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Optimal Binary Classification
Rachidi Kotchoni'

Abstract/Résumé

It is shown that the Mean Integrated Square Error (MISE) of a binary classifier is a weighted
average of its probabilities of type | (a) and type Il errors (B). This provides a foundation for
minimizing a linear cost function consisting of a weighted average of a and  to design an optimal
classifier. Such a cost function is shown to have the interpretation of a MISE of the classifier under
a subjective probability distribution. We derive the closed-form expression of the optimal a for
the mean test, provide an equation that can be solved numerically to find the optimal cutoff of
the Probit classifier, and illustrate the relevance of the results by simulation. In general, the
optimal a for a significance test is different from the conventional 0.05 or 0.01 and the optimal
cut-off for probabilistic classifiers deviates from 0.5.

Nous démontrons que I'erreur quadratique moyenne intégrée (EQMI) d'un classificateur binaire
est une moyenne pondérée de ses probabilités d'erreurs de type | (a) et de type Il (B). Ceci justifie
la minimisation d’une fonction de co(t linéaire, consistant en une moyenne pondérée de a et 3,
pour I'obtention d’un classificateur optimal. Une telle fonction de co(t peut s’interpréter comme
une EQMI du classificateur sous une distribution de probabilité subjective. Nous établissons
I'expression analytique du a optimal pour le test de la moyenne, fournissons une équation
résoluble numériquement pour la détermination du seuil optimal du classificateur Probit, et
illustrons les résultats par simulation. En général, le a optimal pour un test de significativité est
différent de 0,05 ou 0,01 utilisé conventionnellement, et le seuil optimal des classificateurs
probabilistes est différent de 0,5.
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1. Introduction

It is customary for researchers in economics and social sciences to encounter binary choice
problems where they must decide whether to act as if one of two statements is true given the
available information. In statistical terms, this often boils down to telling whether an observed
sample conforms to certain assumptions on the underlying data generating process (Fisher, 1925;
Neyman and Pearson, 1933; Romano, 2005)!. In this context, the research question may be cast as
the prediction of a binary variable Y that takes 1 when a given statement is true and 0 otherwise.
However, the binary classification problem goes one step beyond the estimation of the conditional
distribution of Y given the available information (X). It entails designing an oracle (or classifier,

Y) that delivers the “best guess” of Y based on the realization of X.

The cost of predicting ¥ = 1 while Y = 0 can be quite different from that of predicting ¥ = 0
while Y = 1. For that reason, the two types of misclassifications are rarely treated symmetrically
by the investigator: one outcome is often considered the default assumption that is held to be true
until “proven” wrong while the alternative outcome carries the burden of proof. For instance, a
banker will most likely assume that a client is insolvent until the data suggest otherwise. In this
example, the choice of default assumption is guided by prudence: the outcome against which
misclassification is the costliest is erected as default assumption®. In general, the research design
should reflect where the investigator wishes to place the burden of proof (Lavergne 2014, pp. 414-
415).

With no loss of generality, let us assume that Y = 0 is the default assumption and Y = 1 the
alternative. In a classical hypothesis testing, the default assumption is the null hypothesis. A
misclassification against the default outcome (predicting ¥ = 1 while Y=0) is an error of type I

while a misclassification against the alternative outcome (predicting ¥ = 0 while Y=1) is an error

! Concrete examples include (i) telling whether an economy is a recession or not (Boldin, 1994; Stock and Watson,
2010; Hamilton, 2011); (ii) predicting whether a firm will go bankrupt or not (Altman, 1968); (iii) enquiring whether
a treatment has achieved the intended impact (Imbens and Rubin, 2015), etc.

2 However, subjective preferences (as opposed to objective costs) may lead a person to consider a theory wrong until
proven true (e.g., global warming is a danger to humanity; an accused is guilty until proven innocent).
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of type II. The performance of a binary classifier is typically assessed via its probability of type I
errors (denoted ) and its probability of type II errors (denoted ). A common approach to tackle
binary classification problem when Y is deterministic is the classical Neyman and Pearson
(1933)’s hypothesis testing framework. In this paradigm, the best classifier is the one with the
lowest probability of type II errors among a set of classifiers with given probability of type I errors
(typically, « = 0.05 or 0.01). This approach does not directly control the type II errors rate and
hence, its ability to detect the alternative hypothesis when it is true may remain undesirably low.
Moreover, arbitrarily fixing a at 0.05 or 0.01 does not necessarily deliver a cost-minimizing

classifier.

Another approach consists of fitting a model to Pr(Y = 1|X) from which one deduces a classifier
thatassigns ¥ = 1if Pr(¥ = 1|X) > p, € (0,1) and ¥ = 0 otherwise. This approach may be used
when (Y, X) is random and a nontrivial sample of it can be observed naturally or generated via
repeated experiments. The conditional probability Pr(Y = 1|X) may be modeled as a Probit or
Logit (Cox, 1958) or deduced via Bayes’ posterior probability rule (Bishop, 1995). The value
assigned to the cut-off p, determines the type I and type II errors rates of the classifier. It is
customary in the applied literature to assign the value that maximizes the posterior probability
Pr(Y = k|X),k = 0,1 to ¥, which is equivalent to fixing p, = 0.5. However, this arbitrary choice

does not necessarily result is a cost-minimizing classifier>.

In the current paper, a unified framework to design optimal binary classifiers is proposed. The
proposed approach can be equally applied to hypothesis testing and probabilistic classifications.
First, it is shown that the Mean Integrated Square Error (MISE) of a classifier is a weighted average
of its type I and type II errors probabilities (a and ). This provides a justification for minimizing
a penalty function consisting of the expected costs of misclassification to design of an optimal
classifier. Interestingly, the configuration of the misclassification costs implies a subjective

probability distribution on the possible outcomes, and the expected costs of misclassification is the

3 Other popular approaches in the Machine Learning literature include the Support Vector Machines, the Multilayer
Perceptron, Discriminant Analysis, etc. For an overview, see Bishop (1995) and Hastie and Tibshirani (1996).
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MISE of the classifier (up to a multiplicative constant) under this subjective distribution. We derive
the closed-form expression of the optimal a for the mean test (both under the classical and model
equivalence approach) and provide a numerical approximation of the optimal cutoff for a Probit
classifier. It is found that in general, the optimal « is different from the conventional 0.05 and 0.01

and the optimal cut-off for a Probit classifier is different from 0.5.

The remainder of the paper is organized as follows. Section 2 shows that the MISE of a binary
classifier is a weighted average of its type I and type II errors. Based on this result, Section 3
presents a general characterization of the optimal classifier. Sections 4, 5 and 6 specialize the
previous result to cases of the classical mean test, the model equivalence mean test and the Probit
classification. Each case is supported by a simulation experiment. Section 7 concludes, and an

appendix collects the mathematical proofs.

2. The Mean Integrated Square Error of a Binary Classifier

Let us consider testing the null hypothesis Hy: g(6) = 0 against the alternative hypothesis
H;: g(08) # 0. The deterministic target associated with this testis Y = I(|g(6)| > n), where I( )
is the indicator function that equals 1 if the statement inside the parentheses is true and 0 otherwise;
6 € R% a finite-dimensional parameter of the distribution of X; and g() a mapping from R? into

R and 1 > 0. The decision rule for this test is generally of the form:

?t = I(S(Q,Xl, '"'Xn) e (qu QZ)): (1)

where S(6, X, ..., X;,) is a test statistic and q; and g, are chosen to satisfy Pr(?t = 1|H0) = a.
The corresponding probability of type II errors is S(a) = Pr(?t = O|H1). Indeed, S is a

decreasing function of a Jeffreys (1939).

Alternatively, one may specify the test as: Hy: g(6) # 0 against H;: g(6) = 0. This set-up is most
useful when the objective of the researcher is to provide evidence in favor of a theory stipulating
that g(0) = 0. The target associated with this test is Y = I(|g(8)| < n), where n is a small,
positive violation margin below which the theory is considered valid (Romano, 2005; Lavergne,

2014). The decision rule becomes:



?t = I(S(Brxl' "'an) € (ql'qz))- (2)

The probability of type II errors § = Pr(?t =0 |H1) is more easily controlled for this test. The

implied probability of type I errors is then deduced as a(B) = Pr(Y, = 1|H,).

Hypothesis testing has raised severe criticisms in the literature, most of which revolve around the
arbitrariness of the choice of @ and the lack of clarity in the interpretation of the verdict of the test.
On these grounds, Jeffreys (1939) proposes to minimize a weighted sum of a and £ for the purpose
of designing the optimal test. Romano (2005) and Lavergne (2014) put forward a model
equivalence approach acknowledging that the hypothesis that the researcher wants to “prove” must
carry the burden of proof. Johnson (2013) and Pericchi, Pereira and Perez (2014) suggest selecting
the appropriate value of @ based on connections between the Bayesian and frequentist approaches.
Gelman and Robert (2014) observed that the appropriate value depends on the context. Other
attempts to optimally select a include Miller and Ulrich (2019) and Maier and Lakens (2021). The
current paper extends the discussion to probabilistic classifiers, provides a statistical justification
for minimizing a weighted sum of the probabilities of type I and type II errors, and derives the

closed-form expression of a in specific cases.

When the target Y; is random and a sample (Y, X;),t = 1, ..., T can be observed, one can estimate

a parametric probabilistic model for Pr(Y; = 1|X;). For instance:
Pr(Y, = 11X,) = p(0,X,) (3)

where 6 € R¢ is a finite-dimensional parameter. This model may be used to define a classifier that

assigns ¥, = 1ifp(8, X,) > p, and ¥, = 0 otherwise, for some cut-off p, € (0,1):
Y, =1(p(6,X,) > po) 4)

It is tempting to assign p, = 0.5 based on the intuition that ¥, should be the most likely realization
of Y;. While such a choice sounds reasonable, it entails abandoning any attempt to control

misclassification rates, which are given by:

a = Pr(7, =1|Y, = 0) = E[I(p(6,X,) > po)|Y, = 0] (5)



B = PT(?t =0|Y; = 1) =E[I(p(6,X:) <po)lY: = 1] (6)

To see why the optimal calibration of p, is important, let us consider the situation of an
epidemiologist trying to assess the prevalence of a disease in a population. The investigator would
typically collect data X;,t = 1, ..., T on several patients (e.g., from blood tests). Let us assume that
the verdict of the test is ¥, = I(p(X,) > 0), where ¥, = 1 for a patient that is declared “positive”

if ¥, = 0 otherwise. Let 7 denote the probability of ¥ = 1:
pri¥, =1 =mn (7
The probability of declaring a patient positive is given by:
Pr(V,=1)=a(l—-m)+n(1—-p)=a+n[l—a—}f]

If the disease of interest is rare so that m is very small (e.g. m = 1/10000), then probability of
declaring a patient positive is approximately equal a. In this context, arbitrarily fixing a at 5% or
1% implies predicting ¥ = 1 at a rate that is several times larger than the actual prevalence of the
disease. This discussion remain valid for criminal trials, with ¥, = 1 meaning a guilty judgement,

Y, = 0 a non-guilty judgement and X, the evidence available to the court.

Let us explore the possibility for selecting a to minimize the statistical precision of ¥; as a predictor

of Y;. When Y = 0, the Mean Square Error (MSE) of the classifier is given by:

MSE(F|Y, = 0) = E[(%, = ¥)°IY, = 0| = (1 = )(0 - 0)? + a(1 — 0)? = «.
When Y = 1, the MSE is:

MSE(T |V, =1) = E[(%— %) 1%, = 1| = B0 - D2+ (1 - )1 — 1D = 5.

The Mean Integrated Square Error (MISE) of the classifier is the expected value of the MSE across

all possible states. We have:
MISE(Y,) = (1 —ma + np

This shows that the MISE of any binary classifier is the weighted average of its probability of type

I and probability of type II errors. In the deterministic case, repeated observation of Y is not
5



possible and 7 is not well-defined. In this case, the MISE may be replaced by the concept of
expected disutility associated with misclassification. Indeed, it is shown in the next section that
the relative costs of misclassification have the interpretation of subjective probabilities. A classifier
with small a tends to have a large 8 and vice versa. Therefore, the MISE of ¥, may be represented

as a function of a only:
MISE(a,Y,) = (1 — m)a + nf(a) (8)

Hence, the optimal classifier may be obtained by minimizing the MISE with respect to a.

Alternatively, the MISE may be parameterized in terms of £, leading to:

MISE(B,Y.) = (1 —m)a(B) + np (9)

In this case, the optimal classifier may be obtained by minimizing the MISE with respect to (3.

3. Optimal Binary Classifier: A General Result

The expected costs of misclassifications of the classifier described by Equation (9) is given by:
C(a,Y) =1 —macy + nf(a)cy,

where Pr(? =1Y= 0) =(1—-ma and Pr(? =0,Y = 1) =mf3 are respectively the
unconditional probabilities of misclassification in the states Y = 0 and Y = 1 and ¢; and c; are
corresponding costs. In the context of bankruptcy prediction, ¢, is the cost of wrongly predicting
that a creditworthy agent will default while ¢, is the cost of wrongly predicting that a financially
distressed agent is creditworthy (see for example Hsieh, 1993).

This expected cost function can be rewritten as:

C(a, 17) =[(1—-—m)cy + e, ][(1 —)a + "B ()],
where t* is interpreted as the subjective probability of Y = 1:
* TCq

. (10)

- (A—-m)co+mcq

This shows that C (a, 17) is the MISE of ¥ (up to a multiplicative constant) under a risk neutral

6



distribution. The interpretation of ©* as a subjective probability avoid us the need to resort to a

Bayesian interpretation when Y is deterministic (e.g., hypothesis testing).

The multiplicative constant irrelevant for the purpose of determining the optimal classifier. It is

therefore dropped so that expected cost function becomes:
C(a,Y)=(1-na+n"p(a) (11)

where " is a subjective probability that embodies the costs of misclassifications as well as the
physical probabilities of the states of the world. Alternatively, we may consider parameterizing the

cost function in S and write:

c(,Y)=QA—-nDaB)+nr*p (12)
The following result presents a general characterization of the optimal classifier.

Proposition 1. When the MISE is parameterized in «, the optimal classifier satisfies:

* _ —1( _ 1—-71*
a*=p ( — ),or (13)
where '~ is the reciprocals of the first order derivative of B(a). Otherwise, the optimal
classifier satisfies
ot () s
where a’' ™1 is the reciprocals of the first order derivative of a ().

Proposition 1 follows immediately from the first order condition for the minimization of the MISE
given by either Equations (11) or Equation (12), that is:

T ey T
— ora’'(B*) = T

B = -

For the solution (13) to be a minimum, the second order derivative of C (a, 17) with respect to a
must be positive. Therefore, it must be the case that () is a strictly convex function of a so that

B’ (a) is negative and increasing in a. This means that the smaller " is, the larger and negative

*

" is and the smaller the optimal a* becomes.

*




4. Testing the Mean of a Distribution: The Classical Approach
4.1. Optimal Test Design

Let us consider testing whether an unknown mean 6 = E (X) equals a specified value 6, (the null
hypothesis, Ho) against one of the following alternatives: (i) Unilateral on the left (LH1): 8 < 6,;
(i1) Unilateral on the right (RH1): 8 > 6,; Bilateral (BH1): 8 # 6,,. Let Y be a binary outcome that

equals 0 when the null hypothesis is true and 1 under the alternative.

To perform the test, one first constructs a statistic S(6,X) whose distribution under the null

hypothesis is known. The custom choice is:

S(0,X) =

VT(X-6)
o (15)

where X is the average of an independent and identically distributed sample (X1, ..., X7) of X. Let
us assume that X follows a normal distribution with variance o2 so that S(8,, X) follows a N(0,1)

distribution under the null hypothesis.
Next, one constructs an interval [&; (@), §,(a)] such that:
Pr{§(6y,X) € [6,(a),62(0)]} =1—«a (16)

where a € (0,1) is desirably small, typically below 10%. There are an infinite number of

approaches to design the intervals [6; (@), §,(a)]. For instance, we could let:
Pr{S(6o,X) € ]==,6,(a,n)]} = na, (17)
Pr{S(6o,X) € [62(a, 1), +oo[} = (1 —n)a. (18)
where the dependence of the bounds on 77 € (0,1) is made explicit.
In subsequent derivations of this section, we maintain that a < ; so that:
§i(a,n) =27 '(na) <0 (19)
S(@m) =07 (1~ (1 -na)=- (1 -na)>0 (20)

where @ is the cumulative distribution function (CDF) of a standard normal random variable. The



family of binary classifier implied by this test is

?(77) = 1(5(901X) e [51(“,77)' 61(“! T])]) (21)

By design, the probability of type I errors of these classifiers are all equal to a (selected
beforehand):

Pr(Y(m) =1y =0) =na+ (1 —na = .

The probability of type 1I errors depends on the choices of a and 7 as well as on the unknown true

value of 6. Straightforward calculations show that:
B(a,n,8) = ®(8;(a,n) — A) — (6, (a, 1) — D), (22)

where 8;(a, 1) = @ '(na), §,(a,n) = _CD_l((l - n)a) and A = ﬁ((i;%)

is a signal-to-noise
ratio measuring the distance between the null and the alternative hypotheses in units of standard

deviation of the underlying test statistics.

The Uniformly Most Powerful (UMP) tests are obtained by letting n = 1 so that §,(a, 1) =
®~1(a) and §,(a, 1) = +oo when the alternative hypothesis is unilateral of type LHi; andn = 0
so that §; (a, 0) = — and &,(a, 0) = ®~1(1 — a) when the alternative is unilateral of type RH|
(Neyman and Pearson, 1933, pp. 302-303). When the alternative hypothesis is bilateral (BH1), the

most powerful test (but not uniformly over the rejection region) is obtained by letting n = 0.5 so

that &; (a, %) = -9, (a, %) =1 (%) The corresponding probabilities of type II errors are

respectively given by:

B(a,1,0) =1— (@ (a)—A), A<0 (23)
B(a,0,4) = d(—d(a)—A), A>0 (24)
pas.8)=0(-01(5)-a)-o (o7 (£)-a),a€R\(0} (25)

Finally, the MISE of the classifier is:

MISE(?,n) =1 —-n)a+n"B(a,n,A)



where " is the subjective probability that is assigned to the outcome Y = 1 by the investigator
andn € {0 ; % ; 1}. Let us consider designing the optimal test by minimizing the MISE above with

respect to a. The classical test is consistent with the view that Y = 0 is the outcome with highest
misclassification cost. The assumption 0 < 7* < 0.5 is therefore maintained in the Proposition 2

below.

Proposition 2. Let A = @,

" € 10,0.5]. The optimal a for the classical mean test satisfies
the following:

(i) Whenn = 1 so that the alternative hypothesis is LH;:

a* = G In (1_n*) + %‘) (26)

T*

(i) When n = 0 so that the alternative hypothesis is RH|:
. 1 1-7*\ A
= (-3 () -3) (27

(iii) When n = 1/2 so that the alternative hypothesis is BH|:

T* T*

a* =20 %ln (1_71* exp (AZ—Z) — sign(A)\/(l_n*)z exp(4?) — 1) (28)

The probability of type Il errors at the optimum is deducted using Equations (23)-(25).

In practice, ¢ may be unknown and replaced by 6 = Jﬁ I (X,—X)%2 andA = @ may

be used as a guess for A. Accordingly, one should replace @ by the CDF of Student’s #-distribution

with T-1 degrees of freedom.

Figure 1 shows the behavior of the optimal a™* and the corresponding S (a*) for different values
of the signal-to-noise ratio A and subjective probability m*. Whether the test is bilateral or
unilateral, a* and B(a™) decrease to zero fast as |A| converges to infinity. The optimal « falls

below 5% for most values of T* as soon as |A| exceeds 3.5. Indeed that @ = 0.05 is too high when

10



|A| > 3.5 and @ = 0.01 becomes a better choice than @ = 0.05 when |A| > 5.

Figure 1. Optimal Classical Mean Test: Analytical Formula

Figure 1.1. Unilateral Test on the Left: Optimal o Figure 1.2. Unilateral Test on the Left: Optimal 8

Figure 1.3. Unilateral Test on the Right: Optimal o Figure 1.4. Unilateral Test on the Right: Optimal 8

Figure 1.5. Bilateral Test: Optimal o Figure 1.6. Bilateral Test: Optimal 5
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Second, the optimal a* is monotonically decreasing in |A| when ©* = 0.5, and it is non-monotonic
for all other n* € (0,0.5) (Figures 1.1, 1.3 and 1.5). By contrast, f(a*) is monotonically
decreasing in |A| for all 7* € (0,0.5] (Figures 1.2, 1.4 and 1.6). On the one hand, the probability
of type II errors increases fast to unity as |A| vanishes to zero, and its curve flattens as |A| falls
below 0.5. On the other hand, the probability of type II errors decreases to zero as |A| increases to
infinity, and its curve flattens as |A| exceeds 3.5. In these two regions, the sensitivity of the MISE
to [ is close to zero so that minimizing the MISE essentially boils down to minimizing «a.

However, this explanation holds only when « is given more weight than £ in the MISE function.

Third, a” is increasing in ©* while f(a") is decreasing in 7r*. This result is quite intuitive: the
more costly it is to wrongly reject the alternative hypothesis, the larger the optimal probability of

type I error is. In the frequentist approach where there is no prior probabilities assigned to the

C1

hypotheses, one may consider using 7* = to express neutrality. In this case, using 7* = 0.5

Cot+Cy

is appropriate only if the researcher is further neutral about the costs of misclassification. In a
Bayesian framework, ©* = 0.5 does not necessarily express neutrality as it only tells us that mc; =
(1 —m)cy. When ™ > 0.5, we recommend implementing the model equivalent test discussed
subsequently. Finally, the analytical expressions of a™ and f(a™) only depend on A and t* as well
as on the normality assumption made for the distribution of the test statistics. In particular, the
results of Proposition 2 hold for all hypothesis testing exercises where the (appropriately
normalized) test statistic follows a pivotal N(0,1) distribution under the null hypothesis (e.g., a

regression slope coefficient).
4.2. Monte Carlo Simulation

For this simulation exercise, we draw M=25000 samples of size T=250 from each of the normal

distributions with mean 8 = 1 + 8, and variance 2 = 2, where 8, = 1’5—%, k=0,1,..,50. We
use each sample to test for the null hypothesis 8 = 1 against the bilateral alternative. The simulated
samples are of the form Xt(k) =140, + og,t =1,...,T so that the replications use common

random numbers across k. Hence, the test statistics take of the form:

12



s®(6,X) = A, +VTEk = 1,...,50.

Where A, = k/10 and € is the sample mean of &;,t = 1, ..., T.

Figure 2. MISE and Optimal Classical Mean Test: Monte Carlo Simulations

Figure 2.1. MISE and Optimal o for t* = 0.1

Test of the mean- Bilateral: x'=0.1
-

0.35

025

MISE(y): Monte Carlo Simulations

Figure 2.3. MISE and Optimal o for 7* = 0.5

Test of the mean: Bilateral: x'=0.5
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Figure 2.1. MISE and Optimal « for 7* = 0.3

Test of the mean: Bilateral: x'=0.3
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Note: The red diamonds dots mark the minimizer of the MISE.

Next, we calculate the rejection rates a (A ) over the M Monte Carlo replications. Noting that a(0)

is the probability of type I errors while S(A,) = 1 — a(Ay), k = 1,...,50 are probabilities of type

II errors, we calculate the MISE as:

MISE (A, ) = (1 — ) a(0) + 7B (Ay),

fork=1,..,50and 7" = 0.1,0.2, ..., 0.5. Figures 2.1, 2.2 and 2.3 show the MISE for different

values of Aj, and t*. We see that the degree of convexity of the MISE is increasing in Ay.

The optimal a*s (indicated by the red diamond dots) are collected and plotted against the A, on

Figure 2.4. This graph replicates the right quadrant of Figure 1.5, thereby providing a simulation-
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based check of the formulas of Proposition 2.

5. Testing the Mean of a Distribution: The Model Equivalence Approach
5.1. Optimal Test Design

Let us now consider the situation where one wishes to test the approximate validity of a restriction

on the mean 6 = E(X) of a distribution, for instance:
- Null hypothesis (Ho): |8 — 8,| > 0;
- Alternative hypothesis (H1): 8 — 6, = 0.

Let us consider rejecting the null hypothesis as soon as | X — 8,| < n, where n > 0 is the tolerated
violation margin of the assumption 8 = 6. Lavergne (2014) proposes a framework to tackle this
test in the general case where the null hypothesis consists of a set of possibly nonlinear restrictions

on a finite-dimensional vector of parameters.
Note that |X — 8,| < 1 if and only if:
—(0—-6,) —n<X—-60<—(6-06, +n.

Therefore, the probability of rejecting the null is:

a(n,A) =@ (—A + @) -0 (—A — @>

g

The probability of type II errors for this test is:

B(n) = Pr(X — 6] > 5|6 = 6p) = 2 (—*L7) (29)

g

Or equivalently, n(B) = — 7

o1 (g) Hence, the MISE of the associated classifier is given by:

MISE(Y,8) = (1 —")a(B,A) + P

where

a(B,4) = @ (—A — o1 (g)) —® <—A + o1 (g)) (30)



We consider designing the optimal test by minimizing this MISE with respect to a. The model
equivalence mean test is consistent with the view that Y = 1 is the outcome with highest
misclassification cost. The assumption 0.5 < 7* < 1 is therefore maintained in the Proposition 3

below.

VT (6-6,)
o

Proposition 3. Let A = and * € [0.5,1[. The optimal a for the mean test in the model

equivalence approach satisfies:

o =d (—A — 1 (%)) —® (—A + o1 (%)) (31)

where:

B =2® %ln (17_; exp (AZ—Z) — sign(A)\[(lf;*)Z exp(4?) — 1) (32)

Figure 3 shows the optimal 5 and the implies a* for the model equivalence test for different values
of A and ©*. The curves of * the coincide with the right quadrants of Figure 1.5 depicting the
optimal probability of type I errors for the classical test. Likewise, the curves of a* for the model
equivalence test coincide with those of the optimal probability of type II errors for the classical
test (Figure 1.6). Finally, the scenario based on ™ in the model equivalence approach coincide

with the scenario based on 1 — ™ in the classical approach.
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Figure 3. Optimal Model Equivalence Mean Test: Analytical Formula

Figure 3.1. Optimal S Figure 3.2. Optimal a*

Figure 4. MISE and Optimal Model Equivalence Mean Test: Monte Carlo Simulations
Figure 4.1. MISE and Optimal o for 7* = 0.9 Figure 4.2. MISE and Optimal o for 7* = 0.7

Figure 4.3. MISE and Optimal o for #* = 0.5 Figure 4.4. Optimal «
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5.2. Monte Carlo Simulation

The simulation setup is the same as in the previous subsection except that here we test null
hypothesis 8 # 1 against the alternative & = 1. We calculate the rejection rates a (A ) for each k
over the M Monte Carlo replications. Given our simulation design, f(1) =1 — a(1) is the
probability of type II errors while a(Ag),k =1, ...,50 are probabilities of type II errors. We
calculate the MISE as:

MISE (A, ") = (1 — ") a(Ay) + 7w p(1),
fork=1,..,50and 7* = 0.5,0.2, ..., 0.9.

Figures 4.1, 4.2 and 4.3 show the MISE for different values of A, and *. We see that the degree
of convexity of the MISE is increasing in A,. We see that the MISE curves have the same shape
as on Figure 2. Furthermore, Figure 4.4 showing the curves of the optimal a* replicates Figures

2.4, with the notable difference that here m* > 0.5.
6. Probabilistic Classification

6.1. Optimal Algorithm Design

Let p(0,X;) = Pr(Y; = 1|X,) be a probabilistic model for the binary outcome Y;,t = 1,...,T. A

popular approach to specify p(60,X,) is:

G,X — T[fl(Xt"A) . 33
p(0,X0) (1-70) fo(Xe. )+ f1 (Xe,A) (33)

where
fk(xll) = f(xlyt = k),k = 0;1

is the conditional density of X; and 6 = (7r,4). The Naive Bayes classifier is obtained by
postulating that f, (x, 1) is the density a multivariate normal random variable with a diagonal

covariance matrix.

Alternatively, one may consider the logistic regression model so that:
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1

p(0.X0) = oo (34)

This approach has a “reduced form” flavor as it avoids the estimation of the “structural” parameters
governing the distribution of X,. It coincides with the SoftMax specification that is very popular

in the Machine Learning literature.

Another famous approach to perform binary classification is based on the Probit model, which

assumes the existence of a latent variable Z; such that

Z, = X0 +u, (35)
andY, =1 & Z, > 0, where u,~N(0,1). This model implies that

p(6,X;) = Pr(X.0 +u, > 0|X;) = ®(X,0) (36)

Upon observing a sample (Y;, X;),t =1,...,T and training any probabilistic model using an
algorithm of our choice, we may consider defining a binary classifier as ¥, = I(p(8, X;) > p,) for

some p, € (0,1). The implied misclassification errors are given by:

a=EI(PO,X:) >py)|Y;=0)and f = EU(p(0,X,) <po)|¥; =1).

Fixing p, arbitrarily at 0.5 may result in undesirably large misclassification rates. Indeed, the
formulas above indicate that a and f remain dependent on the distributional properties of X;. This
suggest that there are rooms left to fine-tune the Probit classifier to achieve the best trade-off

between the two types of misclassification errors rates.
An empirical counterpart of the MISE may be computed as:
MISE(Y,n*) = (1 —n")a+n"p (37)

Zt 1(1-YY; Zt 1Yt(1 Yt)

== wdf=

where 7T = 7 At=1 Y, @
This empirical MISE can be minimized numerically (by a grid search) to obtain the optimal p,,.

Let us consider analyzing the behavior of the optimal cut-off for the Probit model described by
Equations (35)-(36). For that purpose, we first need to compute Fy(z) and F; (z), the CDFs of Z, =
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X;0 conditional on Y = 0 and Y = 1 respectively. We have:

R =Fe) [ 2

F,(2) = F()f L))du—f %du

du + ®(z) and

where F(z) is the unconditional CDF of Z,. See proof of Proposition 4 in appendix.
The MISE of the Probit is therefore given by:
MISE(5,t*) = (1 —n)a(6) + *B(6) (38)

where § = @7 1(p,),

a(®) =1-F(@©) [ O‘:F"E(’” du — (8) (39)
B(8) = F(&) [ s du — [2, 522 du (40)

We have the following result.

Proposition 4. The optimal cutoff of the Probit model (35)-(36) for a one-off decision satisfies

pPo = ©(87), where 8§ solves the following nonlinear equation in 6:

-5 p(u) du

—0OF(—u) *
=7 41)
5 p(u) o @(w)
J Rty M+ s oy

In practice, 8 must be estimated beforehand and used to compute Z,. Likewise, one may consider

estimating the CDF of F(z) using kernels (that is, Parzen Window):

F(2) = 130, 0 (%) (42)

Finaly, the quantities involved in Equation (41) can then be approximated by Monte Carlo:

) <p(u) ~ l Kk 1(ugs-=9)

fOOF( L e g Zk=1 Fl—w) (43)
) 1(ug=—35)

f—a 1—F(—u) Zk 11-P(-up) (44)
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where (uq, ..., Ug) are generated from the standard normal distribution.

6.2. Monte Carlo Simulations

We generate T=250 observations from the following process:

_ o v—2

. -

14
El't‘l'\/z_/l(gl‘t_z‘) ,t = 1,...,T

where &, ; follows Student’s t-distribution with v degree of freedom and & ; follows a Chi-square
distribution with A degrees of freedom. For this exercise, we use 02=3,v=7,1=3andy €
{—1,0,1}. This ensures that the variance of Z, is equal to o2 and that the distribution of Z, is

negatively skewed when y = —1, symmetric when y = 0 and positively skewed when y = 1.

The process Z, is assumed to be latent. The observed processes are generated as Z, = Z, + u, and
Y; =1(Z; > 0),t = 1,..., T where the u;s are independent and identically distributed (IID) draws
from the N(0,1) distribution. This design imply that Pr(Y, = 1|Z,) = ®(Z,). We consider the
ideal setup where the latent process Z, is estimated with no error by a Probit model. The MISE

implied by this assumption is:
MISE (py, ") = (1 — )& + n*p

where ft = %Zle Y,, m* is the subjective probability, ¥, = 1(®(Z,) > p,),

1 .
721 - YT,
1-7

1 .
3L Y(1-7,)

a(po) = and ,é(po) =

We simulate M=25000 trajectories of the processes described above. For each trajectory, we
compute the empirical MISE of the Probit classifier above and identify the cutoff that minimizes
it. The corresponding averages over the M replications are labeled “Pure Monte Carlo”
subsequently. We also compute the theoretical MISE and optimal cutoff based on Proposition 4.
For a particular trajectory, the results are conditional on the path Z,t=1,..,T. The

corresponding results are labelled “Analytical Formula and Monte Carlo” subsequently.
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Figure 5: True and Simulated Mean Integrated Square Error of the Probit

Figure 5.1. True MISE under Negative skewness Figure 5.2. Simulated MISE under Negative
skewness
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Figure 5.5. True MISE under Positive skewness Figure 5.6. Simulated MISE under Positive
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Pure Monte Carlo - Positive Skewness Analytical Formula and Monte Carlo - Positive Skewness
09 T T T T T T T T

08} E

MISE

Figures 5.1, 5.3 and 5.5 show the true MISE computed using Equation (38) while Figures 5.2, 5.4
and 5.6 show the simulated MISE. The similarity of the two MISEs confirms the correctness of
the theoretical formula. We also note that the optimal cutoffs (marked by the red diamond dots)
are uniformly tilted to the right (resp. to the left) when the distribution of Z, is negatively skewed
(resp. positively skewed) compared to the symmetric distribution. This is confirmed by Figure 6,
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which shows the plots of the average optimal cutoffs against *. This result proves that the optimal
cutoff p; = ®(8*) is sensitive to the distributional properties of Z,. In fact, p, = 0.5 is optimal

only in the very special case where the distribution of Z, is symmetric and =* = 0.5.

Figure 6 suggests that p, is almost linearly decreasing in 7t*, with a slope that is smaller than one
is absolute value. As seen on Figure 5 above, negative skewness causes the curve to drift to the

right while positive skewness induces a drift to the left. The slopes of the curves are not affected

by the drift.

Finally, Figure 7 show the optimal a* and f(a™) as functions of the subjective probability *.
Interestingly, the optimal error rates are less sensitive to the skewness of Z, than are the optimal
cutoffs. This result should not be surprising: the optimal cutoff adjust to the distributional
properties of Z, to deliver this optimal error rates. Note that a* and f(a*) are larger in the Pure
Monte Carlo exercise due to the finiteness of the sample. This indicates that the empirical MISE

given at Equation (37) should be preferred if one wishes to account for finite sample correction.
7. Conclusion

We show that the Mean Integrated Square Error (MISE) of a binary classifier is a weighted average
of its probabilities of Type I and Type II error (a and ), where the weights are the unconditional
probabilities (1 —m and m) of the outcomes. This provides a justification for minimizing a
weighted average of the two error rates to design the optimum classifier. Any choice of weights
imply a particular subjective probability distribution for the outcomes (1 — " and ™), and the
corresponding weighted average of a and 8 is proportional to the MISE under this subjective
distribution. We derive closed-form expressions for the optimal a for standard significance tests
on the mean of a distribution as well as for the Probit classifier. Simulation experiments confirm
the relevance of optimally selecting a. The optimal « rarely coincide with 0.05 and the optimal

cut-off of the Probit model is generally different from 0.5.
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Figure 6: Optimal Cutoffs for the Probit Classifier

Figure 6.1. Average Optimal Cutoffs estimated by  Figure 6.2. Average Optimal Cutoffs estimated by

Pure Monte Carlo Analytical Formula and Monte Carlo

Symmetric
Positive Skewness

Figure 7

Figure 7.1. Optimal a Pure Monte Carlo Figure 7.2. Optimal a Analytical Formula and
Monte Carlo

Figure 7.3. Optimal  Pure Monte Carlo Figure 7.4. Optimal § Analytical Formula and
Monte Carlo
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Appendix: Mathematical Proof.

Proof of Proposition 2. The expression of B(«,n, 8, 0) is:
Ba,n,8) = o(-=27 (A —ma) - 4) - (@7 (na) - b),
where A = @. The derivative of B(a,n, 8,,60) with respect to a is given by:

(- (A-—ma)-4) . (@' (na) - B)
o (o1((1 —ma)) p(@-1 ()

ﬁ’(a,n»A) = _(1 _77)

where @(z) = %exp(—zz/Z).

Case = 1: The alternative hypothesis is unilateral on the left so that A < 0. The optimal «

solves:

(@ (a)—A) 1-m"
(o' (@)

)

1 1 1—m"
S exp [—E(S—A)Z +§52]

where § = ®~1(a). Hence:

1 1—m* 1 1—7w* A
6A——A2=1n< )@6*=—1n( >+—
2 T* A

7-[*

. <1>(11 (1—n*)+A)
= = — —).
“« A\ 2

Case n = 0: Alternative hypothesis is unilateral on the right so that A > 0. The optimal « solves:

Cp(=5-8  1-m
p(&

1—m*

*

1 1
< exp [—E(—S—A)Z +E52] =

ow =o(-gn(25)-3)
a = An - 5 )"

Case 7 = 1/2: Alternative hypothesis is bilateral. Let § = &1 (g) The optimal a solves:
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p(=6—-AN)+¢(6—-4) 1—m"
2¢(6) oo

where @(x) = %exp(—xz/Z). Hence:

] 2(1—m")

1
exp ——( §—A)?2+ = 62]+exp[——(6 A) + —

2
2

21 —m" A
< exp(264A) — %exp <—

> )exp(éA) +1=0.

Let § = exp(8A), so that:

o 2(1- AZ
5207 (A s+1-0
T*

The (modified) determinant of this quadratic equation is:

*. 2

d= (1 ;*n ) exp(A?) — 1.

To move forward, I need to verify that this determinant is positive:

1—1* 2
( - ) exp(A?) > 1.
s
This inequality is trivial because 7* < 1/2.

The roots of the quadratic equation are therefore given by:

2

S—l_n* A? N (1—7‘[*) 42) -1
=——exp| 5|t — exp .

These two roots are both positive. Hence:

2

1—-n" A? 1—m*
exp(5A) = T[*ﬂ exp (7) t \[( n*ﬂ ) exp(A?) — 1.

It is easily shown that these two roots are inverses of each other. One root is greater than 1 and the

other one lies between 0 and 1.
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- A’ n (1 _ ”*)2 A2 —1>1
——exp| — exp ,
. A2 (1 _ n*)z ) —1<1

—exp | — exp :

As 6* =71 (a?) < 0 by definition, exp(6*A) > 1 if A< 0, and exp(6*A) < 1 otherwise.
Therefore, we have:

50 = 1o ep (22) — signea (1 — n*>2 (42) -1
exp(5*A) = — x| sign(A) — exp
S8 =— — |- -
Aln ——exp| sign(A) — exp
“ =20 /11 L= o (2) — signca (1 — ”*)2 (42) -1
S at = \K n —exp| 5 sign(A) — exp

)
)

QED.m

Proof of Proposition 3. The MISE of the equivalence test is given by:

MISE(Y,B) =1 —n")| @ <—A — P! (g)) - <—A +d1 (g)) + B,

Taking the derivative with respect to § and equating to zero yields:

B p(—A—-9) B p(-A-6) 2m
¢(8) @)  1-m

where § = ¢! (g) and @ (x) = %exp(—xz/Z). Thus:

0 (A=) (8% (-A+6)*) 2w
exp > > exp > = 1

2 — 1
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2™ A?
< exp(264A) — e oy exp(6A) +1 = 0.

Let § = exp(8A), so that:

<, 2m A%\ .
6 phpperio N ey §+1=0.

The (modified) determinant of this quadratic equation is:

* 2

d= (1 f r[*) exp(A?) — 1.

To move forward, I need to verify that this determinant is positive:

* 2
T
(—) exp(A?) > 1 & ~
1—mn*
1+ exp (7>

This is basically saying that 77* must not be too small for the equivalent test to be justified. The

<1l/2<m"

roots of the quadratic equation are given by:

S_ T AZ N ( ™ )2 (Az) )
"1 P\72 )T i) P '

These two roots are both positive. Hence:

2

* AZ *
exp(6A) = T fﬂ* exp <7> + \[(1 f 7'[*) exp(A?) — 1.
ﬁ*

It is easily shown that these two roots are inverses of each other. As §* = ¢! (?) <0,

exp(6*A) > 1if A < 0, and exp(6*A) < 1 otherwise. Therefore, we have:

2

* 2 *
exp(6*A) = T f —exp <A7> - sign(A)\/( i *> exp(A?) — 1

1—m
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2

PP ) signca (ﬂ) (a2) -1
=5In 1_n*exp > sign(A) e exp

2

o p =20 2| L %) - signca (n* ) (42 -1
p* = Aln exp | - sign(A) e exp

QED. m

Proof of Proposition 4. Let us first find the CDF F; (z) of Z, = X,0 conditional on ¥, = 1. We
have:

Pr(—u, < Z; < z|u,)
Pr(Z; > —uclue)

PT‘(Z_t < Z|Z_t > _ut,ut) =

0 ifz<—u,
= F(Z) - F(_ut) otherwise
1-F(—u)

= (@) = Pri, < 22> —u) = | mF(fz}f_(; :

(u) CF(—uw)e(u)
-r [ e [ TR

p(w)du

The corresponding PDF is:

A0 =10 [ odu

The probability of type II errors for the Probit classifier is given by:

B = PT(Z_t < 5|Z_t > —u,) = F1(6)

~ e “ F(—u)g (1)
F(‘”f T- o™ famdu'

where 6 = @7 1(p,).

Next, we derive the CDF F,(z) of Z, conditional on Y, = 0.
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Pr(Z, < z|u,)

Pr(Z, <z|Z; < —upue) = {Pr(Z, < —u,|uy) ifz < —u,
1 otherwise
Hence,
_ _ ~“ F @
Fo(z) =Pr(Z; < z|Z;, < —u;) = j F((—Zl)l) e(w)du +] e(w)du.
= Fo(z) = F(z )f S ) S+ 9 (2)
The corresponding PDF is:
f@=1@ |2

The probability of type I errors for the Probit classifier is given by:

-8
@)
=1-F( f du — ®(9).
(6) P (6)
The MISE is given by:

-8
MISE(Y,8) =(1—m") (1 — F((S)j F(’E(_uj) du — cb(6)>

. o) PF(—wew)
+ 7 <F(5) j_(gmdu - f_amdU)

Taking the derivative with respect to § and equating to zero yields:

—(1—n)f(6)f s dutm f(6)f %duzo
-5 (W)
JoF ™ m
-5 @) o "
—ooF(—u)d”+f6 ] @Yy
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