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Résumé / Abstract

Résumé

Nous incorporons formellement l'incertitude des paramètres et l'erreur
de modèle dans l'estimation des modèles d'option et la formulation de prévisions.
Ceci permet l'inférence de fonctions d'intérêt (prix de l'option, biais, ratios)
cohérentes avec l'incertitude des paramètres et du modèle. Nous montrons comment
extraire la distribution postérieure exacte (de fonctions) des paramètres. Ceci est
crucial parce que l'utilisation la plus probable, réestimation périodique des
paramètres, est analogues à des échantillons de petite taille et demande
l'incorporation d'informations a priori spécifiques. Nous développons des modèles
Monte Carlo de chaînes markoviennes afin de résoudre les problèmes d'estimation
posés. Nous fournissons des tests de spécification, à la fois pour l'échantillon et le
modèle prédictif, qui peuvent être utilisés pour les tests dynamiques et les systèmes
de trading en utilisant l'information en coupe transversale et temporelle des données
d'option. Finalement, nous généralisons la distribution d'erreurs en tenant compte
de la (faible) probabilité qu'une observation ait une plus grande probabilité d'erreur.
Cela fournit pour chaque observation la probabilité d'une donnée aberrante et peut
aider à différencier erreur de modèle et erreur de marché. Nous appliquons ces
nouvelles techniques aux options d'équité. Quand l'erreur de modèle est prise en
considération, le Black-Scholes apparaît très robuste, en contraste avec les études
précédentes qui, au mieux, incluait l'erreur de paramètre. Après, nous étendons le
modèle de base, i.e. Black-Schles, par des fonctions polynomiales des paramètres.
Cela permet des tests intuitifs de spécification. Les erreurs en échantillon du B-S
sont améliorées par l'utilisation de ces simples modèles étendus, mais cela n'apporte
pas d'amélioration majeure dans les prédictions hors-échantillon. Quoi qu'il en soit,
les différences entre ces modèles peuvent être importantes parcequ'elles produisent
différentes fonctions d'intérêt telles que les ratios et la probabilité d'erreur
d'évaluation.



Abstract

We formally incorporate parameter uncertainty and model error in
the estimation of contingent claim models and the formulation of forecasts. This
allows an inference on any function of interest (option values, bias functions,
hedge ratios) consistent with the uncertainty in both parameters and models. We
show how to recover the exact posterior distributions of the parameters or any
function of interest. It is crucial to obtain exact posterior or predictive densities
because the most likely implementation, a frequent updating setup, results in
small samples and requires the incorporation of specific prior information. We
develop Markov Chain Monte Carlo estimators to solve the estimation problem
posed. We provide both within sample and predictive model specification tests
which can be used in dynamic testing or trading systems, making use of both the
cross-sectional and time series information in the options data. Finally, we
generalize the error distribution by allowing for the (small) probability that an
observation has a larger error. For each observation, this produces the
probability of its being an outlier, and may help distinguish market from model
error. We apply these new techniques to equity options. When model error is
taken into account, the black-Scholes appears very robust, in contrast with
previous studies which at best only incorporated parameter uncertainty. We then
extend the base model, e.g., Black-Scholes, by polynomial functions of
parameters. This allows for intuitive specification tests. The Black-Scholes in-
sample error properties can be improved by the use of these simple extended
models but this does not result in major improvements in out of sample
predictions. The differences between these models may be important however
because, as we document it, they produce different functions of economic interest
such as hedge ratios, probability of mispricing.



Model Error in Contingent Claim Models:

Dynamic Evaluation

1 Introduction

Three types of errors occur in the empirical investigation of contingent claim models. The �rst

is the measurement error introduced via the noisy recording of prices (mainly non simultaneity,

etc...). The second error is due to the estimation of parameters such as volatility. The third is

model error due to the fact that no model perfectly explains prices even in the absence of the �rst

two errors. This is due to the simplifying assumptions necessarily made about the structure of

markets and trading. These errors have not been so far integrated in the evaluation of contingent

claim models so as to best learn from misspeci�cations and use necessarily imperfect models. This

paper proposes and implements a method to do this.

Researchers, under the null hypothesis of a given model, usually do not incorporate model

error in their investigations. Further they often do not fully account for the sampling error due

to parameter uncertainty. This is true, for example, with the seminal papers in the empirical

option pricing literature. 1 Typical studies generate point estimates of option prices via direct

substitution of point estimates for the underlying volatility. Model point estimates are then

compared to market prices. They lack the ability to produce speci�cation tests for either in-

sample �t or out-of-sample prediction.

The approach recently outlined in Rubinstein (1994) ignores any possibility of error and per-

forms exact �tting. This is consistent at the time of calibration, with the no arbitrage framework

from which the speci�c model being implemented stems. But the model is necessarily imperfect

as it does not incorporate more general processes for the observables, conditions on approxima-

tions of state variables, and ignores market frictions too hard to modelize. The estimation of an

imperfect model with no overidentifying restrictions is a case of over�tting: The cross-section is

�tted nearly perfectly at time t. The parameters retrieved may be useless at time t+1. This

can explain the results in Dumas, Fleming, and Whaley (1995). They �t a binomial model quasi

perfectly, only to conclude that it is worthless in out-of-sample performance. A realistic require-

ment for an acceptable model is that it produced similar out and in of sample performances. For

this requirement to be testable, the estimation technique must be able to deliver the uncertainty

around model predictions.

A few studies concentrate on parameter uncertainty alone, by incorporating only the underly-

ing data in the likelihood. 2 For the Black-Scholes model, Lo (1986) adopts a Maximum Likelihood

(ML) setup and assumes that the option price estimator is normally distributed. The uncertainty

of the prediction comes from the sampling variability of the ML estimator of volatility. Lo gives an

approximation for the sampling standard deviation of the option price estimator. Jacquier, Pol-

son, and Rossi (1995) show how to construct e�cient option price predictors reecting parameter

1See for example Macbeth and Merville (1979), Gultekin, Rogalski and Tinic (1982), Whaley (1982), and

Rubinstein (1985). See Bates (1995) and Renault (1995) for discussions of the empirical literature.
2The incorporation of option prices in the likelihood, bringing up the issue of the imperfect �t of the estimated

model, is thus avoided.
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uncertainty under stochastic volatility models. Lo soundly rejects the Black-Scholes speci�ca-

tion. That is, the con�dence intervals generated by the option price prediction uncertainty do

not cover true values with the expected frequencies. Although it allows for parameter uncertainty

and produces a speci�cation test, this approach still forces a zero model error, an unrealistic

requirement. More realistically, one would wantto admit a model error that (1) is unrelated to

observable model inputs, and (2) has distributional properties preserved out of sample. Much like

in any econometric procedures, predictive intervals would follow from both model error (noise)

and parameter uncertainty. We will see in our empirical section that when this is done, the the

Black-scholes appears much more robust than prviously believed.

Many reasons are given in the literature for the existence of departures from the basic Black-

Scholes model. Hull and White (1987), Bailey and Stulz (1988), Heston (1993), Stein and

Stein (1993), and others write no arbitrage or equilibrium based models allowing for stochas-

tic volatility. Renault and Touzi (1992) show that a true model with stochastic volatility causes a

smile shaped bias in Black-Scholes implied standard deviation. Bossaerts and Hillion (1994b) show

that the inability to transact continuously can also cause a smile. Platen and Schweizer (1995)

develop an equilibrium model with hedgers and speculators. In their model, a time varying as-

symetry of the smile (skewness) is caused by the (time varying) demand for hedging out or in the

money. Practitioners' common practice of gamma and vega hedging reveals their awareness of

model error even though most trading systems do not incorporate an analysis of model error and

do not use models other than the Black-Scholes.

The �rst contribution of this paper is a method of estimation of contingent claim models which

incorporates model error and parameter uncertainty. This allows us to obtain a representation

of the uncertainty about the estimate or prediction of a quantity of interest. This representation

is needed for speci�cation tests such as residual analysis and predictive performance, hedging,

dynamic model selection, and identi�cation of likely mispricing. Imperfect models often result in

time varying parameters, and need to be implemented in an updating setup allowing for periodic

reestimation. E�ective sample size may then never be large, but the results of a previous sample

may serve as the prior information for the current sample. So the estimation needs to (1) be rele-

vant for small samples and (2) allow the incorporation of prior information. Asymptotic methods

based upon the normality of the estimator, e.g., methods of moments or maximum likelihood,

are ine�ective given these requirements which are best satis�ed by the Bayesian framework we

adopt.3

Another contribution of this paper is the extension of a basic model, here the Black-Scholes,

with expansions of the input variables. The motivation is as follows. Model error should have the

properties desired for a well speci�ed model, i.e., zero mean conditional on the information set,

speci�cally the model inputs. Otherwise, the model implies the possibility of predictable abnormal

returns from simple trading strategies, or the resulting price prediction may lead to incorrect

inference. 4 First, well known biases, smiles and skewness, mean that a model easily implementable

like the Black-Scholes may not meet these error requirements. Second, the econometrics of the

3Bossaerts and Hillion (1994a) use GMM to �t panels of options data. The GMM method admits the existence

of model error since the overidenti�caton does not let the model �t perfectly. However the model error can not

easily be extracted or diagnosed for speci�cation or prediction purpose.
4The introduction of model error removes the possibility of perfect arbitrage.
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more sophisticated models, e.g., stochastic volatility based, is at a very early stage. The extended

models which we propose are on the other hand as simple to implement as the Black-Scholes.

Finally, the relevance of the extended models is not limited to improving the Black-Scholes only.

We will always be in a situation where there exists a basic model relatively easy to implement

and more complex models are entertained but signi�cantly harder to implement. The extended

model approach proposed will then always be a relevant bridge between basic and more complex

model.

The �nal contribution of the paper is the empirical results. We show that test of the Black-

Scholes which only account for parameter uncertainty are awed. They vastly underestimate

the spread of the predictive densities and are biased toward rejection. The evidence against the

Black-Scholes, once model error is incorporated, is much milder. We use extended models with

powers and cross-products of moneyness and time to maturity to nest the Black-Scholes. First,

these variables are justi�ed as potential expansions of a more complex unknown model. Second,

Lo, Hutchinson, and Poggio (1993) argue that they can approximate the Black-Scholes quite well.

Here we use them as approximation of the unknown model over and above the Black-Scholes.

We show that the pricing and hedging implications ot the extended-models di�er from the Black-

Scholes and do improve the in sample speci�cation. However, they have a hard time doing so out

of sample.

The analysis of a model should �rst produce the various posterior (parameters, hedge ratios,

) and predictive (call prices) distributions desired. None of these densities can be written an-

alytically for even the simplest model. We resolve this di�culty by the use of Markov Chain

Monte Carlo (MCMC) estimators nesting Metropolis and Gibbs algorithms. MCMC estimators

are simulation based. This allows us to compute any characteristic (moment, quantile, con�dence

interval..) of a distribution with any precision by simply making enough draws. The crucial point

is that convergence obtains in the sequence of draws, rather than in the length of the sample as

for standard methods.

Finally, the exibility of MCMC estimators allows us to generalize the model. We can allow

for heteroskedasticity, and for an intermittent additional mispricing where the error sometimes

has a larger variance than usual. This introduces an additional state variable for each option

price observation, equal to one if there is an additional error, zero otherwise. We provide the

corresponding exact sample estimator, using tools from Markov Chain estimation. The analysis

can produce, for each observation, the probability that it is an outlier. 5 This diagnostic may

be a �rst step in di�erentiating between model error and market error. In the least, learning

more about pricing error is crucial because a market error maybe the basis for a trading strategy

whereas a model error is not. The MCMC framework can also be adapted to formulations where

the stock price (or the interest rates) is unobservable.

The paper is structured as follows. Section 2 introduces the general model and the estimators.

Section 3 details the implementation of the method in the case of both basic and extended Black-

Scholes models. Technical issues are concentrated in the appendix. Section 4 is the empirical

application of the method to stock option data. Section 5 discusses the updating implementation

and generalizations of the error distribution. Section 6 concludes.

5At �rst this seems just like a way to add fat tails. The interest in formulating the mixing variable, is that it

produces a quantity of economic interest, the probability of a quote being an outlier.
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2 General Framework

2.1 Model and Error Structure

Consider a sequence of discrete observations of a contingent claim's market price, Ct, for t 2
0,1,2,...,N. Assume that there exists an unobservable equilibrium or arbitrage free price for each

observation i, denoted ct. By de�nition,

Ct � ct � e�t (1)

where �t is an unobservable disequilibrium or mispricing component of the market price. One

may prefer a log-additive error speci�cation to the standard additive one for two reasons. First,

it insures the positivity of Ct, the out of the money intrinsic bound, even with an unbounded

distribution for �t. This does not remove the issue of the in the money intrinsic bound, S-PV(X)..

Second, the log-additive speci�cation models relative rather than absolute errors, insuring that

out-of-the-money options with low prices are not ignored in the diagnostic. If a given amount

is to be invested in a strategy, one may argue that relative pricing errors are a more relevant

criterion. The di�erence between the two forms is an empirical question. We will conduct our

empirical tests with both forms.

If the market is always in equilibrium, �t � 0. Otherwise, mispricings exist. Let Ft : i 2
0; 1; :::; N be the information set of the researcher studying the system. We assume that Ct is

included in Ft, but that both ct and �t are not. Let P(.) represent the objective probability

measure associated with the system, and let E(.) denote the expectations operator.6 We also

assume that Ft includes observations of the underlying stock price, denoted St. If the equilibrium

price is an unbiased estimator of the observed price, then E(e�t j ct;Ft) = 1.

The agents or economists formulate a model for ct. The model, m depends on vectors of

observables xt, and non-observables �, i.e., xt 2 Ft and � =2 Ft.
7 We now incorporate in our

analysis the view that the model is an approximation even though it was theoretically derived as

being exact. It contains an unobservable error, �t. Formally,

ct = m(xt; �)� e�t : (2)

An unbiased model would have E(e�t j Ft; �) = 1. This restriction is an implication of economic

models with rational agents, operating under the knowledge of expression (2). Because of the

necessary simplifying assumptions, typical zero error contingent claim models may not satisfy

this condition.

6Formally, there is a probability space (
;F , P) and a �ltration Ft : t 2 0; 1; :::; N . Ct is Ft-measurable, ct and

�t are not Ft-measurable.
7For example, a contingent claim model has the following form. Consider a European call option on the stock,

St, with exercise price K. Let time T be the maturity date of the option, and let rt be the risk-free rate appropriate

for option Ct. Assume no model or market error at maturity, i.e., CT = cT = [ST - K]+. Then, by a no arbitrage

argument as in Harrison and Pliska (1981), there exists an equivalent martingale measure ~Q with expectations

operator ~E(�), which can depend on a vector � of unobservable parameters, e.g., volatility, such that

m(xt; �) � ~E

�
CT e

R
T

t

rsds
j Ft; �

�
; where xt = (st; rt):
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Simplifying assumptions on the structure of trading or the underlying stochastic process made

to derive tractable models, often result in the models exhibiting biases, i.e. a non i.i.d error

structure. Renault and Touzi (1992), Taylor and Xu (1993), Engle, Kane, and Noh (1993),

and Heston (1993) show this within the context of stochastic volatility. Further, Renault (1995)

shows that even a small 0.1% error in the underlying price measurement (non synchroneity) can

cause skewed implied volatility smiles. Bossaerts and Hillion (1994b) show that the assumption

of continuous trading leads to biases in the implementation. Platen and Schweizer (1995) develop

a microeconomic model of hedging which may result in time varying skewed smiles. In all the

above cases, the errors are related to the inputs of the model.. Finally, the derivation of typical

models has the rational agents unaware of either market or model error. Such models could easily

be biased in the "larger system" consisting of expression (2). 8

So the error �t in the basic model equation

log ct(xt; �) = log bt(x1t; �) + �t; (3)

is unlikely to be i.i.d. for most known models. bt refers to the basic parametric model used.

In order to document and improve upon the possible misspeci�cation of the basic model, we

introduce the extended model

logmt(xt; �; �) = �1 log bt(x1t; �) + �0
2
x2t: (4)

The extended model mt di�ers from bt by the introduction of the coe�cient �1 and the linear

combination �0
2
x2t. x2t may include functions of the observables x1t, or other relevant variables,

and of course an intercept term. x2t can also be one or several models competing with bt in which

case the extended model equation allows an estimation nesting competing models. 9 The extended

model allows the capture of biases in E(�t j Ft). It is justi�ed as an approximation of a more

general model, unknown or without a closed form representation (see Jarrow and Rudd (1982)), or

very costly to implement. The additional cost of the extended model will turn out to be minimal

and its intuition similar to the basic model. 10

The combination of expressions (1) and (2) yields a general contingent claims valuation model

logCt � logmt(x1t; �) + �t + �t

by which the observed contingent claims market price is decomposed into three unobservables,

the model value, a model error �t, and a market error �t. �t and �t are not identi�ed without

further assumptions. In section 6, we propose an error structure to identify outlying quotes which

could be suspected to originate from market error. Until then, we assume only one pricing error

�t. We will allow for the heteroskedasticity of �t as a function of the moneyness. The log model

is equivalent to the modelling of relative errors, and one may expect these to be smaller for larger

options. Alternatively, one may expect the levels model to generate smaller dollar errors for

smaller call values.
8See for example Cl�ement, Gouri�eroux, and Montfort (1993). They address the issue of model uncertainty by

randomizing the equivalent martingale measure, and show that this induces a non i.i.d. structure of pricing errors

related to the model inputs.
9Competing models are likely to be highly correlated, causing quasi multicollinearity. Priors in a Bayesian

framework resolve this problem. See Schotman (1994).
10In a trading system where the costs of changing model are high, model (4) provides an inexpensive control

of model error in hedging a trader's portfolio (book). Then standard portfolio theory to minimize the remaining

model error risk. At that stage, a proper speci�cation of the error covariance structure is important.
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2.2 Estimation and Prediction with Monte Carlo Methods

For simplicity, we assume that the information set Ft consists of past and current observations

of the contingent claim's market price Ct�� , the underlying asset price St�� , and other relevant

observables xt�� , e.g., interest rates, time to maturity. Call y
t
this �nite-dimensional vector of

histories at each date t, then E(� j Ft) = E(� j y
t
).

We want to derive the posterior distributions of the parameters, of any interesting functions of

the parameters, and of the error for each observation. We also want the predictive distributions

of the model error and contingent claim values themselves. These distributions provide the input

necessary for better pricing, hedging, and trading. For example they can provide estimates of

(1) the probability that observed di�erences between model and market prices are due to model

error, (2) the probability that a given hedge (delta, gamma, vega) will lose money due to model

error.

We start the model with a prior distribution P(�), where for convenience � represents all

the parameters including �� and �. The contingent claim model used and the distributional

assumptions made for the pricing errors and the process of the underlying asset yield the likelihood

function P(y
t
j �). By Bayes' theorem, the posterior P(� j y

t
) is

P (� j y
t
) / P (y

t
j �)P (�):

The speci�cs of the posterior and predictive distributions vary with the prior and likelihood

functions and are discussed in the following sections. Here we outline the methodology given a

sample of draws of �.

The general approach to estimate the posterior distributions is as follows: (We will show

how to) simulate from the distribution P(� j y
t
). This yields a sample of draws of the vector

�. Moments and quantiles are readily obtained from this sample. The main advantage of this

Monte Carlo approach is that each draw of � produces a draw of any deterministic function of

the parameters by direct computation. So we also have a sample of draws of the exact posterior

distribution of the model value, mt or bt, or any hedge ratio. Neither � nor its functions of

interests have closed form posterior densities. The Monte Carlo approach removes the need to

perform numerical integrations, or to resort to the usual delta method approximation for moments

computation together with the normality approximation.

Another important deterministic function of the parameters is the residual for each observa-

tion. Again, each draw of � implies a draw of the posterior distribution of �t for each observation

t. The residual is simply logCt� logm(xt; �). The residual is the basis for within sample tests of

model speci�cation. We discuss these tests in section 4.

For predictive speci�cation tests, one makes predictions and keeps track of their validity. Let

�f be the error of a quote Cf that was not used in the estimation. The density of (�f j �; yt) is

normal with mean 0 and variance �2�f . So, the predictive density of (�f j y
t
) is

P
�
�f j y

t

�
=

Z
P
�
�f j �; y

t

�
P
�
� j y

t

�
d�: (5)

Again, the integration in equation (5) is readily performed by Monte-Carlo simulation: A sample

of draws of (�f j yt) is obtained by making one draw of (�f j �; yt) for each draw of �. We now
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have a sample of joint draws of (�f ; � j yt). For each such draw, compute cf as in equation(2)

with either the basic or extended model. This yields a sample of draws of P (Cf j yt; xf ). The

mean or median of the predictive density P (Cf j yt; xf ) is a point prediction. Quantiles provide

a model-error-consistent uncertainty around the point prediction, i.e. a probabilistic method for

determining to what extent the di�erence between a market quote Cf and E(Cf j yt) is due to
market error. We discuss the speci�cation tests based on this predictive distribution in section 4.

2.3 Markov Chain Algorithms

The previous section outlined the methodology followed given draws posterior distribution of the

vector of parameters �. Here we discuss the intuition of two algorithms required to produce draws

of �. More technical discussions of the method are in section 3 and the appendix.

� is a vector of parameters. We need to be able to make draws from the posterior density

of �. The crucial requirement is that we can write an analytical expression for the kernel of this

joint density. This does not yet allow us to draw from it. The standard approach is to rewrite

the joint posterior as a product of conditional densities, from which one can draw. In a standard

linear regression, a draw of the slopes � and noise standard deviation � is generated as follows;

draw � from the inverted gamma, then draw � j � from the normal. The sample of draws of �

then follows the standard Student-t distribution.

The model here is more akin to a non linear regression even in the simplest case. It is impossible

to use the standard approach to draw from �. The solution is facilitated by the incorporation of the

Gibbs sampling algorithms 11 it solves the following problem. In our case, we want to but can not

draw from (�; ��). We can however draw from (sigma j ��) and (�� j �). Under mild regularity

conditions, draws from the chain (��;0 j �0); (�1 j ��;0); (��;1 j �1); : : : ; (�n j ��;n�1); (��;n j �n)
converge in distribution to draws of the distribution � and ��. The algorithm applies to any

number of conditionals. It is easy to check for the vanishing of initial values.

We would like to use the Gibbs algorithm but there is one remaining problem. We can draw

from the distribution of (�� j �) but we can not draw directly from p(� j ��). The Metropolis

algorithm solves this problem. The kernel of p has an analytical expression but the integration

constant does not. In fact we do not need to ever compute the integration constant of p. 12 First,

we select a blanketing density q with shape similar to p, from which it is easy to make direct draws.

Then all we need to know are the shapes of the two distributions p and q. So we only consider

the kernel of p. For each draw made from q, the Metropolis algorithm is a probabilistic rule of

acceptance and rejection that draw. The rule takes into account the shape di�erence between p

and q. This results in a sample of draws of q which converge in distribution to a sample of draws

from p. Even if the shape of q is not close to that of p, the algorithm goes through. The closer

the shapes of q and p, the faster the algorithm will generate informative draws on �. We discuss

the Metropolis algorithm in more details in section 3.3

11See Casella and George (1992) for an introduction.
12This is essential for an algorithm to be feasible. It is theoretically possible but practically infeasible to use any

standard method such as the inverse CDF method. Neither the CDF nor its inverse have an analytical expression.

Each draw of � j �� would require an optimization, each step of the optimization requiring a numerical integration.
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The combination of these two algorithms constitutes a Markov Chain Monte Carlo estimator.

The draws generated converge in distribution to draws of the posteriors of the parameters, under

very mild and veri�able conditions.

3 Application to the Black-Scholes Model

3.1 Models and Data

We now illustrate the above technique via an application to the Black-Scholes model. In the

Black-Scholes economy, St follows a lognormal distribution, i.e., Rt = log(St=St�1) � N(�; �).

There is an unresolved theoretical question with respect to the heterogeneity of the underlying

process with respect to the derivative. In our application the last return used predates the �rst

panel of option price data. We can then assume a zero correlation between the stock returns and

model error. In fact, we view the returns data as the basis for the prior on �.

We also assume that the risk free rate rf;t is known without error. This assumption could be

relaxed. A natural alternative would be rf;t = r?
f;t

+ �t, where r
?

f;t
is the most relevant observed

risk free rate, and �t a noise. In this case the risk free rate is an unobserved state variable, and

our option price estimator nests an optimal signal extraction for the state variable. The same

method could be used in cases where the underlying (st) is observed with error or unknown. 13

We select from the Berkeley options database, quotes on calls on the stock of TOYS'R US,

from December 89 on. They will be used in the analysis for the remainder of the paper. TOY is

traded on the NYSE and is an actively followed stock that does not pay dividends. This allows

the use of a european option model for calls. There are commonly between 80 and 300 quotes

on TOY calls daily. We will estimate the models over a day, a week, and a month. We collect

all quotes whatever their maturity and moneyness because (1) we want global model diagnostics,

and (2) we analyze extended models including bias functions. To build the prior on �, we also

collect TOY stock returns from the CRSP database for the period leading to November 30th, 89.

The basic model b(�; xt) is the Black-Scholes. So xt includes the stock price s, the time to

maturity � , and appropriate interest rate rf;� , and the exercise price X. The extended model is

log ct = �1b (�; x1t) + �0
2
x2t + �t; �t � N (0; ��) ;

where bt is the Black-Scholes model. In this application we restrict the extended model variables

to expansions of moneyness and maturity. The moneyness variable z is the logarithm of the ratio

S/PV(X), of the stock to the present value of the exercise price. Renault and Touzi (1992) show

that under a stochastic volatility framework, the Black-Scholes exhibits parabolic biases in z, of

intensity decreasing in � . The second variable is � , the maturity in days centered around its

sample mean. In the empirical analysis we refer to the following models numbered 0 to 4.

13It is the hierarchical structure of MCMC estimators that allows the extension to unobservable state variables,

and makes them so superior to standard methods. We see an example of this in section 6 with the generalized error

speci�cation.
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Extended Models Considered
Model Extended Variables Number of Parameters

B-S none 2

0 intercept �0 3

1 �0, slope coe�cient �1 4

2 �0; �1; �; z; z
2 7

3 �0; �1; �; z; z
2; �z; �z2 9

4 �0; �1; �; z; z
2; �z; �z2; �2; z3; z4 12

The logic of these models is straightforward. Model 2 allows a linear maturity e�ect and a

moneyness smile. Model 3 lets the smile depend on the maturity. Model 4 introduces higher

powers of � and z. As we do not know the functional form of the better parametric model, it is

unclear how far we need to take the expansion of the relevant variables. Model 4 can be seen as

a test of the necessity of further expansions beyond the parsimonious models 2 and 3. One could

also consider other variables. Liquidity considerations might suggest the bid-ask spread of both

the option and the stock as posssible right hand side variables.

3.2 Priors and Posteriors

The extended models with proper prior nest the basic model with di�use priors. Di�use priors

can be obtained by increasing the variance of the various proper priors. We use the prior

p (�; ��; �) / p(�)p(��)p(� j ��)

= IG(� : �0; s
2

0
) IG(�� : �1; s

2

1
) N(� : �0; �

2

�V0):

Given �, the joint prior of � and �� is the convenient normal-gamma prior used in regression anal-

ysis. Apart from �, the priors are conjugate, and result in similar posteriors given the likelihood.

For �, we use the inverted gamma consistent with a data based prior on the returns time series.

This does not add any complication to the di�use prior case. The inclusion of proper priors may

be warranted in this problem. For example, one might expect �1 to be centered on 1 rather than

zero, and to be concentrated in the positive region.14 One may also want to incorporate in the

prior conditions no arbitrage conditions, such as the Merton bounds, by truncating the priors to

eliminate parameter values that violate the bounds. This can be done with simulation estimators

by just rejecting draws of the posterior that violate the bounds. When the sample is updated the

previous posterior distribution may be a natural basis for the formulation of the prior distribution.

We also allow the error �t to be heteroskedastic. Appendix A shows the posterior distributions

of the extended model with proper priors.15 In the logarithm models, �t is a relative pricing error.

Going from small to large option prices, one may expect the relative error to decrease. We

will allow (up to three) di�erent standard deviations �� depending on the moneyness ratio which

proxies for the size of the call. We can not draw directly from the joint posterior P (�; �; �� j y
t
). So

14Also, an unbiased forecast in the log equation leads to a biased forecast in the level equation. This is due to

the term -0.5 �2� in the mean of the lognormal distribution. One would then expect the intercept to be centered on

0.5 �2� for an unbiased model. The e�ect is negligible for commonly encountered parameter values.
15The appendices do not reect this heteroskedasticity extension yet.
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we consider the three conditional distributionsP (� j �; ��; y
t
), P (�� j �; �; y

t
), and P (� j �; �� ; y

t
).

By application of the Gibbs algorithm, a chain of draws from these three distribution will converge

in distribution to draws from the desired marginal posterior distributions. P(� j ��; �; y
t
) and

P(�� j �; �; y
t
) are shown to be an inverted gamma and a multivariate distribution respectively.

Direct draws are possible from both. However direct draws from P(� j �; ��; y
t
) are not possible.

Section 3.3 discusses the Metropolis step needed to draw from (� j :).

3.3 Posterior Distribution of �

In this section and appendix B, we discuss the implementation of the MCMC estimator in

further details for the interested reader. The conditional posterior distribution of � is

p(� j �; ��; y
t
) /

exp
n
�

�0s
2
0

2�2

o
��0

� exp

(
�s2(�; �)

2�2�

)
;

where �s2(�; �) = (Y � X(�))0(Y � X(�)). Call this distribution p. The main features of the

algorithm are as follows. First, we select a (blanketing) distribution q with shape reasonably

close to p, from which it is easy to make direct draws. Second, we do not need to compute the

normalization constant of p or the CDF of �. Call p? the kernel of p. For every draw made from

q, we know p?/q and can compare it to the same quantity for the previous draw.

This is the basis for a probabilistic rule with three possible results. First, the previous draw is

actually repeated and the current draw is discarded. Second, the current draw is chosen. Third,

the current draw is rejected and we make another candidate draw from q. The decision is made

depending on the value of the ratio p?/q at the candidate draw and at the previous draw.

Even if the shape of q is not close to that of p, the algorithm goes through, albeit ine�ciently

with many rejections or repeated draws. The closest the shapes of q and p are, the fastest the

algorithm will generate informative draws on �. In the limit if draws from q were never rejected

or repeated, q would in fact be equal to p.

A quantity c approximately equal to p?/q computed at various values of � is used to tilt the

algorithm towards rejections or repeats, or strike a balance between the two (see appendix B).

So, for a given choice of q and c, a plot of the ratio p?/cq is a gauge of the e�ectiveness of the

algorithm. The more p? looks like q the atter the ratio curve. Here the blanket q is chosen as a

truncated normal with mean the mode of p(�).

Figure 1 documents the implementation of the estimator for a model with many parameters

and a short sample. This serves to demonstrate the reliability of the method even in small sample.

We estimate model 3 allowing for 2 levels of ��, ��;1 for moneyness ratios below 1, and ��;2 for

moneyness ratios above 1. The sample is made of the 140 quotes of Dec 1, 1989. The prior on

� is at, based on the last 5 daily returns of November. If desired, one could incorporate more

returns information into the prior.

The top left plot of �gure 1 shows the ratio p?/cq. The vertical dotted lines mark a +/- 2

standard deviations interval where most draws will come from. In that interval, the ratio p?/cq

remains very close to 1. This indicates that the shape of the chosen q is close enough to that of p
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to guarantee an e�ective algorithm. In this very case, out of 5000 draws of �, we had 32 rejections

and 28 repeats. These numbers are typical of the e�ciency of the algorithm for this problem.

The results we exploit from MCMC algorithms is that the draws converge in distribution to

draws of the desired marginal posterior distribution. The reasonable question is then: When

have we converged? Figure 1 shows the tools used to answer this question without going into

theoretical considerations. The �rst tool is a time series plot of the draws, shown for ��;2 on the

top right plot. We intentionally started the chain from unrealistic values of the parameters to

check how quickly the draws would settle down to a constant regime. Here it took less than 10

draws for the system to settle down. We decide to be conservative to discard the �rt 50 draws.

A further diagnostic is then to compute sample quantities for di�erent segments of the remaining

sample of draws. The three boxplots shown in Figure 1 yield identical conclusions, con�rming

that the series has converged. The �nal check available is a simple autocorrelation function of the

draws past the �rst 50, bottom right plot of Figure 1. The autocorrelations die out very quickly

con�rming that the sequence of remaining draws is stationary.

4 Empirical Application

4.1 Parameters

We now demonstrate the estimation of extended models on the TOY options data. The

results presented are based on 3500 draws of the posterior distributions of the parameters.

These posterior distributions are the basis for simple tests of these competing models. We

ask whether di�erent models imply di�erent values for common parameters? This question with

respect to � is crucial because 1) an important empirical literature uses implied volatilities to

analyze the informational e�ciency of options markets, and 2) practitioners routinely back out

implied volatilities from the basic Black-Scholes. Let us consider � and the intercept and slope

coe�cients of the B-S. Figure 2 shows the boxplots of the posterior distributions of these parame-

ters for twelve models. The extremities of the boxplot are the 5th and 95th percentiles. The body

of the boxplot shows the median, �rst and third quartiles of the distribution.

The top plots of �gure 2 clearly show that di�erent models imply di�erent volatility param-

eters. The di�erence is statistically signi�cant. The logarithm models show median �'s going

from 0.25 for the B-S to 0.27 for models 2 to 4. The levels models exhibit an opposite changes

from 0.24 to 0.22. One may surprised by the fact that di�erent error speci�cation have opposed

e�ect on a common parameter. This may come from the fact that the levels models concentrate

on large prices, i.e., in and at the money options, while the logarithms models treat all option

equally by concentrating on relative errors. Note that, when the B-S is allowed to be incorrect

by the introduction of an error and the extensions, � does not necessarily estimate the return

standard deviation. It is only a free parameter which allows a functional form to �t better. This

is specially true here since we use uniformative priors for �.

Consider now the four bottom plots. As we go from model 0 to model 4, they give us an idea

of the average bias around the B-S part in the total model for a given sample. For the logarithm
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case, for example, the intercept becomes slightly negative while the coe�cient multiplying the

Black-Scholes goes down from 1 to below 0.9. This e�ect is compensated by the fact that �

is going up simultaneously. For the levels model, the changes in parameters do not appear as

important. The values of the parameters for the logarithms and levels models can not be directly

compared because of the di�erent functional forms.

Finally, it is clear from any of the plots in �gure 2 that the parameters of model 4 are

estimated with a lot more uncertainty than the other models. This pattern is in fact true for all

the parameters of model 4, and most functions such as hedge ratios. The estimation for �gure

2 was based on 456 quotes for the week of December 4 to 8, 1989. This shows that model 4

with 14 parameters (3 levels of ��) is di�cult to estimate precisely. In the presence of parameter

uncertainty, additional parameters can be costly and there is a marked di�erence in uncertainty

going from model 3 to model 4.

We now turn to the parameter ��. It is of primary interest since it represents the variability

of the model error. It is itself a diagnostic of the average error size. the logarithms model error is

relative while the levels models error is in dollars. Do the errors of the more complex models have

a lower standard deviation? Figure 3a shows the posterior distribution of �� for three models.

The top left plot is in the case of homoskedastic errors. The other three plots represent �� for the

same models where di�erent model error standard deviations are allowed for out-of, at, and in

the money options. Two conclusions are clear from the inspection of the plots. First, on average

models 2 and 3 signi�cantly reduce model error from about 10.5% to down to 7%. Second there

is strong evidence of heteroskedasticity. The standard deviation of model 2 error is 12% out-of,

4.5% at , and 2.5% in the money. In fact, the improvements brought by models 2 and 3 take

place out-of and at the money. Models 2 and 3 actually exhibit higher standard deviation for in

the money options. However the trade o� seems easy to resolve in favor of models 2 and 3: They

bring error standard deviation out-of the money down from 20% to 12%, at the money down from

5% to 4.5%, and increase in the money from 1.7% to 2.5%.

Figure 3b reproduces these diagnostics for the levels model. Here the evidence of improve-

ment for the homoskedastic models is very marginal. The estimation of heteroskedastic models

demonstrates the heteroskedasticity of the error for the levels formulation as well. The pattern

is opposite from the logarithms case as expected since these are dollar errors. In fact, direct

comparison between the values in �gures 3a and 3b is not easy, as the �rst are in terms of relative

errors and the second dollars. Model 2 and 3 improve the speci�cation for out-of (8 to 3 cents)

and in (15 to 13 cents) the money errors. They fail to do so for the at the money errors.

4.2 Hedge Ratios

We now document the ease of construction of the posterior distribution of deterministic func-

tions of the parameters with the study of the hedge ratios. Asymptotic estimation based on the

normality assumption for the parameters, would require the use of delta methods to obtain a

approximate value of the standard deviation of a hedge ratio. It would then be assumed to be

approximately normally distributed. Instead, we easily obtain draws of the posterior distribution

of the hedge ratios by direct computation for each model.
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Contingent claim models are used for two purposes, pricing and hedging. The previous section

gave a �rst documentation of pricing errors by inspecting the estimates of the model error standard

deviation. We want to see whether di�erent models have di�erent policy implications for hedging

decisions. Consider the instantaneous hedge ratio �. Di�erent models functional forms imply

di�erent functional forms for �. They are simply calculated by computing the derivatives of the

entire model speci�ed in equation (4).

A draw of the parameters yields a draw of the hedge ratio by direct calculation. Figure 4a

shows the posterior distribution of � for B-S and the logarithms models 2 and 3. Figure 4b

computes the hedge ratios for the corresponding levels models. Consider �gure 4a. The six plots

show � for out-of, at, and in the money, short and long maturity options Models 2 and 3 have

similar implications, di�erent from the B-S. The di�erence is statistically signi�cant even though

the larger number of parameters yield more spread out � distributions. For example, 5 day, 4%

out of the money calls have a � of 15.4% per models 2 and 3, only 13% per the Black-Scholes.

The magnitudes of di�erences are relevant though not very large. They are reliably estimated.

Figure 4b shows the same result for the levels model. It is interesting to compare the logarithms

B-S in �gure 4a with its levels competitor of �gure 4b. Their �'s are not identical. This shows

that the distributional assumption of the error alone has an e�ect on the model parameters.

Figure 4 and 4b show that the extended models have di�erent policy implications with re-

spect to the design of hedged portfolios than the basic Black-Scholes. Note that as noted in

Merton (1973), nothing forces a ratio to be between 0 and 1. But if one believes that the model

is a convex function of the stock, then the priors can be formulated to eliminate the possibility of

such ratios. Only reject draws which imply ratios outside the range (0,1).

4.3 Biases

The extended models incorporate additional functions of moneyness and maturity with possi-

bly a fair number of parameters. Rather than inspecting the values of each of these param-

eters, we now ask whether they produce, as a group, pricing implications markedly di�erent

from the Black-Scholes. For example, in the logarithms model 2, the call price is multiplied by

exp
�
�2z + �3z

2 + �4(� � ��)
	
. For various values of � and z, we want to see how close to a at

line or surface this function is. Again a draw of this function is obtained by direct computation

from a draw of the parameters.

Figure 5 documents the posterior distribution of these functions for logarithms model esti-

mated from the 419 quotes of December 11 to 15, 1989. We have allowed for heteroskedastic

pricing errors. The top left plot shows the mean and the 5th and 95th quantiles of the bias func-

tion for model 3 with � = 60 days. There is very strong evidence of moneyness biases at medium

maturities, both statistical and economic. That is, the biases are precisely estimated as the 5%

and 95% bands show, and the magnitudes of the biases are large. The top right plot shows the

bias function for models 2 to 4 at � = 5 days. The three models give similar evidence of bias. The

bias does not appear di�erent than that at 60 days shown on the left. The bottom left plot show

the bias functions for model 3 at di�erent maturities. There does not appear to be evidence that

the bias function is very di�erent at di�erent maturities. Finally we plot the bias function versus

time to maturity for models 3 and 4 at 3 levels of moneyness. First, models 3 and 4 produce
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similar biases. Second, this con�rms that time to maturity a�ects biases in only a minor way.

Figure 6 show three-dimensional plots of the bias surfaces for the levels model 3 estimated for

two succesive weeks of december 1989. The top plot is for the week of Dec. 4 to 8, 456 quotes.

The bottom plot is for the week of Dec. 11 to 15, 419 quotes. Figure 6 shows that the mispricing

implied by a model changes slowly with the period. Parameters vary with time and this results

in changing bias functions. Also, the biases, here in dollars, can be large especially for out-of the

money short maturity calls

4.4 Residual Analysis and In-Sample Speci�cation Tests

Models based upon a set of stochastic assumptions can be tested by residual analysis. Stan-

dard residual analysis consists in the computation of a statistic, e.g., autocorrelation, and a

diagnostic based upon an asymptotic sampling distribution for this statistic under a null hy-

pothesis. Bayesian residual analysis uses the exact posterior distribution of the statistic which is

readily available as dicussed in section 3. Given a draw of the parameters, we compute for each

observation the residual logCt � logmt(xt; �). Given the sample of draws of the parameters we

have a sample of draws of (the posterior distribution of) the vector of residuals. This is the basis

for residual analysis, see Chaloner and Brant (1988). Most common diagnostics follow immedi-

ately. For a given observation, we can compute mean and quantiles, or plot the histogram of the

posterior distribution of the residual, conducting standard outlier analysis. In our case, an outlier

may have the intuition of a possible market error. Then the diagnostic has a policy implication:

it may be followed by a trade designed to take advantage of the perceived mispricing. This is

dangerous if the model used is misspeci�ed. A quote which appears as an outlier for model 0

can look banal for model 2. Unlike the user of the basic model, the user of model 2 would not

undertake any potentially dangerous trade.

Tests of the relationship between the error structure and right hand side variables are easily

conducted with the residuals. The posterior distribution of the correlation of the residuals with

an observable input to the model is available. For each draw of the residual vector, compute its

correlation with the observable. This produces draws of the posterior distribution of this corre-

lation. This can be done for any (function of ) observables which one suspects is not properly

accounted for in the model. Violations from the Black-Scholes framework, e.g. stochastic volatil-

ity, may induce autocorrelation in the pricing errors of the basic model if the option price data

cover a span of calendar times. 16 The posterior distribution of the autocorrelation function of

the residuals can be constructed in the same manner as described above for the correlation with

a right-hand-side variable. Also of interest are the posterior distributions of the average residual

or squared residual for di�erent subsamples, for example, long and short maturity, in and out of

the money. Before looking at our empirical application, we discuss the out-of-sample tests.

16In such as situation, one could introduce in the extended model an observable related to volatility such as

trading volume or a time series volatility forecast.
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4.5 Dynamic Speci�cation Test

The previous discussion pertained to the analysis of quotes or trades belonging to the sample

used to estimate the model. We now turn to predictions made for claims not part of the sample.

In the absence of misspeci�cation, the predictive density of a yet unobserved value is the best

representation of the uncertainty about that value. The predictive density can be compared to

the realization when it occurs. This suggests a dynamic speci�cation test and model comparison,

leading to the selection of the model with the best predictive track record . Period by period,

one can follow the predictive performance of a model, across all types of options, or separating

by category, e.g., moneyness or maturity. Say that we have available at time t(
Ct�� ; � = 0; :::; L � 1 Previously observed market realizations

P (Ct�� j y
t���1

) Previously formulated predictive densities

These are the basis for simple dynamic model comparisons. The predictive densities can be

formulated for several models. The means of the predictive densities E
�
Ct�� j y

t���1

�
are then

computed. Once Ct�� is known, the errors are recorded. For each model there are L realizations

of the error. The models can be compared on the basis of their errors and mean squared errors.

Time series plots of the error functions can be constructed and updated dynamically for the

prediction error of each model. Similar plots of the moving average of the last L errors can be

constructed. The same can be done for the squared errors. Finally the bias and squared errors

can be computed for subsets of the predictions, e.g., moneyness, maturity.

The above tests concentrate on the computation of a mean as a point estimate. The mean of

the prediction determines the direction of a strategy. The predictive density also quanti�es the

uncertainty of the prediction. This important aspect of the prediction process is often neglected

because standard methods do not provide reliable predictive densities. Under risk aversion, the

level of uncertainty around a prediction helps determine the amount input into the strategy.

Models should be compared on their ability to forecast the uncertainty as well as the mean of

future realizations. For example we can compute the interquartile range of a predictive density.

Ideally, it should cover the realization 50% of the time.

The above tests can also be directed to more economic criteria. For example if the model is

used to compute a hedge ratio every period, the statistical speci�cation of Ct may not be the most

useful benchmark for model comparison. Instead, ex-ante predictive densities can be computed

for the dollar error in delta hedging the call. If the probability of a loss larger than a given value

is too large, then gamma hedging or vega hedging can be considered, with predictive densities

as well. If the probability of a loss is still too large, the trade can be avoided. These predictive

densities, computed for a trader's entire book, can be used to manage model error risk. Given the

model error covariance structure, hopefully diagonal, standard portfolio theory can be applied in

this setting to minimize this component of risk.

The Loss function of interest to the hedger may be the realized squared error

SEt =

�
[Ct � Ct�1]�E

�
@ct�1

@St�1

j y
t�1

�
[St � St�1]

�2
;

of a hedge portfolio. The mean E
�
@ct�1

@St�1
j y

t�1

�
is that of the posterior density of the hedge ratio.
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The tracking of SEt�� ; � = 0, .. , L-1 can serve to rank competing models. 17

4.6 In and Out of Sample Tests

We now implement some of the tests discussed in the two previous sections, in order to compare

the competing models previously discussed. We concentrate on the logarithms heteroskedastic

and homoskedastic models as well as the levels heteroskedastic models. Table 1 contains the

within-sample tests for the estimation conducted on the �rst two weeks of december 1989. The

parameters are reestimated each week, the errors are then aggregated over the two weeks. This

represents a sample of 871 quotes. The �rst panel, residual analysis summarizes the residuals

biases and root mean squared errors (RMSE). These numbers are also computed for the out-of

and in the money subsamples, as well as the subsample of quotes for which the mean prediction

fell outside the bid ask spread. The rationale for this last subsample is economic. Predictions and

�tted values that fall inside the bid ask spread may not be the basis of a trading strategy and are

not as relevant as those that fall outside.

A quick glance at the �rst panel of table1 shows that average biases are far smaller than the

RMSE's. Extended models appear to improve the bias of the basic models with the exception of

the levels model for outside B-A spread quotes. The log. extended models have smaller RMSE

than the B-S. Again, although there is evidence that the levels extended models have lower RMSE

than the B-S, it is not the case for quotes outside the B-A spread.

We now reformulate the diagnostic of the logarithms models in terms of pricing errors. The

residuals are relative pricing errors and are not directly comparable to the residuals of the levels

models. The pricing errors are shown in the second panel of table1. Note the large pricing

errors of model 4 which is not estimated reliably. The RMSE's clearly reveal three facts. First,

the incorporation of heteroskedasticity drastically improves pricing precision even though it did

not have an e�ect on the �t of the model. This is because what was only a second moment

e�ect, dispersion of the residual, in the logarithms, becomes incorporated in the mean when we

take the exponential to compute the price. Second, the extended models improve upon the B-S

signi�cantly. Third, the levels models seem to have marginally better RMSE's, and less bias than

the logarithms models. This does not mean that everybody should prefer the levels models. Given

a �xed amount to invest, relative error may be a more relevant criterion than dollar error.18

The third panel of table 1, distribution analysis, documents the speci�cation of the predictive

density distribution. The in-sample predictive density is obtained as discussed in section 2. The

�rst column shows the percentage of quotes which mean of prediction falls outside the B-A spread.

The extended models bring a sizeable reduction in this number. It is below 20% for models 2. The

third column is the speci�cation test where we compute the percentage of quotes which fall inside

the interquartile range. The levels models are remarkably well speci�ed for this criterion with

50% hit rates. The heteroskedastic logarithms models are not as well speci�ed. We now turn to

the second column entitled �t cover. It represents the cover rate when we use, not the predictive

17Partial derivatives may not produce a variance minimizing criterion, specially if the investment horizon is

discrete. The quantity �t which minimizes a portfolio's expected variance over a �xed investment horizon, t to t+1

may be more appropriate and can be computed by simulation.
18We could for example compute the relative error implied by the levels models.
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density, but the �t density. The �t density is obtained by drawing from the parameters but setting

the model error to zero. This is consistent with studies which have tested the B-S model only

allowing for parameter uncertainty, see Lo (1986). As per column 2, one would soundly reject

any of the competing models. Their 50% intervals cover the true value only 2% of the time for

the B-S, 13% for levels model 2. In fact this approach is awed. It is not the B-S that does not

generate enough variability, it is the �t density which is an inappropriate basis for the test. When

one uses the predictive density, even the B-S is very well speci�ed for this test.

The �nal columns of the panel deal with the problem of the intrinsic bounds. No model should

generate negative call values, bound B1=0, of values below B2=S-PV(X). The logarithms models

are immune from the negativity problem. We wanted to know the extent of the problem for the

levels models. The column entitled B1 shows the percentage of quotes which predictive density

implies a probability of negative call value larger than 0.1%. There are no more than 3% of such

quotes for model 2, 0.3% for model 3. Consider the second bound. Actually 20% of the quote

midpoints and 3 % of the asks violate the bound. We left these points in the estimation sample.

We computed the number of observation such that the �rst quartile of their predictive density

violated the bound, only considering observations which bid did not violate the bound. After

the necessary correction for heteroskedasticity, the logs. and levels models were similar in this

respect, see last column. Less than one in a hundred predictions had this undesirable property.

The previous results, even the predictive densities, were in-sample computed for observations

used to estimate the parameters. Given these parameters, we now turn to the out-of-sample

analysis. For each of the two weeks, we used the parameter draws to compute residuals, �t and

predictive densities for the quotes of the following week. This resulted in an out sample of 1043

quotes. Table 2 summarizes the evidence in a format similar to table 1. Again the biases are

small and we will not detail them. Consider the RMSE's. The �rst obvious result is that now

the extended models do not improve the B-S out of sample RMSE. This is the case for residuals

as well as pricing errors, levels or logs. Second, these out of sample errors are close to the within

sample numbers of table1. There has not been a signi�cant deterioration of performance going

from within to out of sample. Looking more closely at the outside B-A spread RMSE's, one

conclude that 1) the B-S have similar performance in and out of sample while the performance

of models 2 and 3 has deteriorated to worse than the B-S and 2) the levels models seem to have

deteriorated more than the logarithms models.

In any case, this is in sharp contrast with the results of Dumas, Fleming, and Whaley (1995)

who report a complete break down of their models in out of sample tests while they had a quasi-

perfect �t in sample. This is most entirely due to the fact that we allow for a model error in our

estimation. This model error has properties which do not deteriorate quickly out of sample. We

do �nd however that the Black-Scholes is a formidable competitor in out of sample speci�cation

tests. We complete the out-of sample tests with the third panel of table 2. The �rst column shows

consistency with the in-sample results. 20% of the in sample means of predictions were outside

the spread, 30% of the out-of-sample predictions are outside the spread. We break down the

interquartile range (IQR) coverage ratios by in the money and out of the money. This shows how

crucial the heteroskedasticity correction is. The homoskedastic models predictive IQR covers the

quote 98% of the time for in the money quotes. The heteroskedasticity brings it down signi�cantly.
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5 Extensions

5.1 Updating

In most cases, one will want to reestimate the model regularly and keep predictions for a

future time close to the time of estimatio n. This is due to the fact that most misspeci�cations are

likely to result in time varying parameters. This is for example the case when volatility, hedging

demand, liquidity are time varying and only accounted through the expansion and the intercept

of the extended model. The estimation is then based on updated (daily) cross-sections of option

prices. Index these cross-sections by t.

Technically the calibration of priors pt to the desired mean and variance is easy. For pt(�)

and an inverted gamma prior, it is easy to choose �0 and s2
0
to match the desired mean and

variance. The same goes for ��, set �1 and s2
1
to obtain the desired prior mean and variance.

Finally consider �. We wish to formulate a prior pt(�) � N(�0; �
2

�V0). If we were to use the

posterior of t-1, we could use the joint draws of (��; �). The sample mean of these draws yields

�0. The sample covariance matrix of the draws of �

��
yields V0.

The more interesting question is: Do we want to just use the time t-1 posterior to build the

time t prior. This would be the thing to do if the daily parameter estimates were following a

random walk on a daily basis. Given the probable cause for the time variation of the parameters, it

is unlikely to be the case. Indeed the most persistent of the sources of misspeci�cation, volatility,

is known to be stationary though strongly autocorrelated. Other sources of misspeci�cation,

changes in hedging demand, liquidity, etc.. are even less likely to induce non stationarity. Clearly,

the information on previous, t-2, t-3, .., periods can be important. A natural candidate for the

formulation of time t priors will follow from the time series analysis of the previous posteriors and

a one step ahead forecast. There are two alternatives to this approach. First keep several panels

of options in the likelihood and model the time series variation of the parameters. Second, extend

� by a function of proxies of time varying volatility. The MCMC estimator can accommodate

these extensions.

We now document the performance of the competing models through a simpli�ed updating

scheme. For 8749 quotes from January 01 to March 30 1990, we reestimate the parameters every

second trading day. Given the scant evidence of any improvement brought by the larger models,

we restrict the comparison to the B-S and model 2. We allow for heteroskedasticity.

Figure 7 documents the time series variation of some of the parameters. The top left plot

shows �. The top right plot shows �� for the homoskedastic models. The parameters of model 2

show clearly more time variation than those of the B-S. The top right plot show that the model

2 error standard deviation is consistently lower than that of the B-S. The bottom plots show the

two levels of �� for the heteroskedastic models. Apart from one day toward the end of the period,

the out of the money quotes (��;1) have large errors than the in the money quotes.

We compute the pricing errors for models B-S and 2. They are summarized here:
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In Sample Performance: Daily Reestimation

Criterion B-S Model 2

RMSE 0.31 0.18

MAE 0.18 0.12

RMSE out BA 0.49 0.31

Pred out BA 3200 2260

MAE is the mean absolute error. In sample, model 2 exhibits signi�cantly smaller errors by

all the above criteria. Further, there were 627 observations for which model 2 mean prediction

was outside the B-A spread and the B-S prediction inside, but the reverse happened 1568 times.

Both models had prediction means simultaneously outside the BA spread 1632 times, in the BA

spread 4922 times. Figure 8 shows where model 2 gained over the B-S. We plot, for each model,

the pricing error versus the moneyness. The gaps with no points close to the zero line is because

we only plotted the predictions outside the B-A spread. Model 2, top plot, does not su�er from

the overpricing of the out of the money quotes as the B-S does.

5.2 Error Speci�cation

We now propose a more general modeling of the error consistent with the presence of inter-

mittent mispricing. Of course, statistical formulation alone can not identify an outlier as being

surely a market error. The basic intuition for our formulation is that in most every quote there is

no market error, and �i is the only error. In rare occurrences, an additional error �t with standard

deviation �� occurs. We have already indicated how to conduct a residual analysis which may

identify this outlying observation. It is more logical, however, to incorporate the possibility of

rare errors in the model being estimated. The resulting diagnostics are easier to interpret, e.g.,

probability of a given observation having the extra error. The estimation and prediction are also

more reliable since they incorporate the existence of these errors.

The cost of this extension, the added burden on the estimation, has to be weighted against

the likelihood that such errors are indeed present. We model the market error as

�t

(
= 0 with prob. 1� �

� N (0; ��) with prob. �
;

that is,

�i + �i

8<
:
� N

�
0; �2�

�
; with prob. 1� �

� N
�
0; �2� + �2�

�
; with prob. �

This formulation is similar to those of the switching literature, see Hamilton (1987), McCulloch

and Tsay (1993) and others, with the transition matrix such that the probability of the future

state is not a function of the current state. 19 The discrete nature of this formulation captures the

belief that the additional error is zero most of the time. The estimation can be conducted in two

ways. First, it may be based upon a set value of �, the unconditional probability of mispricing.

19This assumption can be relaxed and � made to depend on the information set. This would be more in the spirit

of a model speci�cation test.
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Second, we can formulate a prior distribution for � and let the data update it. We demonstrate

the second approach which subsumes the �rst.

We specify a prior for � , which can be tightly centered close to zero, yet allow possible

departures. We choose a Beta distribution, which parameters generate a great variety of shapes

on [0,1], from uniform to as tight as desired. The model can be thought of involving a state variable

si equal to 1 (market error) or 0 (no market error). Given the 2n possibilities for the entire state

vector S, both traditional Bayesian and maximum likelihood analysis are very complicated. Also,

the asymptotic approximation on which maximum likelihood analysis is based may be questionable

for conventional sample sizes given the size of the parameter space.

Again the resolution of this problem is facilitated by the incorporation of Gibbs sampling al-

gorithms 20 The parameters are �; �� ; ��; �; �. We can use the Gibbs algorithm if we �rst augment

the parameter space by the state vector S, see Tanner and Wong (1987) for data augmentation.

Given (S, �, ��), the system is that already analyzed. The noises do not have equal variance, but

can be standardized given �� and S. Given (�; �� ; S), we can �nd the posterior distribution of ��.

Appendix C shows that, for the priors formulated in equation (10), we can make draws from the

following N + 3 conditional posterior distributions.

p(��; �; � j y
t
; ��; S);

p
�
�� j y

t
; �; �� ; S

�
;

p(si = 1 j y
t
; S�i; :); for i = 1; : : : ; N

p(� j y
t
; S);

where S�i = S�si. The sequence of cycles of draws from these conditional posterior distributions

converges to draws of the marginal posteriors. Consider the �rst of these and recall that we do

not draw directly from ��, but use the Metropolis algorithm. This estimator is a Markov Chain

estimator which combines the Gibbs and the Metropolis algorithms. See Tierney (1991) for the

conditions required for the convergence of some Markov Chains algorithms. The above algorithm

can be shown to converge , see Jacquier, Polson, and Rossi (1994) for a proof. Direct draws

can be made from the other N + 2 distributions. For each observation we obtain the posterior

probability of a market error. We also obtain the posterior probability of a market error, P(� j y
t
),

the posterior distribution of ��, and the usual parameters and predictions discussed in the previous

sections.

5.3 Unobservable Inputs

An estimator for the case where the stock price or the interest rate are not observable can be

formulated in a similar fashion. This is of interest because it models the uncertainty introduced

by the measurement error directly at the source rather than lumping it in an adhoc external

20See Geman and Geman (1984), Gelfand and Smith (1990), and Mc Culloch and Tsay (1993) for a related

analysis.
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additive error. The resulting model behavior could then be very di�erent. Speci�cally the input

for the stock in the Black-Scholes formulation would be Si with

Si = S�
i + �i; �i � N(0; �nu);

where S�
i
is the observation in the database. Tight priors can be imposed on �nu to reect bid-

ask spread limits for example. Given the small size of � compared to the magnitude of S, the

normality assumption is a reasonable start. Simulation evidence (Renault (1995)) shows that

synchroneity errors can a�ect pricing in non trivial ways. This makes the above formulation a

worthwhile extension.

6 Conclusion

We introduce a new method to formally incorporate model error in the analysis and implementa-

tion of contingent claim models. Given a model, the method allows us to estimate deterministic

functions of the parameters, produce the residual of an in-sample observation to assess its abnor-

mality, and produce the predictive density of an out-of-sample claim.

We applying this method to a sample of 10000 quotes on calls on TOYS'R US, and document

the behavior of several competing models nesting the B-S. The competing extended models are

justi�ed as expansions of a model unknown or too costly to implement. We formulate the error

in relative terms (logarithms models) and in dollar terms (levels models). We show that there is

indeed evidence of Black Scholes mispricing and by some criteria, the extended models dominate

the B-S within sample. They reduce root mean squared errors of pricing and residuals. The im-

provement is not limitless as models with12 parameters show severe degradation in performance

due to the increase in parameter uncertainty. The extended models have di�erent hedging and

pricing implications than the B-S. We show that the failure to include model error in speci�ca-

tion tests results in very severe biases toward rejection. The interquartile range of a predictive

distribution which in fact covers the true value 50% of the time, would be wrongly believed to

cover the true value 2% of the time, thus leading to a rejection of the model.

The Black-Scholes appears the most robust when it comes to out of sample performance. Many

of the advantages demonstrated by the extended models disappear and they fail to dominate the

Black-Scholes drastically. However, most models behave quite well in that their out of sample

properties are not very di�erent from their in sample properties. This insight on these models is

possible because of the estimation technique which formally incorporates model error. Our results

are in strong constrast with those of recent studies who do not allow for model error and conclude

to very di�erent in and out-of sample properties. The extended models also imply possibly

di�erent hedge ratios than the basic model. Therefore they may have di�erent implications if

these di�erence remain important out of sample. More work remains to be done to test models

in an updating setup, based on the method proposed here.

The MCMC estimators which we implement are very exible. Additional state variables can

be incorporated to study more complex error structures, or allow for non observable inputs such

as the underlying price, the risk free rate or volatility.
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APPENDIX

A Homoskedastic Extended Model: Posterior Distributions

Consider the model

logCi = �1 logBS (�; x1i) + �
0

2
x2i + �i; �i � N (0; ��)

Rt = �+ �t; �t � N (0; �)

The likelihood function is:

`(��; �; �1; �
0
2
j y

t
) /

1

�N�
� exp

8>>><
>>>:
�

NP
1

[logCi � �1 log b(�; x1i)� �0
2
x2i]

2

2�2�

9>>>=
>>>;

To simplify the notation, let x0
i
= (logm(�; x1i); x

0
2i
), X0 = (x1; :::; xN ), �

0 = (�1; �
0
2
), and Y0 =

(logC1; :::; logCN ). We formulate the following joint prior distribution for the parameters

p (�; �� ; �) / p(�)p(��)p(� j ��)

= IG(� : �0; s
2

0
) IG(�� : �1; s

2

1
) N(� : �0; �

2

�V0)

To reect the fact that p(�) is based on the returns data, let �0s
2

0
=

TrP
1

(Rt� �R)2 and �0 = Tr+1.

Apply Bayes theorem. The joint density of the parameters is

p(��; �; � j y
t
) /

exp
n
�

�0s
2
0

2�2

o
��0

�
1

�N+�1
�

� exp

(
�
(Y �X�)0 (Y �X�) + �1s

2

1

2�2�

)

Let k be the dimension of �. Consider the quantities

�̂ = (X 0X)�1X 0Y; V =
h
X 0X + V �1

0

i�1

; ��� = V
h
X 0X�̂ + V �1

0
�0
i
;

and

�� = N � k + �1 � 1; ��s
2

� =
�
Y �X���

�0 �
Y � ���

�
+
�
�0 �

���
�0
V �1

0

�
�0 �

���
�
+ �1s

2

1
:

The joint density can be rewritten as

p
�
��; �; � j y

t

�
/

1

��0
� exp

(
��0s

2

0

2�2

)
�

1

�
��+1

�

� exp

8><
>:
���s

2

� �
�
� � ���

�0
V �1

�
� � ���

�
2�2�

9>=
>; :

It is analogous to that resulting from a standard regression model with the twist that X, �̂, ���,

V, and ��s
2

�, are functions of �. We can now break down the joint density in the conditionals of

interest. First,

p(� j �; ��; y
t
) � N

�
���; �2�V

�
: (6)
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The joint density of � and �� is then

p
�
��; � j y

t

�
/

1

��0
� exp

(
��0s

2

0

2�2

)
�

1

�
��+1

�

� exp

(
���s

2

�

2�2�

)
� jV j1=2 :

The conditional posterior density of �� is

p
�
�� j �; y

t

�
� IG(�� = N � k + �1; ��s

2

�(�)) (7)

The posterior density of � is

p(� j y
t
) /

1

��0
exp

(
��0s

2

0

2�2

)
�
h
��s

2

�(�)
i���=2

� jV j1=2: (8)

B �: The Metropolis Step

This appendix discusses the � draws. In the extended model with prior distribution, the posterior

distribution of � conditional on the other parameters is shown to be

p(� j �; ��; y
t
) /

exp
n
�

�0s
2
0

2�2

o
��0

� exp

(
�s2(�; �)

2�2�

)
;

where �s2(�; �) = (Y � X(�))0(Y � X(�)). For computational convenience, we introduce the

sample statistic ��s
2

�?, the mode of the kernel, and rewrite the posterior density of � as

p(� j �; �� ; y
t
) �

K

��s2�?
� IG(�0; �0s

2

0
)� exp

(
�s2(�; �)

2�2�

)
(9)

Recall that we draw in sequence (� j :), (� j :), and (�� j :), building a chain of such draws.

There is no analytical expression for K, but it could be computed numerically by importance

sampling from the �rst kernel in equation (9). This is unrealistic as (1) we would have a new K

to compute everytime we make a draw of � because � and �� have changed, and (2) even then,

direct draws from (9) by conventional methods such as inverse CDF are unrealistic. Instead, we

use the Metropolis algorithm that does not require the computation of integration constants. See

Devroye (1987) for the accept-reject method, Metropolis et al. (1953) and Tierney (1991) for the

Metropolis algorithm.

The Metropolis algorithm nests a simpler algorithm, the accept/reject, which requires the

knowledge of K. We explain the accept/reject algorithm �rst. We cannot draw directly from the

density p(�). There is a blanketing density q(�) from which we can draw, and which meets the

condition that there exists a �nite number c such that cq(�) > p(�), for all �. Draw from q a

number � and accept the draw with probability p(�)=cq(�). The intuition of why this produces a

sample of draws with distribution p(�) is simple: We draw from q and for each draw we know by

how much cq dominates p. p/cq is not the same for every value of � because p and q do not have

the same shape. The smaller p/cq, the more q dominates p, the more likely we are to draw too
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often in this area, the less likely the draw is to be accepted. If the parameter space is unbounded,a

�nite c such that cq(�) > p(�);8�, exists only if the tail of q drops at a slower rate than the tail of

p. For density (9), this can be accomplished if q is an inverted gamma with parameter � � Tr�1.

Given that c exists, an ideal density is such that p / q is relatively constant over �. Otherwise c

needs to be very large, and we will waste time rejecting many draws. Experimentation shows that

the inverted gamma may have a shape very di�erent from (9), particularly if the option kernel

is more informative than the returns kernel. This is because q must have low degrees of freedom

(� � Tr � 1) for c to exist. q is not allowed to tighten when the information in the options data

increases. An extreme case of this occurs if we only use option data. Also, the calculation of c is

non trivial. One must �rst calculate K rather precisely, and then solve for the minimum of p/q

over �. Therefore the accept-reject algorithm alone does not help us.

This is where the Metropolis algorithm intervenes. For any candidate density q, we can always

�nd a c such that cq > p, for most values of �. For some values of �, cq < p, i.e., the density q

does not dominate p everywhere. In these areas, we do not draw often enough from q, and the

sample of draws does not reect the actual mass under the density p. The Metropolis algorithm

is a rule of how to repeat draws, i.e., build mass for values of �, where q does not draw often

enough. Unlike for the accept-reject algorithm, dominance everywhere is not needed, so we have

more choice for the density q and the number c. For a given density q, too large a c leads to

frequent rejections, and too low a c produces many repeats, but the algorithm still goes through.

A c which trades o� these two costs can be computed very quickly. Furthermore we do not need

to compute K in (9) anymore. This is because the Metropolis is a Markov Chain algorithm with

transition kernel a function of the ratio p(y) / p(x), where x and y are the previous and the current

candidate draws. K disappears from the ratio. Consider an independence chain with transition

kernel f(z) / minf p(z), cq(z)g. The chain repeats the previous point x with probability 1-�,

where �(x; y) = min
n
w(y)

w(x)
; 1
o
, where w(z) � p(z)/f(z). If cq > p, w(z)=1, and if cq < p, w(z)

>1. The decision to stay or move is based upon
w(y)

w(x)
which compares the (lack of) dominance at

the previous and the candidate points.

We implement the Metropolis Accept Reject algorithm as follows. A truncated normal distri-

bution was found to have a shape close to p. We choose it as blanketing density q. The truncation

is e�ected by discarding negative draws. We have not encountered such draws even in the small-

est samples where the mean is still more than 6 standard deviations away from 0. A possible

alternative to the normal blanket would be the lognormal distribution. We set the blanket mean

equal to the mode of p(� j y
t
). The mode is found in about 10 evaluations of the kernel. The

function is well behaved and the optimization is fast. The variance of q is then set to best match

the shape of q to that of p. For this, the discrepancy function p?/q, where p? is the kernel of p,

is computed and minimized at 3 points, the mode and 1 point on each side of the mode, at which

p is half the height of p at the mode. They are found in about 10 evaluations of the kernel. The

minimization requires and additional 10 evaluations. This brings q as close as possible to p in the

bulk of the distribution where about 70 % of the draws will be made. Possible values for c are the

ratios p ? =q at these three points. We choose c so as to slightly favor rejections over repeats. The

top left plots of �gure 1 show that the ratio p?/cq is close to 1 almost everywhere. The intuition

of the ratio p?/cq is as follows. If a candidate draw is at the mode, ratio = 1, and the previous
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draw is at the upper dotted line, ratio = 1.1, then there is a 1/1.1 chance that the previous draw

will be repeated rather than the candidate draw chosen. Also, a draw at 0.27, ratio = 0.93, has

a 7% chance of being rejected. The potential e�ciency of the algorithm is veri�ed when we keep

track of the actual rejections and repeats in the simulation. Even in a very short sample such

as the case of �gure 1, 140 quotes and 10 parameters, we got no more than 32 rejections and 28

repeats over 5000 draws.

C Analysis of Market Error

Consider

logCi = �1 logm(�; x1i) + �0
2
x2i + ai; where ai = �i + si�i

= �0xi + ai

Rt = �+ �t

�i � N (0; ��) ; �i � N (0; ��) ; �t � N (0; �)

si =

(
0 with prob. 1� �

1 with prob. �

The variance of ai is �
2

i
= �2� + si�

2

� � �2�(1 + si!). Introduce the state vector S= fs1; :::; sNg, a

sequence of independent Bernouilli trials. Consider the prior distributions

� � B(a; b)

(� j !; ��) � N

�
�0; �

2

�(1 +
a

a+ b
!)V0

�

�� � IG
�
�1; s

2

1

�
� � IG

�
�0; s

2

0

�
: (10)

where IG and B are the Inverted Gamma and the Beta distributions. These priors can be made

arbitrarily di�use by setting �0 and �1 to 0, and the diagonal elements of V0 to large values.

Note that �� is modelled through the speci�cation of !. The goal is to obtain the posterior

distributions of �; �; �� ; �; ! , and S either joint or marginal. The �rst conditional posterior is

that of (�; �; �� j y
t
; !; S):

1:

p(��; �; � j y
t
; !; S) /

exp
n
��s2

2�2

o
��0+Tr

�
exp

n
��1s

2
1

2�2�

o
��1+1+k+N0
�

�
��
p
1 + !

�N�N0

� exp

8<
:�(� � �0)

0 V �1

0
(� � �0)

2�2�

�
1 + a

a+b
!
�

9=
;� exp

(
�
(Y � �X��)0(Y � �X��)

2�2�

)

where N0 is the number of observations for which si is zero. Y � = (logC�
1
; :::; logC�

N
)0, where

logC�
i
= logCi=(1+!si)

:5. The same transformation is applied to the vector X, i.e. each element
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is divided by
p
1 + si!. After this transformation, a draw of this posterior is made as shown in

section 3. Now consider ! introduced above. Given S, the likelihood function of ! depends only

on the N1 = N �N0 observations for which si = 1. Consider for �! = 1+ !; a truncated inverted

gamma prior distribution IG
�
�2; s

2

2

�
I�!>1. The posterior distribution of �! conditional on the other

parameters is

2:

p
�
�! j y

t
; �; �� ; S

�
/

1

�!1+�2+N1
� exp

8>><
>>:�

P
i2N1

(Yi � �0xi)
2

2�2� �!
2

+ �2s
2

2

9>>=
>>; I�!>1

� IG

0
@�2 +N1; �

2

!s
2

! = �2s
2

2
+
X
i2N1

 
Yi � �0xi

��

!
2
1
A I�!>1

where I�!>1 is the indicator function for �! > 1. A draw of ! is obtained directly from a draw of �!

since �! = 1+!. We now need the conditionals p
�
si j y

t
; S�i; :

�
where "." stands for all the other

parameters, and S�i refers to the state vector without si. Following McCulloch and Tsay (1993),

they are written as

3:

p(si = 1 j y; S�i; :) =
�p(yt j si = 1; :)

�p(yt j si = 1; :) + (1� �)p(yt j si = 0; :)

=
1

1 + 1��

�
� p(ytjsi=0;:)

p(ytjsi=1;:)

For the set up considered here the denominator term is simply:

yt j si = 0; :

yt j si = 1; :
=
q
(1 + !) exp�

(logCi � �0xi)
2

2�2�
�

!

1 + !

We now need the last conditional posterior of � . It depends exclusively on. With N1 the number

of si's equal to 1, we have

4:

p(� j S; :) � B(a+N1; b+N �N1)
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Table 1: In-Sample Performance Analysis
TOYS'R US, Dec 4 to Dec 15, 19891

Residual Analysis

Model BIAS BIAS BIAS RMSE RMSE RMSE RMSE

all oom out BA all oom im out BA

Log-Hom

B-S -0.018 -0.04 -0.05 0.10 0.18 0.02 0.15

2 0 -0.01 0.001 0.07 0.12 0.02 0.12

3 -0. -0.01 0.001 0.066 0.11 0.02 0.12

4 0.002 -0.004 0.006 0.065 0.11 0.02 0.07

Log-Het im

B-S -0.012 -0.006 -0.028 0.10 0.18 0.017 0.16

2 -0.005 -0.001 -0.017 0.07 0.12 0.015 0.13

3 -0.004 -0.002 -0.013 0.07 0.12 0.016 0.12

4 0 0.007 0.002 0.07 0.11 0.020 0.10

Lev-Het im

B-S -0.013 -0.047 0.005 0.12 0.092 0.144 0.19

2 -0.002 0.007 0.012 0.11 0.087 0.126 0.19

3 0 0.009 0.017 0.11 0.081 0.122 0.19

4 0.005 0.031 0.014 0.11 0.078 0.134 0.21

Pricing Analysis

Model BIAS BIAS BIAS BIAS RMSE RMSE RMSE RMSE

all oom im out BA all oom im out BA

Log-Hom

B-S -0.07 -0.11 -0.06 -0.16 0.16 0.17 0.17 0.24

2 0.001 -0.004 -0.01 0.003 0.12 0.09 0.14 0.20

3 0. -0.01 -0.025 0.006 0.12 0.084 0.15 0.20

4* -8. -0.01 -26 -29 49 0.092 85 60

Log-Het

B-S -0.07 -0.10 -0.06 -0.13 0.144 0.16 0.145 0.22

2 -0.01 -0.03 -0.007 -0.009 0.11 0.098 0.128 0.19

3 -0.01 -0.03 -0.016 0.001 0.11 0.09 0.13 0.18

4 -0.12 -0.02 -0.36 -0.34 0.39 0.085 0.68 0.49



Table1 - continued
Distribution Analysis

Model % Pred. Fit Pred

out BA Cover Cover2 B13 Cm<B2 A<B2 Q1<B2jB>B2

Lev-Het

B-S 24 2 50 4 20 3 0.4

2 18 13 52 3 20 3 0.5

3 18 15 51 0.3 20 3 0.6

4 15 31 64 0.7 20 3 3

Log-Het

B-S 29 2 58 na - - 0.4

2 18 21 67 na - - 1.1

3 19 24 68 na - - 2

4 25 36 78 na - - 10

Log-Hom

B-S 32 1 71 na - - 6

2 19 24 74 na - - 6

3 19 28 75 na - - 6

4 63 41 85 na - - 7

1The models have been estimated over the week of Dec. 4-8, and reestimated for the Dec. 11-15 week. The

errors have then been aggregated. Symbols used: all: all quotes used, oom: out of the money quotes, im: in the

money quotes, out BA: quotes where the mean prediction is outside the Bid-Ask spread, B: Bid, A: Ask, B1,B2:

intrinsic lower bounds on call price.
2Percentage of the observations for which the interquartile range of �t or prediction covers the true value.
3B1:Percentage of observations such that Prob(Pred<0) >0.001. B2 is the other intrinsic bound, S-PV(X). The

next columns show the percentage of market prices, ask prices, and �rst quartile of predictive density violating B2.



Table 2: Out-of-Sample Performance Analysis
TOYS'R US, Dec 4 to Dec 15, 891

Residual Analysis

Model BIAS BIAS BIAS RMSE RMSE RMSE RMSE RMSE 1 day ahead

all oom out BA all oom im out BA all oom im

Log-Hom

B-S -0.006 -0.009 0.10 0.18 0.02 0.15

2 0.007 0.017 0.11 0.23 0.02 0.18

3 0.005 0.021 0.12 0.24 0.02 0.18

Log-Het

B-S -0.001 0.038 0.005 0.1 0.20 0.02 0.16 0.12 0.23 0.02

2 0.003 0.023 0.003 0.1 0.21 0.02 0.17 0.10 0.19 0.02

3 0.003 0.016 0.009 0.11 0.22 0.02 0.18 0.10 0.19 0.02

Lev-Het

B-S 0.02 0.08 0.10 0.15 0.14 0.14 0.23

2 0.03 0.05 0.09 0.15 0.13 0.14 0.22

3 0.03 0.05 0.09 0.15 0.14 0.14 0.23

Pricing Analysis

Model BIAS BIAS BIAS BIAS RMSE RMSE RMSE RMSE

all oom im out BA all oom im out BA

Log-Hom

B-S -0.06 -0.02 -0.08 -0.07 0.15 0.11 0.16 0.22

2 -0.00 0.05 -0.05 0.01 0.16 0.14 0.17 0.23

3 -0.01 0.05 -0.08 0.02 0.16 0.13 0.17 0.23

Log-Het

B-S -0.041 -0.013 -0.057 -0.05 0.15 0.12 0.15 0.22

2 -0.005 0.040 -0.035 0.004 0.14 0.13 0.15 0.21

3 -0.005 0.036 -0.050 0.015 0.14 0.12 0.15 0.22



Table2 - Continued

Distribution Analysis

Model % Pred. IQR cover2

out BA Fit Pred: all, im, oom B13 Cm<B2 A<B2 Q1<B2 j B>B2

Lev-Het

B-S 29 - 41 46 39 2.2 8 0.9 0.4

2 30 - 39 51 35 1.2 8 0.9 0.2

3 31 - 39 53 35 0.6 8 0.9 0.4

Log-Het

B-S 31 1.6 54 64 39 na 8 0.9 0.7

2 31 15 52 75 31 na 8 0.9 0.6

3 29 19 52 78 33 na 8 0.9 0.6

Log-Hom

B-S 31 - 69 98 35 na 8 0.9 5

2 36 - 59 97 24 na 8 0.9 3

3 34 - 58 97 24 na 8 0.9 2

1Models estimated as in table 1. The out of sample statistics are computed over the week following the estimation.

all: all quotes used, oom: out of the money quotes, im: in the money quotes, out BA: quotes where the mean

prediction is outside the Bid-Ask spread. B: Bid, B1,B2: intrinsic lower bounds on call price.
2Percentage of the observations for which the predictive interquartile range covers the true value.
3B1:Percentage of observations such that Prob(Pred<0) >0.001. B2 is the other intrinsic bound, S-PV(X). The

next columns show the percentage of market prices, ask prices, and �rst quartile of predictive density violating B2.
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Figure 8: Pricing Error vs Moneyness, Logarithms Models, 
TOYS’R US, January-March 1990 
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