. 414-

415). 

With no loss of generality, let us assume that 𝑌 = 0 is the default assumption and 𝑌 = 1 the 

alternative. In a classical hypothesis testing, the default assumption is the null hypothesis. A 

misclassification against the default outcome (predicting 𝑌̂ = 1 while Y=0) is an error of type I 

while a misclassification against the alternative outcome (predicting 𝑌̂ = 0 while Y=1) is an error 

 

1 Concrete examples include (i) telling whether an economy is a recession or not (Boldin, 1994; Stock and Watson, 

2010; Hamilton, 2011); (ii) predicting whether a firm will go bankrupt or not (Altman, 1968); (iii) enquiring whether 

a treatment has achieved the intended impact (Imbens and Rubin, 2015), etc.  
2 However, subjective preferences (as opposed to objective costs) may lead a person to consider a theory wrong until 

proven true (e.g., global warming is a danger to humanity; an accused is guilty until proven innocent). 
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of type II. The performance of a binary classifier is typically assessed via its probability of type I 

errors (denoted 𝛼) and its probability of type II errors (denoted 𝛽). A common approach to tackle 

binary classification problem when Y is deterministic is the classical Neyman and Pearson 

(1933)’s hypothesis testing framework. In this paradigm, the best classifier is the one with the 

lowest probability of type II errors among a set of classifiers with given probability of type I errors 

(typically, 𝛼 = 0.05 or 0.01). This approach does not directly control the type II errors rate and 

hence, its ability to detect the alternative hypothesis when it is true may remain undesirably low. 

Moreover, arbitrarily fixing 𝛼 at 0.05 or 0.01 does not necessarily deliver a cost-minimizing 

classifier.  

Another approach consists of fitting a model to 𝑃𝑟(𝑌 = 1|𝑋) from which one deduces a classifier 

that assigns 𝑌̂ = 1 if 𝑃𝑟(𝑌̂ = 1|𝑋) > 𝑝0 ∈ (0,1) and 𝑌̂ = 0 otherwise. This approach may be used 

when (𝑌, 𝑋) is random and a nontrivial sample of it can be observed naturally or generated via 

repeated experiments. The conditional probability 𝑃𝑟(𝑌 = 1|𝑋) may be modeled as a Probit or 

Logit (Cox, 1958) or deduced via Bayes’ posterior probability rule (Bishop, 1995). The value 

assigned to the cut-off 𝑝0 determines the type I and type II errors rates of the classifier. It is 

customary in the applied literature to assign the value that maximizes the posterior probability 

𝑃𝑟(𝑌 = 𝑘|𝑋), 𝑘 = 0,1 to 𝑌̂, which is equivalent to fixing 𝑝0 = 0.5. However, this arbitrary choice 

does not necessarily result is a cost-minimizing classifier3. 

In the current paper, a unified framework to design optimal binary classifiers is proposed. The 

proposed approach can be equally applied to hypothesis testing and probabilistic classifications. 

First, it is shown that the Mean Integrated Square Error (MISE) of a classifier is a weighted average 

of its type I and type II errors probabilities (𝛼 and 𝛽). This provides a justification for minimizing 

a penalty function consisting of the expected costs of misclassification to design of an optimal 

classifier. Interestingly, the configuration of the misclassification costs implies a subjective 

probability distribution on the possible outcomes, and the expected costs of misclassification is the 

 

3 Other popular approaches in the Machine Learning literature include the Support Vector Machines, the Multilayer 

Perceptron, Discriminant Analysis, etc. For an overview, see Bishop (1995) and Hastie and Tibshirani (1996). 
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MISE of the classifier (up to a multiplicative constant) under this subjective distribution. We derive 

the closed-form expression of the optimal 𝛼 for the mean test (both under the classical and model 

equivalence approach) and provide a numerical approximation of the optimal cutoff for a Probit 

classifier. It is found that in general, the optimal 𝛼 is different from the conventional 0.05 and 0.01 

and the optimal cut-off for a Probit classifier is different from 0.5. 

The remainder of the paper is organized as follows. Section 2 shows that the MISE of a binary 

classifier is a weighted average of its type I and type II errors. Based on this result, Section 3 

presents a general characterization of the optimal classifier. Sections 4, 5 and 6 specialize the 

previous result to cases of the classical mean test, the model equivalence mean test and the Probit 

classification. Each case is supported by a simulation experiment. Section 7 concludes, and an 

appendix collects the mathematical proofs. 

2. The Mean Integrated Square Error of a Binary Classifier 

Let us consider testing the null hypothesis 𝐻0: 𝑔(𝜃) = 0 against the alternative hypothesis 

𝐻1: 𝑔(𝜃) ≠ 0. The deterministic target associated with this test is 𝑌 = 𝐼(|𝑔(𝜃)| > 𝜂), where 𝐼( ) 

is the indicator function that equals 1 if the statement inside the parentheses is true and 0 otherwise; 

𝜃 ∈ ℝ𝑑 a finite-dimensional parameter of the distribution of X; and 𝑔() a mapping from ℝ𝑑 into 

ℝ and 𝜂 > 0. The decision rule for this test is generally of the form: 

𝑌̂𝑡 = 𝐼(𝑆(𝜃,𝑋1, … , 𝑋𝑛) ∉ (𝑞1, 𝑞2)),       (1) 

where 𝑆(𝜃, 𝑋1, … , 𝑋𝑛) is a test statistic and 𝑞1 and 𝑞2 are chosen to satisfy 𝑃𝑟(𝑌̂𝑡 = 1|𝐻0) = 𝛼. 

The corresponding probability of type II errors is 𝛽(𝛼) = 𝑃𝑟(𝑌̂𝑡 = 0|𝐻1). Indeed, 𝛽 is a 

decreasing function of 𝛼 Jeffreys (1939). 

Alternatively, one may specify the test as: 𝐻0: 𝑔(𝜃) ≠ 0 against 𝐻1: 𝑔(𝜃) = 0. This set-up is most 

useful when the objective of the researcher is to provide evidence in favor of a theory stipulating 

that 𝑔(𝜃) = 0. The target associated with this test is 𝑌 = 𝐼(|𝑔(𝜃)| < 𝜂), where 𝜂 is a small, 

positive violation margin below which the theory is considered valid (Romano, 2005; Lavergne, 

2014). The decision rule becomes: 
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𝑌̂𝑡 = 𝐼(𝑆(𝜃,𝑋1, … , 𝑋𝑛) ∈ (𝑞1, 𝑞2)).       (2) 

The probability of type II errors 𝛽 = 𝑃𝑟(𝑌̂𝑡 = 0|𝐻1) is more easily controlled for this test. The 

implied probability of type I errors is then deduced as 𝛼(𝛽) = 𝑃𝑟(𝑌̂𝑡 = 1|𝐻0). 

Hypothesis testing has raised severe criticisms in the literature, most of which revolve around the 

arbitrariness of the choice of 𝛼 and the lack of clarity in the interpretation of the verdict of the test. 

On these grounds, Jeffreys (1939) proposes to minimize a weighted sum of 𝛼 and 𝛽 for the purpose 

of designing the optimal test. Romano (2005) and Lavergne (2014) put forward a model 

equivalence approach acknowledging that the hypothesis that the researcher wants to “prove” must 

carry the burden of proof. Johnson (2013) and Pericchi, Pereira and Perez (2014) suggest selecting 

the appropriate value of 𝛼 based on connections between the Bayesian and frequentist approaches. 

Gelman and Robert (2014) observed that the appropriate value depends on the context. Other 

attempts to optimally select 𝛼 include Miller and Ulrich (2019) and Maier and Lakens (2021). The 

current paper extends the discussion to probabilistic classifiers, provides a statistical justification 

for minimizing a weighted sum of the probabilities of type I and type II errors, and derives the 

closed-form expression of 𝛼 in specific cases.  

When the target 𝑌𝑡 is random and a sample (𝑌𝑡 , 𝑋𝑡), 𝑡 = 1, … , 𝑇 can be observed, one can estimate 

a parametric probabilistic model for 𝑃𝑟(Y𝑡 = 1|𝑋𝑡). For instance: 

𝑃𝑟(𝑌𝑡 = 1|𝑋𝑡) = 𝑝(𝜃,𝑋𝑡)          (3) 

where 𝜃 ∈ ℝ𝑑 is a finite-dimensional parameter. This model may be used to define a classifier that 

assigns 𝑌̂𝑡 = 1 if 𝑝(𝜃, 𝑋𝑡) > 𝑝0 and 𝑌̂𝑡 = 0 otherwise, for some cut-off 𝑝0 ∈ (0,1):  

𝑌̂𝑡 = 𝐼(𝑝(𝜃, 𝑋𝑡) > 𝑝0)         (4) 

It is tempting to assign 𝑝0 = 0.5 based on the intuition that 𝑌̂𝑡 should be the most likely realization 

of 𝑌𝑡. While such a choice sounds reasonable, it entails abandoning any attempt to control 

misclassification rates, which are given by: 

𝛼 = 𝑃𝑟(𝑌̂𝑡 = 1|𝑌𝑡 = 0) = 𝐸[𝐼(𝑝(𝜃,𝑋𝑡) > 𝑝0)|𝑌𝑡 = 0]     (5) 
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𝛽 = 𝑃𝑟(𝑌̂𝑡 = 0|𝑌𝑡 = 1) = 𝐸[𝐼(𝑝(𝜃, 𝑋𝑡) < 𝑝0)|𝑌𝑡 = 1]     (6) 

To see why the optimal calibration of 𝑝0 is important, let us consider the situation of an 

epidemiologist trying to assess the prevalence of a disease in a population. The investigator would 

typically collect data 𝑋𝑡 , 𝑡 = 1,… , 𝑇 on several patients (e.g., from blood tests). Let us assume that 

the verdict of the test is 𝑌̂𝑡 = 𝐼(𝑝(𝑋𝑡) > 0), where 𝑌̂𝑡 = 1 for a patient that is declared “positive” 

if 𝑌̂𝑡 = 0 otherwise. Let 𝜋 denote the probability of 𝑌 = 1: 

𝑃𝑟(𝑌𝑡 = 1) = 𝜋          (7) 

The probability of declaring a patient positive is given by: 

Pr(𝑌̂𝑡 = 1 ) = 𝛼(1 − 𝜋) + 𝜋(1 − 𝛽) = 𝛼 + 𝜋[1 − 𝛼 − 𝛽] 

If the disease of interest is rare so that 𝜋 is very small (e.g. 𝜋 = 1/10000), then probability of 

declaring a patient positive is approximately equal 𝛼. In this context, arbitrarily fixing 𝛼 at 5% or 

1% implies predicting 𝑌̂ = 1 at a rate that is several times larger than the actual prevalence of the 

disease. This discussion remain valid for criminal trials, with 𝑌̂𝑡 = 1 meaning a guilty judgement, 

𝑌̂𝑡 = 0 a non-guilty judgement and 𝑋𝑡 the evidence available to the court.  

Let us explore the possibility for selecting 𝛼 to minimize the statistical precision of 𝑌̂𝑡 as a predictor 

of 𝑌𝑡. When 𝑌 = 0, the Mean Square Error (MSE) of the classifier is given by: 

𝑀𝑆𝐸(𝑌̂𝑡|𝑌𝑡 = 0) = 𝐸 [(𝑌̂𝑡 − 𝑌𝑡)
2
|𝑌𝑡 = 0] = (1− 𝛼)(0− 0)

2 +𝛼(1 − 0)2 = 𝛼. 

When 𝑌 = 1, the MSE is: 

𝑀𝑆𝐸(𝑌̂𝑡|𝑌𝑡 = 1) = 𝐸 [(𝑌̂𝑡 − 𝑌𝑡)
2
|𝑌𝑡 = 1] = 𝛽(0 − 1)

2 + (1 − 𝛽)(1 − 1)2 = 𝛽. 

The Mean Integrated Square Error (MISE) of the classifier is the expected value of the MSE across 

all possible states. We have: 

𝑀𝐼𝑆𝐸(𝑌̂𝑡) = (1 − 𝜋)𝛼 + 𝜋𝛽 

This shows that the MISE of any binary classifier is the weighted average of its probability of type 

I and probability of type II errors. In the deterministic case, repeated observation of 𝑌 is not 
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possible and 𝜋 is not well-defined. In this case, the MISE may be replaced by the concept of 

expected disutility associated with misclassification. Indeed, it is shown in the next section that 

the relative costs of misclassification have the interpretation of subjective probabilities. A classifier 

with small 𝛼 tends to have a large 𝛽 and vice versa. Therefore, the MISE of 𝑌̂𝑡 may be represented 

as a function of 𝛼 only: 

𝑀𝐼𝑆𝐸(𝛼, 𝑌̂𝑡) = (1 − 𝜋)𝛼 + 𝜋𝛽(𝛼)       (8) 

Hence, the optimal classifier may be obtained by minimizing the MISE with respect to 𝛼. 

Alternatively, the MISE may be parameterized in terms of 𝛽, leading to: 

𝑀𝐼𝑆𝐸(𝛽, 𝑌̂𝑡) = (1 − 𝜋)𝛼(𝛽) + 𝜋𝛽       (9) 

In this case, the optimal classifier may be obtained by minimizing the MISE with respect to 𝛽. 

3. Optimal Binary Classifier: A General Result 

The expected costs of misclassifications of the classifier described by Equation (9) is given by: 

𝐶(𝛼, 𝑌̂) = (1− 𝜋)𝛼𝑐0 +𝜋𝛽(𝛼)𝑐1, 

where Pr(𝑌̂ = 1, 𝑌 = 0) = (1 − 𝜋)𝛼 and Pr(𝑌̂ = 0, 𝑌 = 1) = 𝜋𝛽 are respectively the 

unconditional probabilities of misclassification in the states 𝑌 = 0 and 𝑌 = 1 and 𝑐0 and 𝑐1 are 

corresponding costs. In the context of bankruptcy prediction, 𝑐0 is the cost of wrongly predicting 

that a creditworthy agent will default while 𝑐1 is the cost of wrongly predicting that a financially 

distressed agent is creditworthy (see for example Hsieh, 1993). 

This expected cost function can be rewritten as: 

𝐶(𝛼, 𝑌̂) = [(1− 𝜋)𝑐0 +𝜋𝑐1][(1 − 𝜋
∗)𝛼 + 𝜋∗𝛽(𝛼)], 

where 𝜋∗ is interpreted as the subjective probability of 𝑌 = 1: 

𝜋∗ =
𝜋𝑐1

(1−𝜋)𝑐0+𝜋𝑐1
          (10) 

This shows that 𝐶(𝛼, 𝑌̂) is the MISE of 𝑌̂ (up to a multiplicative constant) under a risk neutral 
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distribution. The interpretation of 𝜋∗ as a subjective probability avoid us the need to resort to a 

Bayesian interpretation when 𝑌 is deterministic (e.g., hypothesis testing). 

The multiplicative constant irrelevant for the purpose of determining the optimal classifier. It is 

therefore dropped so that expected cost function becomes: 

𝐶(𝛼, 𝑌̂) = (1 − 𝜋∗)𝛼 + 𝜋∗𝛽(𝛼)        (11) 

where 𝜋∗ is a subjective probability that embodies the costs of misclassifications as well as the 

physical probabilities of the states of the world. Alternatively, we may consider parameterizing the 

cost function in 𝛽 and write: 

𝐶(𝛽, 𝑌̂) = (1 − 𝜋∗)𝛼(𝛽) + 𝜋∗𝛽        (12) 

The following result presents a general characterization of the optimal classifier. 

Proposition 1. When the MISE is parameterized in 𝛼, the optimal classifier satisfies: 

𝛼∗ = 𝛽′−1 (−
1−𝜋∗

𝜋∗
) , 𝑜𝑟         (13) 

where 𝛽′−1 is the reciprocals of the first order derivative of 𝛽(𝛼). Otherwise, the optimal 

classifier satisfies 

𝛽∗ = 𝛼′−1 (−
𝜋∗

1−𝜋∗
),          (14) 

where 𝛼′−1 is the reciprocals of the first order derivative of 𝛼(𝛽). 

Proposition 1 follows immediately from the first order condition for the minimization of the MISE 

given by either Equations (11) or Equation (12), that is: 

𝛽′(𝛼∗) = −
1 − 𝜋∗

𝜋∗
 or 𝛼′(𝛽∗) = −

𝜋∗

1 − 𝜋∗
 

For the solution (13) to be a minimum, the second order derivative of 𝐶(𝛼, 𝑌̂) with respect to 𝛼 

must be positive. Therefore, it must be the case that 𝛽(𝛼) is a strictly convex function of 𝛼 so that 

𝛽′(𝛼) is negative and increasing in 𝛼. This means that the smaller 𝜋∗ is, the larger and negative 

−
1−𝜋∗

𝜋∗
 is and the smaller the optimal 𝛼∗ becomes. 
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4. Testing the Mean of a Distribution: The Classical Approach 

4.1. Optimal Test Design 

Let us consider testing whether an unknown mean 𝜃 = 𝐸(𝑋) equals a specified value 𝜃0 (the null 

hypothesis, H0) against one of the following alternatives: (i) Unilateral on the left (LH1): 𝜃 < 𝜃0; 

(ii) Unilateral on the right (RH1): 𝜃 > 𝜃0; Bilateral (BH1): 𝜃 ≠ 𝜃0. Let 𝑌 be a binary outcome that 

equals 0 when the null hypothesis is true and 1 under the alternative.  

To perform the test, one first constructs a statistic 𝑆(𝜃, 𝑋) whose distribution under the null 

hypothesis is known. The custom choice is:  

𝑆(𝜃, 𝑋) =
√𝑇(𝑋̅−𝜃)

𝜎
          (15) 

where 𝑋̅ is the average of an independent and identically distributed sample (𝑋1, … , 𝑋𝑇) of X. Let 

us assume that 𝑋 follows a normal distribution with variance 𝜎2 so that 𝑆(𝜃0, 𝑋) follows a 𝑁(0,1) 

distribution under the null hypothesis. 

Next, one constructs an interval [𝛿1(𝛼), 𝛿2(𝛼)] such that: 

𝑃𝑟{𝑆(𝜃0, 𝑋) ∈ [𝛿1(𝛼), 𝛿2(𝛼)]} = 1 − 𝛼       (16) 

where 𝛼 ∈ (0,1) is desirably small, typically below 10%. There are an infinite number of 

approaches to design the intervals [𝛿1(𝛼), 𝛿2(𝛼)]. For instance, we could let:  

𝑃𝑟{𝑆(𝜃0, 𝑋) ∈ ]−∞,𝛿1(𝛼, 𝜂)]} = 𝜂𝛼,       (17) 

𝑃𝑟{𝑆(𝜃0, 𝑋) ∈ [𝛿2(𝛼, 𝜂), +∞[} = (1 − 𝜂)𝛼.      (18) 

where the dependence of the bounds on 𝜂 ∈ (0,1) is made explicit.  

In subsequent derivations of this section, we maintain that 𝛼 <
1

2
 so that: 

𝛿1(𝛼, 𝜂) = Φ
−1(𝜂𝛼) < 0         (19) 

𝛿2(𝛼, 𝜂) = Φ
−1(1 − (1 − 𝜂)𝛼) = −Φ−1((1 − 𝜂)𝛼) > 0     (20) 

where Φ is the cumulative distribution function (CDF) of a standard normal random variable. The 
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family of binary classifier implied by this test is 

𝑌̂(𝜂) = 1(𝑆(𝜃0, 𝑋) ∉ [𝛿1(𝛼, 𝜂), 𝛿1(𝛼, 𝜂)])       (21) 

By design, the probability of type I errors of these classifiers are all equal to 𝛼 (selected 

beforehand): 

𝑃𝑟(𝑌̂(𝜂) = 1|𝑌 = 0) = 𝜂𝛼 + (1 − 𝜂)𝛼 = 𝛼. 

The probability of type II errors depends on the choices of 𝛼 and 𝜂 as well as on the unknown true 

value of 𝜃. Straightforward calculations show that: 

𝛽(𝛼, 𝜂, Δ) = Φ(𝛿2(𝛼, 𝜂) − Δ) −Φ(𝛿1(𝛼, 𝜂) − Δ),      (22) 

where 𝛿1(𝛼, 𝜂) = Φ
−1(𝜂𝛼), 𝛿2(𝛼, 𝜂) = −Φ

−1((1 − 𝜂)𝛼) and Δ =
√𝑇(𝜃−𝜃0)

𝜎
 is a signal-to-noise 

ratio measuring the distance between the null and the alternative hypotheses in units of standard 

deviation of the underlying test statistics. 

The Uniformly Most Powerful (UMP) tests are obtained by letting 𝜂 = 1 so that 𝛿1(𝛼, 1) =

Φ−1(𝛼) and 𝛿2(𝛼, 1) = +∞ when the alternative hypothesis is unilateral of type LH1; and 𝜂 = 0 

so that 𝛿1(𝛼, 0) = −∞ and 𝛿2(𝛼, 0) = Φ
−1(1 − 𝛼) when the alternative is unilateral of type RH1 

(Neyman and Pearson, 1933, pp. 302-303). When the alternative hypothesis is bilateral (BH1), the 

most powerful test (but not uniformly over the rejection region) is obtained by letting 𝜂 = 0.5 so 

that 𝛿1 (𝛼,
1

2
) = −𝛿2 (𝛼,

1

2
) = Φ−1 (

𝛼

2
). The corresponding probabilities of type II errors are 

respectively given by: 

𝛽(𝛼, 1, Δ) = 1 − Φ(Φ−1(𝛼) − Δ), Δ < 0       (23) 

𝛽(𝛼, 0, Δ) = Φ(−Φ−1(𝛼) − Δ), Δ > 0       (24) 

𝛽 (𝛼,
1

2
, Δ) = Φ(−Φ−1 (

𝛼

2
) − Δ) −Φ(Φ−1 (

𝛼

2
) − Δ) , Δ ∈ ℝ\{0}   (25) 

Finally, the MISE of the classifier is: 

𝑀𝐼𝑆𝐸(𝑌̂, 𝜂) = (1 − 𝜋∗)𝛼 + 𝜋∗𝛽(𝛼, 𝜂, Δ) 
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where 𝜋∗ is the subjective probability that is assigned to the outcome 𝑌 = 1 by the investigator 

and 𝜂 ∈ {0;
1

2
; 1}. Let us consider designing the optimal test by minimizing the MISE above with 

respect to 𝛼. The classical test is consistent with the view that 𝑌 = 0 is the outcome with highest 

misclassification cost. The assumption 0 < 𝜋∗ ≤ 0.5 is therefore maintained in the Proposition 2 

below. 

Proposition 2. Let Δ =
√T(θ−θ0)

σ
, 𝜋∗ ∈ ]0,0.5]. The optimal 𝛼 for the classical mean test satisfies 

the following: 

(i) When 𝜂 = 1 so that the alternative hypothesis is LH1: 

𝛼∗ = Φ(
1

𝛥
𝑙𝑛 (

1−𝜋∗

𝜋∗
) +

𝛥

2
)         (26) 

(ii) When 𝜂 = 0 so that the alternative hypothesis is RH1: 

𝛼∗ = Φ(−
1

𝛥
𝑙𝑛 (

1−𝜋∗

𝜋∗
) −

𝛥

2
)         (27) 

(iii) When 𝜂 = 1/2 so that the alternative hypothesis is BH1: 

𝛼∗ = 2Φ(
1

𝛥
𝑙𝑛 (

1−𝜋∗

𝜋∗
𝑒𝑥𝑝 (

𝛥2

2
) − 𝑠𝑖𝑔𝑛(𝛥)√(

1−𝜋∗

𝜋∗
)
2
𝑒𝑥𝑝(𝛥2) − 1))   (28) 

The probability of type II errors at the optimum is deducted using Equations (23)-(25). 

In practice, 𝜎 may be unknown and replaced by 𝜎̂ = √
1

𝑇−1
∑ (𝑋𝑡 − 𝑋̅ )2
𝑇
𝑡=1 , and Δ̂ =

√𝑇(𝜃̂−𝜃0)

𝜎̂
 may 

be used as a guess for Δ. Accordingly, one should replace Φ by the CDF of Student’s t-distribution 

with T-1 degrees of freedom. 

Figure 1 shows the behavior of the optimal 𝛼∗ and the corresponding 𝛽(α∗) for different values 

of the signal-to-noise ratio Δ and subjective probability 𝜋∗. Whether the test is bilateral or 

unilateral, 𝛼∗ and 𝛽(𝛼∗) decrease to zero fast as |Δ| converges to infinity. The optimal 𝛼 falls 

below 5% for most values of 𝜋∗ as soon as |Δ| exceeds 3.5. Indeed that 𝛼 = 0.05 is too high when 
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|Δ| > 3.5 and 𝛼 = 0.01 becomes a better choice than 𝛼 = 0.05 when |Δ| > 5. 

 

Figure 1. Optimal Classical Mean Test: Analytical Formula 

Figure 1.1. Unilateral Test on the Left: Optimal α Figure 1.2. Unilateral Test on the Left: Optimal 𝛽 

  

Figure 1.3. Unilateral Test on the Right: Optimal α Figure 1.4. Unilateral Test on the Right: Optimal 𝛽 

  

Figure 1.5. Bilateral Test: Optimal α Figure 1.6. Bilateral Test: Optimal 𝛽 
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Second, the optimal 𝛼∗ is monotonically decreasing in |Δ| when 𝜋∗ = 0.5, and it is non-monotonic 

for all other 𝜋∗ ∈ (0,0.5) (Figures 1.1, 1.3 and 1.5). By contrast, 𝛽(α∗) is monotonically 

decreasing in |Δ| for all 𝜋∗ ∈ (0,0.5] (Figures 1.2, 1.4 and 1.6). On the one hand, the probability 

of type II errors increases fast to unity as |Δ| vanishes to zero, and its curve flattens as |Δ| falls 

below 0.5. On the other hand, the probability of type II errors decreases to zero as |Δ| increases to 

infinity, and its curve flattens as |Δ| exceeds 3.5. In these two regions, the sensitivity of the MISE 

to 𝛽 is close to zero so that minimizing the MISE essentially boils down to minimizing 𝛼. 

However, this explanation holds only when 𝛼 is given more weight than 𝛽 in the MISE function. 

Third, 𝛼∗ is increasing in 𝜋∗ while 𝛽(α∗) is decreasing in 𝜋∗. This result is quite intuitive: the 

more costly it is to wrongly reject the alternative hypothesis, the larger the optimal probability of 

type I error is. In the frequentist approach where there is no prior probabilities assigned to the 

hypotheses, one may consider using 𝜋∗ =
𝑐1

𝑐0+𝑐1
 to express neutrality. In this case, using 𝜋∗ = 0.5 

is appropriate only if the researcher is further neutral about the costs of misclassification. In a 

Bayesian framework, 𝜋∗ = 0.5 does not necessarily express neutrality as it only tells us that 𝜋𝑐1 =

(1 − 𝜋)𝑐0. When 𝜋∗ > 0.5, we recommend implementing the model equivalent test discussed 

subsequently. Finally, the analytical expressions of 𝛼∗ and 𝛽(𝛼∗) only depend on Δ and 𝜋∗ as well 

as on the normality assumption made for the distribution of the test statistics. In particular, the 

results of Proposition 2 hold for all hypothesis testing exercises where the (appropriately 

normalized) test statistic follows a pivotal 𝑁(0,1) distribution under the null hypothesis (e.g., a 

regression slope coefficient). 

4.2. Monte Carlo Simulation 

For this simulation exercise, we draw M=25000 samples of size T=250 from each of the normal 

distributions with mean 𝜃 = 1 + 𝜃𝑘 and variance 𝜎2 = 2, where 𝜃𝑘 =
𝑘𝜎

10√𝑇
, 𝑘 = 0,1,… ,50. We 

use each sample to test for the null hypothesis 𝜃 = 1 against the bilateral alternative. The simulated 

samples are of the form 𝑋𝑡
(𝑘)
= 1 + 𝜃𝑘 +  𝜎𝜀𝑡 , 𝑡 = 1,… , 𝑇 so that the replications use common 

random numbers across k. Hence, the test statistics take of the form: 
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𝑆(𝑘)(𝜃, 𝑋) = Δ𝑘 + √𝑇𝜀,̅ 𝑘 = 1,… ,50. 

Where Δ𝑘 = 𝑘/10 and 𝜀 ̅is the sample mean of 𝜀𝑡 , 𝑡 = 1,… , 𝑇.  

Figure 2. MISE and Optimal Classical Mean Test: Monte Carlo Simulations 

Figure 2.1. MISE and Optimal α for 𝜋∗ = 0.1 Figure 2.1. MISE and Optimal α for 𝜋∗ = 0.3 

  

Figure 2.3. MISE and Optimal α for 𝜋∗ = 0.5 Figure 2.4. Optimal α for 𝛥 > 0 

  

Note: The red diamonds dots mark the minimizer of the MISE. 

Next, we calculate the rejection rates 𝛼(Δ𝑘) over the M Monte Carlo replications. Noting that 𝛼(0) 

is the probability of type I errors while 𝛽(Δ𝑘) = 1 − 𝛼(Δ𝑘),𝑘 = 1,… ,50 are probabilities of type 

II errors, we calculate the MISE as: 

𝑀𝐼𝑆𝐸(Δ𝑘 , 𝜋
∗) = (1 − 𝜋∗)𝛼(0) + 𝜋∗𝛽(Δ𝑘), 

for 𝑘 = 1,… ,50 and 𝜋∗ = 0.1, 0.2,… , 0.5. Figures 2.1, 2.2 and 2.3 show the MISE for different 

values of Δ𝑘 and 𝜋∗. We see that the degree of convexity of the MISE is increasing in Δ𝑘. 

The optimal 𝛼∗𝑠 (indicated by the red diamond dots) are collected and plotted against the Δ𝑘 on 

Figure 2.4. This graph replicates the right quadrant of Figure 1.5, thereby providing a simulation-
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based check of the formulas of Proposition 2. 

5. Testing the Mean of a Distribution: The Model Equivalence Approach 

5.1. Optimal Test Design 

Let us now consider the situation where one wishes to test the approximate validity of a restriction 

on the mean 𝜃 = 𝐸(𝑋) of a distribution, for instance: 

- Null hypothesis (H0): |𝜃 − 𝜃0| > 0; 

- Alternative hypothesis (H1): 𝜃 − 𝜃0 = 0. 

Let us consider rejecting the null hypothesis as soon as |𝑋̅ − 𝜃0| < 𝜂, where 𝜂 ≥ 0 is the tolerated 

violation margin of the assumption 𝜃 = 𝜃0. Lavergne (2014) proposes a framework to tackle this 

test in the general case where the null hypothesis consists of a set of possibly nonlinear restrictions 

on a finite-dimensional vector of parameters.  

Note that |𝑋̅ − 𝜃0| < 𝜂 if and only if: 

−(𝜃 − 𝜃0) − 𝜂 < 𝑋̅ − 𝜃 < −(𝜃 − 𝜃0) + 𝜂. 

Therefore, the probability of rejecting the null is: 

α(𝜂, Δ) = Φ(−Δ+
√𝑇𝜂

𝜎
) −Φ(−Δ−

√𝑇𝜂

𝜎
). 

The probability of type II errors for this test is: 

𝛽(𝜂) = Pr(|𝑋̅ − 𝜃0| > 𝜂|𝜃 = 𝜃0) = 2Φ(−
√𝑇𝜂

𝜎
)      (29) 

Or equivalently, 𝜂(𝛽) = −
𝜎

√𝑇
Φ−1 (

𝛽

2
). Hence, the MISE of the associated classifier is given by: 

𝑀𝐼𝑆𝐸(𝑌̂, 𝛽) = (1 − 𝜋∗)α(𝛽, Δ) + 𝜋∗𝛽 

where 

𝛼(𝛽, 𝛥) = Φ(−𝛥 −Φ−1 (
𝛽

2
)) − Φ(−𝛥 + Φ−1 (

𝛽

2
))     (30) 
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We consider designing the optimal test by minimizing this MISE with respect to 𝛼. The model 

equivalence mean test is consistent with the view that 𝑌 = 1 is the outcome with highest 

misclassification cost. The assumption 0.5 ≤ 𝜋∗ < 1 is therefore maintained in the Proposition 3 

below. 

Proposition 3. Let Δ =
√𝑇(𝜃−𝜃0)

𝜎
 and 𝜋∗ ∈ [0.5,1[. The optimal 𝛼 for the mean test in the model 

equivalence approach satisfies: 

𝛼∗ = Φ(−𝛥 −Φ−1 (
𝛽∗

2
)) − Φ(−𝛥 +Φ−1 (

𝛽∗

2
))      (31) 

where: 

𝛽∗ = 2Φ(
1

𝛥
𝑙𝑛 (

𝜋∗

1−𝜋∗
𝑒𝑥𝑝(

𝛥2

2
) − 𝑠𝑖𝑔𝑛(𝛥)√(

𝜋∗

1−𝜋∗
)
2
𝑒𝑥𝑝(𝛥2) − 1))   (32) 

Figure 3 shows the optimal 𝛽 and the implies 𝛼∗ for the model equivalence test for different values 

of Δ and 𝜋∗. The curves of 𝛽∗ the coincide with the right quadrants of Figure 1.5 depicting the 

optimal probability of type I errors for the classical test. Likewise, the curves of 𝛼∗ for the model 

equivalence test coincide with those of the optimal probability of type II errors for the classical 

test (Figure 1.6). Finally, the scenario based on 𝜋∗ in the model equivalence approach coincide 

with the scenario based on 1 − 𝜋∗ in the classical approach.  
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Figure 3. Optimal Model Equivalence Mean Test: Analytical Formula 

Figure 3.1. Optimal  𝛽 Figure 3.2. Optimal 𝛼∗ 

  

Figure 4. MISE and Optimal Model Equivalence Mean Test: Monte Carlo Simulations 

Figure 4.1. MISE and Optimal α for 𝜋∗ = 0.9 Figure 4.2. MISE and Optimal α for 𝜋∗ = 0.7 

  

Figure 4.3. MISE and Optimal α for 𝜋∗ = 0.5 Figure 4.4. Optimal α 
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5.2. Monte Carlo Simulation 

The simulation setup is the same as in the previous subsection except that here we test null 

hypothesis 𝜃 ≠ 1 against the alternative 𝜃 = 1. We calculate the rejection rates 𝛼(Δ𝑘) for each k 

over the M Monte Carlo replications. Given our simulation design, 𝛽(1) = 1 − 𝛼(1) is the 

probability of type II errors while 𝛼(Δ𝑘), 𝑘 = 1,… ,50 are probabilities of type II errors. We 

calculate the MISE as: 

𝑀𝐼𝑆𝐸(Δ𝑘 , 𝜋
∗) = (1 − 𝜋∗)𝛼(Δ𝑘) + 𝜋

∗𝛽(1), 

for 𝑘 = 1,… ,50 and 𝜋∗ = 0.5, 0.2,… , 0.9.  

Figures 4.1, 4.2 and 4.3 show the MISE for different values of Δ𝑘 and 𝜋∗. We see that the degree 

of convexity of the MISE is increasing in Δ𝑘. We see that the MISE curves have the same shape 

as on Figure 2. Furthermore, Figure 4.4 showing the curves of the optimal 𝛼∗ replicates Figures 

2.4, with the notable difference that here 𝜋∗ ≥ 0.5. 

6. Probabilistic Classification 

6.1. Optimal Algorithm Design 

Let 𝑝(𝜃, 𝑋𝑡) = 𝑃𝑟(𝑌𝑡 = 1|𝑋𝑡) be a probabilistic model for the binary outcome 𝑌𝑡 , 𝑡 = 1, … , 𝑇. A 

popular approach to specify 𝑝(𝜃,𝑋𝑡) is: 

𝑝(𝜃, 𝑋𝑡) =
𝜋𝑓1(𝑋𝑡,𝜆)

(1−𝜋)𝑓0(𝑋𝑡,𝜆)+𝜋𝑓1(𝑋𝑡,𝜆)
.         (33) 

where 

𝑓𝑘(𝑥, 𝜆) ≡ 𝑓(𝑥|𝑌𝑡 = 𝑘), 𝑘 = 0,1 

is the conditional density of 𝑋𝑡 and 𝜃 = (𝜋, 𝜆). The Naïve Bayes classifier is obtained by 

postulating that 𝑓𝑘(𝑥, 𝜆) is the density a multivariate normal random variable with a diagonal 

covariance matrix.  

Alternatively, one may consider the logistic regression model so that: 
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𝑝(𝜃, 𝑋𝑡) =
1

1+exp(𝑋𝑡𝜃)
         (34) 

This approach has a “reduced form” flavor as it avoids the estimation of the “structural” parameters 

governing the distribution of 𝑋𝑡. It coincides with the SoftMax specification that is very popular 

in the Machine Learning literature. 

Another famous approach to perform binary classification is based on the Probit model, which 

assumes the existence of a latent variable 𝑍𝑡 such that  

𝑍𝑡 = 𝑋𝑡𝜃 + 𝑢𝑡           (35) 

and 𝑌𝑡 = 1 ⇔ 𝑍𝑡 > 0, where 𝑢𝑡~𝑁(0,1). This model implies that  

𝑝(𝜃, 𝑋𝑡) = 𝑃𝑟(𝑋𝑡𝜃 + 𝑢𝑡 > 0|𝑋𝑡) = Φ(𝑋𝑡𝜃)      (36) 

Upon observing a sample (𝑌𝑡 , 𝑋𝑡), 𝑡 = 1,… , 𝑇 and training any probabilistic model using an 

algorithm of our choice, we may consider defining a binary classifier as 𝑌̂𝑡 = 𝐼(𝑝(𝜃, 𝑋𝑡) > 𝑝0) for 

some 𝑝0 ∈ (0,1). The implied misclassification errors are given by: 

𝛼 = 𝐸(𝐼(𝑝(𝜃, 𝑋𝑡) > 𝑝0)|𝑌𝑡 = 0) and 𝛽 = 𝐸(𝐼(𝑝(𝜃, 𝑋𝑡) < 𝑝0)|𝑌𝑡 = 1). 

Fixing 𝑝0 arbitrarily at 0.5 may result in undesirably large misclassification rates. Indeed, the 

formulas above indicate that 𝛼 and 𝛽 remain dependent on the distributional properties of 𝑋𝑡. This 

suggest that there are rooms left to fine-tune the Probit classifier to achieve the best trade-off 

between the two types of misclassification errors rates. 

An empirical counterpart of the MISE may be computed as: 

𝑀𝐼𝑆𝐸̂(𝑌̂, 𝜋∗) = (1 − 𝜋∗)𝛼 + 𝜋∗𝛽̂        (37) 

where  𝜋̂ =
1

𝑇
∑ Y𝑡
𝑇
𝑡=1 , 𝛼̂ =

1

𝑇
∑ (1−Y𝑡)𝑌̂𝑡
𝑇
𝑡=1

1− 𝜋̂
  and 𝛽̂ =

1

𝑇
∑ Y𝑡(1−𝑌̂𝑡)
𝑇
𝑡=1

 𝜋̂
. 

This empirical MISE can be minimized numerically (by a grid search) to obtain the optimal 𝑝0. 

Let us consider analyzing the behavior of the optimal cut-off for the Probit model described by 

Equations (35)-(36). For that purpose, we first need to compute 𝐹0(𝑧) and 𝐹1(𝑧), the CDFs of 𝑍̅𝑡 =
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𝑋𝑡𝜃 conditional on 𝑌 = 0 and 𝑌 = 1 respectively. We have: 

𝐹0(𝑧) = 𝐹(𝑧)∫
𝜑(𝑢)

𝐹(−𝑢)
𝑑𝑢

−𝑧

−∞

+ Φ(𝑧)  and 

𝐹1(𝑧) = 𝐹(𝑧)∫
𝜑(𝑢)

1 − 𝐹(−𝑢)
𝑑𝑢

∞

−𝑧

−∫
𝐹(−𝑢)𝜑(𝑢)

1 − 𝐹(−𝑢)
𝑑𝑢

∞

−𝑧

 

where 𝐹(𝑧) is the unconditional CDF of 𝑍̅𝑡. See proof of Proposition 4 in appendix. 

The MISE of the Probit is therefore given by: 

𝑀𝐼𝑆𝐸(𝛿, 𝜋∗) = (1 − 𝜋∗)𝛼(𝛿) + 𝜋∗𝛽(𝛿)       (38) 

where 𝛿 = Φ−1(𝑝0), 

𝛼(𝛿) = 1 − 𝐹(𝛿)∫
𝜑(𝑢)

𝐹(−𝑢)
𝑑𝑢

−𝛿

−∞
−𝛷(𝛿)        (39) 

𝛽(𝛿) = 𝐹(𝛿)∫
𝜑(𝑢)

1−𝐹(−𝑢)
𝑑𝑢

∞

−𝛿
− ∫

𝐹(−𝑢)𝜑(𝑢)

1−𝐹(−𝑢)
𝑑𝑢

∞

−𝛿
      (40) 

We have the following result. 

Proposition 4. The optimal cutoff of the Probit model (35)-(36) for a one-off decision satisfies 

𝑝0 = 𝛷(𝛿
∗), where 𝛿∗ solves the following nonlinear equation in 𝛿: 

∫
𝜑(𝑢)

𝐹(−𝑢)
𝑑𝑢

−𝛿
−∞

∫
𝜑(𝑢)

𝐹(−𝑢)
𝑑𝑢

−𝛿
−∞ +∫

𝜑(𝑢)

1−𝐹(−𝑢)
𝑑𝑢

∞
−𝛿

= 𝜋∗         (41) 

In practice, 𝜃 must be estimated beforehand and used to compute 𝑍̅𝑡. Likewise, one may consider 

estimating the CDF of 𝐹(𝑧) using kernels (that is, Parzen Window): 

𝐹̂(𝑧) =
1

𝑇
∑ Φ(

𝑧−𝑍̂𝑡

ℎ
)𝑇

𝑡=1          (42) 

Finaly, the quantities involved in Equation (41) can then be approximated by Monte Carlo: 

∫
𝜑(𝑢)

𝐹(−𝑢)
𝑑𝑢

−𝛿

−∞
≈
1

𝐾
∑

1(𝑢𝑘≤−𝛿)

𝐹̂(−𝑢𝑘)
𝐾
𝑘=1         (43) 

∫
𝜑(𝑢)

1−𝐹(−𝑢)
𝑑𝑢

∞

−𝛿
≈

1

𝐾
∑

1(𝑢𝑘≥−𝛿)

1−𝐹̂(−𝑢𝑘)
𝐾
𝑘=1         (44) 
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where (𝑢1, … , 𝑢𝐾) are generated from the standard normal distribution. 

6.2. Monte Carlo Simulations 

We generate T=250 observations from the following process:  

𝑍̅𝑡 =
σ

√1 + 𝛾2
(√
𝜈 − 2

𝜈
𝜀1,𝑡 +

𝛾

√2𝜆
(𝜀1,𝑡 − 𝜆)) , 𝑡 = 1,… , 𝑇 

where 𝜀1,𝑡 follows Student’s t-distribution with 𝜈 degree of freedom and 𝜀1,𝑡 follows a Chi-square 

distribution with 𝜆 degrees of freedom. For this exercise, we use σ2 = 3, 𝜈 = 7, 𝜆 = 3 and 𝛾 ∈

{−1,0,1}. This ensures that the variance of 𝑍̅𝑡 is equal to σ2 and that the distribution of 𝑍̅𝑡 is 

negatively skewed when 𝛾 = −1, symmetric when 𝛾 = 0 and positively skewed when 𝛾 = 1. 

The process 𝑍̅𝑡 is assumed to be latent. The observed processes are generated as 𝑍𝑡 = 𝑍̅𝑡 + 𝑢𝑡 and 

𝑌𝑡 = 1(𝑍𝑡 > 0), 𝑡 = 1, . . . , 𝑇 where the 𝑢𝑡𝑠 are independent and identically distributed (IID) draws 

from the 𝑁(0,1) distribution. This design imply that 𝑃𝑟(𝑌𝑡 = 1|𝑍̅𝑡) = Φ(𝑍̅𝑡). We consider the 

ideal setup where the latent process 𝑍̅𝑡 is estimated with no error by a Probit model. The MISE 

implied by this assumption is: 

𝑀𝐼𝑆𝐸̂(𝑝0, 𝜋
∗) = (1 − 𝜋∗)𝛼̂ + 𝜋∗𝛽̂ 

where 𝜋̂ =
1

𝑇
∑ Y𝑡
𝑇
𝑡=1 , 𝜋∗ is the subjective probability, 𝑌̂𝑡 = 1(Φ(𝑍̅𝑡) > 𝑝0),  

𝛼̂(𝑝0) =

1
𝑇
∑ (1 − Y𝑡)𝑌̂𝑡
𝑇
𝑡=1

1 −  𝜋̂
 and 𝛽̂(𝑝0) =

1
𝑇
∑ Y𝑡(1 − 𝑌̂𝑡)
𝑇
𝑡=1

 𝜋̂
. 

We simulate M=25000 trajectories of the processes described above. For each trajectory, we 

compute the empirical MISE of the Probit classifier above and identify the cutoff that minimizes 

it. The corresponding averages over the M replications are labeled “Pure Monte Carlo” 

subsequently. We also compute the theoretical MISE and optimal cutoff based on Proposition 4. 

For a particular trajectory, the results are conditional on the path 𝑍̅𝑡 , 𝑡 = 1,… , 𝑇. The 

corresponding results are labelled “Analytical Formula and Monte Carlo” subsequently. 
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Figure 5: True and Simulated Mean Integrated Square Error of the Probit 

Figure 5.1. True MISE under Negative skewness Figure 5.2. Simulated MISE under Negative 

skewness 

  

Figure 5.3. True MISE under Symmetric 

Distribution 

Figure 5.4. Simulated MISE under Symmetric 

Distribution 

  

Figure 5.5. True MISE under Positive skewness Figure 5.6. Simulated MISE under Positive 

skewness 

  

Figures 5.1, 5.3 and 5.5 show the true MISE computed using Equation (38) while Figures 5.2, 5.4 

and 5.6 show the simulated MISE. The similarity of the two MISEs confirms the correctness of 

the theoretical formula. We also note that the optimal cutoffs (marked by the red diamond dots) 

are uniformly tilted to the right (resp. to the left) when the distribution of 𝑍̅𝑡 is negatively skewed 

(resp. positively skewed) compared to the symmetric distribution. This is confirmed by Figure 6, 
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which shows the plots of the average optimal cutoffs against 𝜋∗. This result proves that the optimal 

cutoff 𝑝0
∗ = Φ(𝛿∗) is sensitive to the distributional properties of 𝑍̅𝑡. In fact, 𝑝0 = 0.5 is optimal 

only in the very special case where the distribution of 𝑍̅𝑡 is symmetric and 𝜋∗ = 0.5.  

Figure 6 suggests that 𝑝0
∗ is almost linearly decreasing in 𝜋∗, with a slope that is smaller than one 

is absolute value. As seen on Figure 5 above, negative skewness causes the curve to drift to the 

right while positive skewness induces a drift to the left. The slopes of the curves are not affected 

by the drift. 

Finally, Figure 7 show the optimal 𝛼∗ and 𝛽(𝛼∗) as functions of the subjective probability 𝜋∗. 

Interestingly, the optimal error rates are less sensitive to the skewness of 𝑍̅𝑡 than are the optimal 

cutoffs. This result should not be surprising: the optimal cutoff adjust to the distributional 

properties of 𝑍̅𝑡 to deliver this optimal error rates. Note that 𝛼∗ and 𝛽(𝛼∗) are larger in the Pure 

Monte Carlo exercise due to the finiteness of the sample. This indicates that the empirical MISE 

given at Equation (37) should be preferred if one wishes to account for finite sample correction. 

7. Conclusion 

We show that the Mean Integrated Square Error (MISE) of a binary classifier is a weighted average 

of its probabilities of Type I and Type II error (𝛼 and 𝛽), where the weights are the unconditional 

probabilities (1 − 𝜋 and 𝜋) of the outcomes. This provides a justification for minimizing a 

weighted average of the two error rates to design the optimum classifier. Any choice of weights 

imply a particular subjective probability distribution for the outcomes (1 − 𝜋∗ and 𝜋∗), and the 

corresponding weighted average of 𝛼 and 𝛽 is proportional to the MISE under this subjective 

distribution. We derive closed-form expressions for the optimal 𝛼 for standard significance tests 

on the mean of a distribution as well as for the Probit classifier. Simulation experiments confirm 

the relevance of optimally selecting 𝛼. The optimal 𝛼 rarely coincide with 0.05 and the optimal 

cut-off of the Probit model is generally different from 0.5. 
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Figure 6: Optimal Cutoffs for the Probit Classifier 

Figure 6.1. Average Optimal Cutoffs estimated by 

Pure Monte Carlo 

Figure 6.2. Average Optimal Cutoffs estimated by 

Analytical Formula and Monte Carlo 

  

Figure 7 

Figure 7.1. Optimal 𝛼 Pure Monte Carlo Figure 7.2. Optimal 𝛼 Analytical Formula and 

Monte Carlo 

  

Figure 7.3. Optimal 𝛽 Pure Monte Carlo Figure 7.4. Optimal 𝛽 Analytical Formula and 

Monte Carlo 
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Appendix: Mathematical Proof. 

Proof of Proposition 2. The expression of 𝛽(𝛼, 𝜂, 𝜃0, 𝜃) is: 

𝛽(𝛼, 𝜂, Δ) = Φ(−Φ−1((1− 𝜂)𝛼) − Δ) −Φ(Φ−1(𝜂𝛼) − Δ), 

where Δ =
√𝑇(𝜃−𝜃0)

𝜎
. The derivative of 𝛽(𝛼, 𝜂, 𝜃0, 𝜃) with respect to 𝛼 is given by: 

𝛽′(𝛼, 𝜂, Δ) = −(1 − 𝜂)
𝜑(−Φ−1((1− 𝜂)𝛼) − Δ)

𝜑 (Φ−1((1− 𝜂)𝛼))
− 𝜂

𝜑(Φ−1(𝜂𝛼) − Δ)

𝜑(Φ−1(𝜂𝛼))
, 

where 𝜑(𝑧) =
1

2
exp(−𝑧2/2). 

Case 𝜼 = 𝟏: The alternative hypothesis is unilateral on the left so that Δ ≤ 0. The optimal 𝛼 

solves: 

𝜑(Φ−1(𝛼) − Δ)

𝜑(Φ−1(𝛼))
=
1 − 𝜋∗

𝜋∗
⇔ exp [−

1

2
(𝛿 − Δ)2 +

1

2
𝛿2] =

1 − 𝜋∗

𝜋∗
, 

where 𝛿 = Φ−1(𝛼). Hence: 

𝛿Δ −
1

2
Δ2 = ln (

1− 𝜋∗

𝜋∗
) ⇔ 𝛿∗ =

1

Δ
ln (
1− 𝜋∗

𝜋∗
) +

Δ

2
, 

⇔ 𝛼∗ = Φ(
1

Δ
ln(
1− 𝜋∗

𝜋∗
) +

Δ

2
). 

Case 𝜼 = 𝟎: Alternative hypothesis is unilateral on the right so that Δ ≥ 0. The optimal 𝛼 solves: 

−
𝜑(−𝛿 − Δ)

𝜑(𝛿)
= −

1 − 𝜋∗

𝜋∗
⇔ exp [−

1

2
(−𝛿 − Δ)2 +

1

2
𝛿2] =

1− 𝜋∗

𝜋∗
 

⇔−𝛿Δ −
1

2
Δ2 = ln (

1 − 𝜋∗

𝜋∗
) ⇔ 𝛿∗ = −

1

Δ
ln (
1 − 𝜋∗

𝜋∗
) −

Δ

2
 

⇔ 𝛼∗ = Φ(−
1

Δ
ln(
1 − 𝜋∗

𝜋∗
) −

Δ

2
). 

Case 𝜼 = 𝟏/𝟐: Alternative hypothesis is bilateral. Let 𝛿 = Φ−1 (
𝛼

2
). The optimal 𝛼 solves: 
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𝜑(−𝛿 − Δ) + 𝜑(𝛿 − Δ)

2𝜑(𝛿)
=
1 − 𝜋∗

𝜋∗
, 

where 𝜑(𝑥) =
1

2
exp(−𝑥2/2). Hence: 

exp [−
1

2
(−𝛿 − Δ)2 +

1

2
𝛿2] + exp [−

1

2
(𝛿 − Δ) +

1

2
𝛿2] =

2(1− 𝜋∗)

𝜋∗
 

⇔ exp(2𝛿Δ) −
2(1− 𝜋∗)

𝜋∗
exp (

Δ2

2
)exp(𝛿Δ) + 1 = 0. 

Let 𝛿 = exp(𝛿Δ), so that: 

𝛿2 −
2(1− 𝜋∗)

𝜋∗
exp (

Δ2

2
)𝛿 + 1 = 0. 

The (modified) determinant of this quadratic equation is: 

𝑑 = (
1− 𝜋∗

𝜋∗
)
2

exp(Δ2) − 1. 

To move forward, I need to verify that this determinant is positive: 

(
1 − 𝜋∗

𝜋∗
)
2

exp(Δ2) > 1. 

This inequality is trivial because 𝜋∗ < 1/2.  

The roots of the quadratic equation are therefore given by: 

𝛿 =
1− 𝜋∗

𝜋∗
exp (

Δ2

2
) ± √(

1− 𝜋∗

𝜋∗
)
2

exp(Δ2) − 1. 

These two roots are both positive. Hence: 

exp(𝛿Δ) =
1 − 𝜋∗

𝜋∗
exp (

Δ2

2
) ± √(

1− 𝜋∗

𝜋∗
)
2

exp(Δ2) − 1. 

It is easily shown that these two roots are inverses of each other. One root is greater than 1 and the 

other one lies between 0 and 1.  
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1 − 𝜋∗

𝜋∗
exp (

Δ2

2
) + √(

1− 𝜋∗

𝜋∗
)
2

exp(Δ2) − 1 > 1, 

0 <
1 − 𝜋∗

𝜋∗
exp (

Δ2

2
) − √(

1− 𝜋∗

𝜋∗
)
2

exp(Δ2) − 1 < 1. 

As 𝛿∗ = Φ−1 (
𝛼∗

2
) < 0 by definition, exp(𝛿∗Δ) > 1 if Δ < 0, and exp(𝛿∗Δ) < 1 otherwise. 

Therefore, we have: 

exp(𝛿∗Δ) =
1 − 𝜋∗

𝜋∗
𝑒𝑥𝑝 (

Δ2

2
) − sign(Δ)√(

1− 𝜋∗

𝜋∗
)
2

exp(Δ2) − 1 

⇔ 𝛿∗ =
1

Δ
ln(

1 − 𝜋∗

𝜋∗
exp (

Δ2

2
) − sign(Δ)√(

1− 𝜋∗

𝜋∗
)
2

exp(Δ2) − 1) 

⇔ 𝛼∗ = 2Φ

(

 
1

Δ
ln(

1 − 𝜋∗

𝜋∗
exp (

Δ2

2
) − sign(Δ)√(

1− 𝜋∗

𝜋∗
)
2

exp(Δ2) − 1)

)

 . 

QED.■ 

Proof of Proposition 3. The MISE of the equivalence test is given by: 

𝑀𝐼𝑆𝐸(𝑌̂, 𝛽) = (1 − 𝜋∗)(Φ(−Δ − Φ−1 (
𝛽

2
)) − Φ(−Δ +Φ−1 (

𝛽

2
))) + 𝜋∗𝛽. 

Taking the derivative with respect to 𝛽 and equating to zero yields: 

−
𝜑(−Δ − 𝛿)

𝜑(𝛿)
−
𝜑(−Δ − 𝛿)

𝜑(𝛿)
=

2𝜋∗

1− 𝜋∗
, 

where 𝛿 = Φ−1 (
𝛽

2
) and 𝜑(𝑥) =

1

2
exp(−𝑥2/2). Thus: 

exp (
𝛿2

2
−
(−Δ − 𝛿)2

2
) + exp (

𝛿2

2
−
(−Δ + 𝛿)2

2
) =

2𝜋∗

1− 𝜋∗
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⇔ exp(2𝛿Δ) −
2𝜋∗

1 − 𝜋∗
exp (

Δ2

2
)exp(𝛿Δ) + 1 = 0. 

Let 𝛿 = exp(𝛿Δ), so that: 

𝛿2 −
2𝜋∗

1 − 𝜋∗
exp (

Δ2

2
)𝛿 + 1 = 0. 

The (modified) determinant of this quadratic equation is: 

𝑑 = (
𝜋∗

1− 𝜋∗
)
2

exp(Δ2) − 1. 

To move forward, I need to verify that this determinant is positive: 

(
𝜋∗

1 − 𝜋∗
)
2

exp(Δ2) ≥ 1 ⇔
1

1 + exp(
Δ2

2 )
< 1/2 ≤ 𝜋∗. 

This is basically saying that 𝜋∗ must not be too small for the equivalent test to be justified. The 

roots of the quadratic equation are given by: 

𝛿 =
𝜋∗

1− 𝜋∗
exp (

Δ2

2
) ± √(

𝜋∗

1− 𝜋∗
)
2

exp(Δ2) − 1. 

These two roots are both positive. Hence: 

exp(𝛿Δ) =
𝜋∗

1 − 𝜋∗
exp (

Δ2

2
) ± √(

𝜋∗

1− 𝜋∗
)
2

exp(Δ2) − 1. 

It is easily shown that these two roots are inverses of each other. As 𝛿∗ = Φ−1 (
𝛽∗

2
) < 0, 

exp(𝛿∗Δ) > 1 if Δ < 0, and exp(𝛿∗Δ) < 1 otherwise. Therefore, we have: 

exp(𝛿∗Δ) =
𝜋∗

1− 𝜋∗
exp (

Δ2

2
) − sign(Δ)√(

𝜋∗

1− 𝜋∗
)
2

exp(Δ2) − 1 
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⇔ 𝛿∗ =
1

Δ
ln(

𝜋∗

1 − 𝜋∗
exp (

Δ2

2
) − sign(Δ)√(

𝜋∗

1− 𝜋∗
)
2

exp(Δ2) − 1) 

⇔ 𝛽∗ = 2Φ(
1

Δ
ln(

𝜋∗

1 − 𝜋∗
exp (

Δ2

2
) − sign(Δ)√(

𝜋∗

1− 𝜋∗
)
2

exp(Δ2) − 1)). 

QED. ■ 

Proof of Proposition 4. Let us first find the CDF 𝐹1(𝑧) of 𝑍̅𝑡 = 𝑋𝑡𝜃 conditional on 𝑌𝑡 = 1. We 

have: 

𝑃𝑟(𝑍̅𝑡 < 𝑧|𝑍̅𝑡 > −𝑢𝑡 , 𝑢𝑡) =
𝑃𝑟(−𝑢𝑡 < 𝑍̅𝑡 < 𝑧|𝑢𝑡)

𝑃𝑟(𝑍̅𝑡 > −𝑢𝑡|𝑢𝑡)
 

= {

0    if 𝑧 < −𝑢𝑡
𝐹(𝑧) − 𝐹(−𝑢𝑡)

1 − 𝐹(−𝑢𝑡)

 otherwise 

⇒ 𝐹1(𝑧) = 𝑃𝑟(𝑍̅𝑡 < 𝑧|𝑍̅𝑡 > −𝑢𝑡) = ∫
𝐹(𝑧) − 𝐹(−𝑢)

1 − 𝐹(−𝑢)
𝜑(𝑢)𝑑𝑢

∞

−𝑧

 

= 𝐹(𝑧)∫
𝜑(𝑢)

1 − 𝐹(−𝑢)
𝑑𝑢

∞

−𝑧

− ∫
𝐹(−𝑢)𝜑(𝑢)

1 − 𝐹(−𝑢)
𝑑𝑢

∞

−𝑧

. 

The corresponding PDF is: 

𝑓1(𝑧) = 𝑓(𝑧)∫
𝜑(𝑢)

1 − 𝐹(−𝑢)
𝑑𝑢

∞

−𝑧

. 

The probability of type II errors for the Probit classifier is given by: 

𝛽 = 𝑃𝑟(𝑍̅𝑡 < 𝛿|𝑍̅𝑡 > −𝑢𝑡) = 𝐹1(𝛿) 

= 𝐹(𝛿)∫
𝜑(𝑢)

1 − 𝐹(−𝑢)
𝑑𝑢

∞

−𝛿

− ∫
𝐹(−𝑢)𝜑(𝑢)

1 − 𝐹(−𝑢)
𝑑𝑢

∞

−𝛿

, 

where 𝛿 = Φ−1(𝑝0). 

Next, we derive the CDF 𝐹0(𝑧) of 𝑍̂𝑡 conditional on 𝑌𝑡 = 0. 
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𝑃𝑟(𝑍̅𝑡 < 𝑧|𝑍̅𝑡 < −𝑢𝑡 , 𝑢𝑡) = {
𝑃𝑟(𝑍̅𝑡 < 𝑧|𝑢𝑡)

𝑃𝑟(𝑍̅𝑡 < −𝑢𝑡|𝑢𝑡)
  if 𝑧 < −𝑢𝑡

1                    otherwise

 

Hence, 

𝐹0(𝑧) = 𝑃𝑟(𝑍̅𝑡 < 𝑧|𝑍̅𝑡 < −𝑢𝑡) = ∫
𝐹(𝑧)

𝐹(−𝑢)
𝜑(𝑢)𝑑𝑢

−𝑧

−∞

+∫ 𝜑(𝑢)𝑑𝑢
∞

−𝑧

. 

⇒ 𝐹0(𝑧) = 𝐹(𝑧)∫
𝜑(𝑢)

𝐹(−𝑢)
𝑑𝑢

−𝑧

−∞

+Φ(𝑧) 

The corresponding PDF is: 

𝑓0(𝑧) = 𝑓(𝑧)∫
𝜑(𝑢)

𝐹(−𝑢)
𝑑𝑢

−𝑧

−∞

. 

The probability of type I errors for the Probit classifier is given by: 

𝛼 = 𝑃𝑟(𝑍̅𝑡 > 𝛿|𝑍̅𝑡 < −𝑢𝑡) = 1 − 𝐹0(𝛿) 

= 1 − 𝐹(𝛿)∫
𝜑(𝑢)

𝐹(−𝑢)
𝑑𝑢

−𝛿

−∞

−Φ(𝛿). 

The MISE is given by: 

𝑀𝐼𝑆𝐸(𝑌̂, 𝛿) = (1− 𝜋∗)(1 − 𝐹(𝛿)∫
𝜑(𝑢)

𝐹(−𝑢)
𝑑𝑢

−𝛿

−∞

− Φ(𝛿))

+ 𝜋∗ (𝐹(𝛿)∫
𝜑(𝑢)

1 − 𝐹(−𝑢)
𝑑𝑢

∞

−𝛿

−∫
𝐹(−𝑢)𝜑(𝑢)

1 − 𝐹(−𝑢)
𝑑𝑢

∞

−𝛿

). 

Taking the derivative with respect to 𝛿 and equating to zero yields: 

−(1− 𝜋∗)𝑓(𝛿)∫
𝜑(𝑢)

𝐹(−𝑢)
𝑑𝑢

−𝛿

−∞

+𝜋∗𝑓(𝛿)∫
𝜑(𝑢)

1 − 𝐹(−𝑢)
𝑑𝑢

∞

−𝛿

= 0 

⇔
∫

𝜑(𝑢)
𝐹(−𝑢)

𝑑𝑢
−𝛿

−∞

∫
𝜑(𝑢)
𝐹(−𝑢)

𝑑𝑢
−𝛿

−∞
+ ∫

𝜑(𝑢)
1 − 𝐹(−𝑢)

𝑑𝑢
∞

−𝛿

= 𝜋∗■ 
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