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Résumé / Abstract

Lorsqu’on calcule une fonction d’autocorrélation, il est normal
d’enlever d’une série la moyenne non conditionnelle. Cette pratique s’applique
également dans le cas des séries saisonnières. Pourtant, il serait plus logique
d’utiliser des moyennes saisonnières. Hasza (1980) et Bierens (1993) ont étudié
l’effet de la moyenne sur l’estimation d’une fonction d’autocorrélation pour un
processus avec racine unitaire. Nous examinons le cas de processus avec racines
unitaires saisonnières. Nos résultats théoriques de distribution asymptotique, de
même que nos simulations de petits échantillons, démontrent l’importance
d’enlever les moyennes saisonnières quand on veut identifier proprement les
processus saisonniers.

Time series are demeaned when sample autocorrelation functions
are computed.  By the same logic it would seem appealing to remove seasonal
means from seasonal time series before computing sample autocorrelation
functions.  Yet, standard practice is only to remove the overall mean and ignore
the possibility of seasonal mean shifts in the data.  Whether or not time series
are seasonally demeaned has very important consequences on the asymptotic
behavior of autocorrelation functions (henceforth ACF).  Hasza (1980) and
Bierens (1993) studied the asymptotic properties of the sample ACF of non-
seasonal integrated processes and showed how they depend on the demeaning
of the data.  In this paper we study the large sample behavior of the ACF when
the data generating processes are seasonal with or without seasonal unit roots.
The effect on the asymptotic distribution of seasonal mean shifts and their
removal is investigated and the practical consequences of these theoretical
developments are also discussed.  We also examine the small sample behavior
of ACF estimates through Monte Carlo simulations. 



Mots Clés : Saisonalité stochastique et déterministe, identification de
modèles, racines unitaires saisonnières, autocorrélation

Keywords : Deterministic/stochastic seasonality, model identification,
seasonal unit roots, autocorrelation

JEL : C13, C22
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1  Introduction

Since the work by Box and Jenkins (1976), it is standard practice to analyze the
sample autocorrelation and partial autocorrelation functions in order to identify,
specify and diagnose univariate models for seasonal time series, using the raw, first-
differenced or seasonally-differenced data.  Inspection of the characteristics of the
autocorrelation function [henceforth ACF] was later complemented with formal
statistical tests for unit-root nonstationarity.  Since the work of Fuller (1976) and
Dickey and Fuller (1979), testing for a zero-frequency unit root has become
commonplace, and the properties of various testing procedures have been widely
discussed.  While testing for unit roots at the seasonal frequencies is a relatively
more recent occurrence, it also has generated considerable interest with the tests
proposed by Hasza and Fuller (1982), Dickey, Hasza and Fuller (1984), Hylleberg,
Engle, Granger and Yoo (1990), Ghysels, Lee and Noh (1994), among others.  

The ACF is typically computed from demeaned data.  Yet, seasonal means are
almost never removed before computing the ACF in seasonal time series.  It is
perhaps somewhat surprising that the consequences of not removing seasonal mean
shifts on the identification and specification of seasonal time series has hitherto
received little attention.  As for non-seasonal processes, Hasza (1980) and Bierens
(1993) investigated the asymptotic properties of the sample ACF of integrated
series, which depend on whether the data were demeaned.  We study the large-
sample behavior of the ACF when the data-generating processes are seasonal with
or without seasonal unit roots.  The effects of varying seasonal means are
investigated, and the practical consequences of these theoretical developments are
also discussed by examining the behavior of the ACFs before and after removing
seasonal means. We show that there are some serious deficiencies in the usual
model identification procedures which rely on simple demeaned data.  

The paper is organized as follows.  We first study the theoretical properties of the
ACF for seasonal time series.  Section 2 discusses the asymptotic distribution of the
sample ACF for seasonal data which contain some roots on the unit circle and/or
different means across different seasons.  Section 3 reports the finite sample
behavior of the ACF via Monte Carlo simulation.  Section 4 reports some empirical
results.  Section 5 concludes with a brief discussion about the potential implications
of the results for modeling seasonal time series.

2  Asymptotic Distribution of Sample ACF for Seasonal Processes

In applied time series analysis, an investigation of the sample autocorrelation
structure often suggests the identification and specification of empirical models.  In
the well-known Box-Jenkins approach, this idea is often used in detecting certain
types of nonstationarities in the data.  In the first subsection, we discuss the limiting
distribution of the sample autocorrelation function for a general nonstationary
process with unit roots at seasonal frequencies as well as at the zero frequency.  Our
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The sample autocorrelation coefficient  has first index one, as it refers1

to the Data Generating Process (henceforth DGP) appearing in (2.2), which
corresponds to a first-difference stationary process.  In general the first index will
refer to the order of differencing.

      Note that, when u  is i.i.d.,  and hence the expression  in equation2
t

(2.3) reduces to 1.

2

analysis extends the results obtained by Hasza (1980) and Bierens (1993), who
focused exclusively on the zero-frequency properties.  The second subsection covers
the case when seasonality in the data is caused by different seasonal means for
different seasons.

2.1  Nonstationary series with some seasonal unit roots

It is well-known that the ACF of a stationary process decays towards zero, whereas
that of a nonstationary process with a unit root at the zero frequency tends to stay
near one.  In particular, Hasza (1982) and Bierens (1993) have shown that the
sample ACF for integrated processes converges in probability to one.  It is shown
in this paper that the behavior of the sample ACF is quite different from that of the
usual integrated processes when unit roots at the seasonal frequencies are also
present.  To clarify this, suppose that we have T observations, (y ,y ,..., y ), of a time1 2 T

series process y .  The sample ACF at lag k denoted r^  is then given by:t 1k

(2.1)

where k $ 1 and   For an integrated process generated by 1

(2.2)

where u  follows a martingale difference sequence obeying the conditions for thet

functional central limit theorem as, for instance, in Phillips (1987).  It has been
shown that the sample autocorrelation function converges in probability to one.
Moreover, for any fixed integer k, Bierens (1993) shows that for r^  defined in1k

(2.1):2

(2.3)
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where '6' denotes weak convergence
while

and W(r) is a standard Brownian motion.  Consider now a seasonal time series
process generated by 

(2.4)

The process in (2.4) contains unit roots at the seasonal frequency and its harmonies
as well as at the zero frequency.  The asymptotic distribution of the sample

autocorrelation function at lag dk,

denoted  which is associated with the

DGP in (2.4) is as follows:

(2.5)

where  is defined in analogy with

r ̂ , and W (r) for i = 1,2,...,d are mutually independent standard Brownian motions.1k i

It is worth noting that (2.5) reduces to the expression in (2.3) when d = 1.

Moreover, the sample ACF converges in probability to one only at lags which are

multiples of d, while for lags k' û dk it converges in distribution to functions of

standard Brownian motions which are with probability one bounded away from

unity.

To compute the sample autocorrelation function, it is standard to remove the overall

mean y& of the series.  In seasonal time series, however, it is often observed and/or

assumed that the series has different seasonal means.  Therefore, it is worth

investigating the behavior of the sample ACF when seasonal means, rather than the

overall mean, are removed in calculating the autocorrelations.  Instead of removing

the overall mean, as in (2.1), let us consider the following form of the sample ACF:

 (2.6)
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where  with a set of seasonal dummies Dst

(that is, for   s = 1,2,...,d, D  = 1 if t mod d = s and  otherwise).  We canst

derive the asymptotic distribution of the sample ACF in (2.6), which is given in the

following theorem.

Theorem 2.1 : Let the model (2.4) and the associated assumptions for u  hold [seet

Assumption A.1 in the Appendix].  Then, the asymptotic distribution of the sample

ACF defined in (2.6) is:

(2.7)

Proof: See Appendix A.

The distributional result in (2.7) reduces again to the expression in (2.3) when d =

1.  Hence, Theorem 2.1 shows that the distribution of the sample autocorrelation 

defined in (2.6) is different from that of  in (2.1).  It is important to note that the

resulting changes in the asymptotic distribution can be viewed as the replacement

of W (r) by "demeaned" Brownian motions, say,  fori

i = 2,3,...,d, while only  in (2.5) is already in "demeaned" form.  The sample

autocorrelation r^   can be calculated via the OLS estimate of the  coefficient  indk dk

the regression (y  - y) = (y  -y) + e . Hence, removing the overall mean of thet-dk dk t t
& &

series in calculating r^   is equivalent to including a constant term in the regressiondk

of y  on y .  On the other hand, removing the seasonal means is equivalent tot-dk t

including seasonal dummies D  (s = 1,,2,...,d) in the regression of  on  (orst

using the residuals from the regression of the original series on seasonal dummies

D ).  A constant term affects the distribution theory of the zero-frequency case only,st

but not that of all the seasonal frequencies.  Seasonal dummies, however, affect the

asymptotic distributions of all the frequencies.  Not surprisingly, this is quite similar

to the impact of seasonal dummies in running auxiliary regressions when testing

zero and seasonal frequency unit root hypotheses.  See Hylleberg et al. (1990) or

Ghysels et al. (1994) for further details.

According to the Box-Jenkins approach, spikes in the sample ACF that decay very
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slowly at lags which are multiples of the seasonal frequency suggest one should

consider seasonal differencing to induce stationarity.  This is appropriate when the

DGP belongs to the class of processes appearing in (2.4).  When series have

different seasonal means, however, then deterministic as well as stochastic

seasonality are not removed in the usual computation of the sample ACF.  As the

distribution of the sample ACF  in (2.6) is different from that of  in (2.1), the

result in Theorem 2.1 suggests that we need to remove seasonal means in

calculating the autocorrelations of seasonal time series in order to characterize the

stochastic structure of the series.

 

2.2  Seasonal dummy processes

The observation in the previous subsection that the behavior of the sample ACF is

affected by removing seasonal means in calculating the sample ACF has more

practical relevance when the series under consideration displays strong seasonal

fluctuations which are mainly caused by deterministic seasonal dummies.  In this

subsection, we consider the behavior of the sample ACF for the DGP which exhibit

seasonality due to seasonal mean shifts.  Namely, suppose that a seasonal time series

is generated by:

(2.8)

where D  is a set of seasonal dummies,  (for at least some 0 < k # d),st

 (for  s = 1,...,d), and u  satisfies the regularity conditions appearing in thet

Appendix and is therefore not necessarily seasonal in nature.  As the DGP in (2.8)

exhibits seasonal fluctuations the usual sample ACF will display slowly decaying

peaks at the seasonal lags.  These peaks would disappear when seasonal means are

removed in calculating the autocorrelations, as seasonal dummies are the main cause

of seasonality.  Let us first look at the standard situation where no seasonal means

are removed.  For the sake of simplicity let us assume that u  is a sequence of i.i.d.t

series with mean zero and variance .  Then it is easy to show that when k is au
2

multiple of d, i.e., k = dj (for any j û 0):
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  (2.9)

For k = dj, i.e., when k is a multiple of d, the first term in the numerator vanishes as 

 Consequently, (2.9) reduces to

(2.10)

The expression in (2.10) shows that the sample ACF may result in significantly

larger values depending on the values of  and  and that autocorrelations willu
2

display some spikes at seasonal lags.  Thus, the sample ACF appears not to reflect

the "stochastic" correlation of the series, which would be zero when u  is i.i.d.t

However, when seasonal means are removed in calculating the sample ACF, as in

(2.6), it is expected that the autocorrelation structure of the series would be

consistent with its stochastic nature.  Indeed, it can be shown that 

for all k, (2.11)
  

where  is defined as in (2.6) with d=1.  This result is consistent with the fact that

u  is i.i.d.  Hence, when seasonal means are removed, the sample ACF would usuallyt

have small values for any k.  This result implies that the seasonal peaks present in 

disappear when seasonal means are removed in calculating the sample ACF of the

series (2.8).  It was noted in Ghysels, Lee and Noh (1994) that the inclusion of

seasonal dummies has important consequences for testing for seasonal unit roots.

The comparison between (2.10) and (2.11) suggests that similar arguments should

be made regarding the sample ACF whenever it is used as a tool to identify seasonal

time series.  
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In the remainder of this section we will generalize and formalize the arguments

made so far.  More specifically, let us assume that u  follows a martingale differencet

sequence as specified in Theorem 2.1.  The behavior of the sample ACF would

depend in such cases on the autocorrelation structure of the u  process.  For example,t

consider for instance a stationary process generated by  

(2.12)

where  and  is an i.i.d. sequence with mean zero and variance   The

following theorem shows the asymptotic behavior of the sample ACFs when

seasonal means are removed, as defined in (2.1), and are not removed, as defined

in (2.6).

Theorem 2.2: Suppose the data are generated by a DGP as in (2.8) together with the

implicitly defined autocorrelation structure appearing in (2.12).  Then, for the ACF

without seasonal means removed one has:

(2.13)

while, in contrast, for the seasonally demeaned ACF:

(2.14)
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where D  = 8 /8  with 8  = E(u u ).k k 0 k t t-k

Proof: See Appendix A.

    

For k=dj, the result (2.13) can be rewritten as

 which indicates that the sample ACF  would show some peaks at seasonal lags

even if the u  process reveals no seasonality.  These peaks in the sample ACF duet

to different seasonal means may be amplified when the u  process also featurest

seasonal autocorrelation.  The behavior of the seasonally demeaned ACF  only

depends on the autocorrelation structure of u , regardless of the magnitude oft

deterministic seasonal variations in y .  Hence, the sample ACF  shows not

seasonal peaks unless the stochastic component u  of the series y  displays seasonalt t

fluctuations which eventually decay because of stationarity.

The results in Theorem 2.2 have important consequences for the usual model

identification approach proposed by Box and Jenkins (1976).  That is, the Box-

Jenkins approach based on the usual sample ACF  would suggest a seasonal

differencing filter even when seasonal variations are mainly due to seasonal

dummies as in (2.8).  It also suggests that it would be more sensible to remove

seasonal means, rather than the overall mean, whenever one uses the sample

autocorrelation structure to examine and identify seasonal time series.  

The type of time series process that has more practical relevance would be the one

generated by 

As this process contains a unit root at the zero frequency, it can easily be shown that

both the usual sample ACF and the seasonal-mean-adjusted ACF converge in

probability to one, which suggests that the first-difference filter is required to induce

stationarity.  In this case, the discussion about different seasonal means can be used

to appropriately filtered data.
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3 Finite Sample Behavior of Autocorrelated Functions

In this section we study the finite sample properties of the ACF via Monte Carlo

simulation.  We investigated both monthly and quarterly data generating processes,

but report only the quarterly case because the monthly results were not surprisingly

quite similar.  Tables B.1 and B.2 appearing in Appendix B contain the mean,

median as well as the 5%, 10%, 90% and 95% percentiles of the simulated

distributions of the two different versions of the sample ACFs  and  for k =

1,2,3 and 4.  Data were generated for the DGP appearing in (2.4) for d = 4 with i.i.d.

N(0, 1) innovations.  Hence we studied pure seasonal random walk processes.  We

also examined white noise processes with seasonal mean shifts.  For the former

seasonal differencing yields an ACF with theoretical values zero while for the latter

removing seasonal dummies does the same.  The seasonal means for the process in

(2.8) were set at -1, 1, -1, and 1, and hence the series also has an overall mean zero.

All simulations involved 10,000 replications using samples of sizes 10, 20, 30, 40

and 100 years of quarterly data.  Because of certain repetitiveness we report only the

10, 20 and 100 years sample results.

Table B.1 summarizes the simulation results for the DGP specified in (2.4) where

the process contains unit roots at the seasonal frequencies as well as at the zero

frequency.  The striking result emerging from Table B.1 is that the ACF with

seasonal means removed, i.e.  has for k = 1,2,3 (i.e., non-seasonal lags) a

distribution which is symmetric and centered around zero.  When seasonal means

are not removed, very different results emerge.  Indeed, the distribution of  is

centered around -0.17 with a long left-tail, and hence is not symmetric.  Hence, not

removing seasonal means results in a strong negative bias in the ACF at non-

seasonal lags.  For k = 4, we find that  is downward biased relative to .  Yet,

in moderate to large samples, the difference does not appear to be large.  As the

estimated ACF tends to follow the behavior of the theoretical ACF, the computed

values of the sample ACF can be used to detect the presence of certain unit roots,

which complements the outcome of the test results for seasonal unit roots, and hence

to suggest appropriate model specification.  Overall the simulations confirm that the

asymptotic results in (2.5) and (2.7) hold for small and moderate sample sizes.

The distributional properties of the sample ACF for seasonal dummy models are

reported in Table B.2.  In this case, while the behavior of the sample ACF depends

on the autocorrelation structure of u  process, the usual form of the sample ACFt

displays strong spikes which decay very slowly at the seasonal lags.  These seasonal

spikes disappear when seasonal means are removed in calculating the
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autocorrelations, which is expected from the result in Theorem 2.2.  In this case, it

would be more sensible to remove seasonal means when we use the sample

autocorrelation structure for the model identification and specification.

4 Concluding Remarks

Seasonal fluctuations are an important source of variation in economic time series,

and part of the increasing interest in the treatment of seasonality in economic time

series has focused on detecting the presence of unit roots at some of the seasonal

frequencies as well as at the zero frequency.  Yet, no clear view has emerged out of

the ongoing debates on the model specification for seasonal time series.  One

objective of this paper is to discuss what classes of seasonal processes are

responsible for the seasonality in most economic time series data, and hence to

improve our understanding of seasonality and to capture it in a statistical model.  

In this paper, we discuss the issues concerning the model identification approach to

seasonal time series data.  We first investigate theoretical and practical issues on the

behavior of the sample ACF in seasonal time series.  In particular, two types of

DGPs are considered, namely: when the process contains some roots on the unit

circle, and when the process has different seasonal means.  
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t )2
] .

E(ut) ' 0 for all t.

supt E(ut) < 4 for some > 4.

2 ' lim
T64

E[T &1('T
t'1ut)

2] exists and 2 > 0.

{u t}
4

1 is &mixing with '4

s'1 (s)1&4/ < 4.

r̂ (dk

The results in Theorem 2.1 and 2.2 hold true under similar conditions, as3

given in Assumption 2.1 of Phillips (1987).

13

APPENDIX A: Proof of Theorems

In order to prove Theorems 2.1 and 2.2, we shall assume the following regularity

conditions given in Bierens (1993), namely:3
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(d)

Proof of Theorem 2.1 
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2
s ,

T &1(y 2
1%...%y 2

dk) 6 0 and T1/2(ys%...%ydk&d%s) 6 0,

14

(A.1)

(A.2)

(A.3)

Since  the denominator of the above expression

becomes 

 while the numerator can be rewritten as

Noting that   the above

expression can be written as

The asymptotic distribution of the sample ACF in (2.7) can now be derived by using

the results on the limiting distribution of the terms in (A.1), [see Chan and Wei

(1988)], namely: 
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(A.4)

(A.5)

Remark: It is worth noting that the expression in (2.7) is similar to the limiting

distribution of  in Theorem 1 of Dickey, Hasza and Fuller (1984), except

for the term  in the numerator.  This term appears here as  is

obtained from the regression of y  on y , while  is from the regression of y  ont-dk t t

y .t-d

Proof of Theorem 2.2 

Similarly to the proof of Theorem 2.1, the distributional results in (2.13) and (2.14)

can be derived by using the following relations for the time series generated by

(2.8):

(A.6)

(A.7)

(A.8)
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APPENDIX B: Simulation Results

Table B.1: Monte Carlo Simulations Autocorrelation Functions
DGP: Seasonal Unit Root Process

-----------------------------------------------10 years------------------------------------------------

Mean -0.18 -0.00 -0.17 0.01 -0.18 0.00 0.75 0.52 0.56 0.18

5% -0.65 -0.43 -0.77 -0.54 -0.61 -0.39 0.58 0.29 0.30 -0.06

10% -0.54 -0.33 -0.69 -0.44 -0.51 -0.30 0.64 0.36 0.37 -0.00

50% -0.13 0.00 -0.22 0.02 -0.13 0.01 0.77 0.53 0.59 0.20

90% 0.09 0.33 0.44 0.44 0.08 0.29 0.85 0.65 0.71 0.33

95% 0.17 0.43 0.58 0.55 0.15 0.39 0.87 0.68 0.73 0.36

-----------------------------------------------20 years------------------------------------------------

Mean -0.17 0.00 -0.17 0.00 -0.17 0.00 0.87 0.74 0.75 0.52

5% -0.64 -0.43 -0.78 -0.55 -0.62 -0.41 0.77 0.61 0.58 0.32

10% -0.54 -0.33 -0.72 -0.47 -0.54 -0.31 0.80 0.65 0.63 0.38

50% -0.12 0.00 -0.20 0.00 -0.13 0.00 0.88 0.75 0.77 0.54

90% 0.10 0.32 0.44 0.46 0.10 0.31 0.92 0.82 0.85 0.65

95% 0.19 0.43 0.58 0.57 0.19 0.41 0.93 0.84 0.86 0.67

-----------------------------------------------100 years----------------------------------------------

Mean -0.17 0.00 -0.15 0.01 -0.17 0.01 0.97 0.94 0.95 0.89

5% -0.66 -0.43 -0.79 -0.55 -0.65 -0.42 0.95 0.91 0.90 0.83

10% -0.55 -0.33 -0.71 -0.47 -0.55 -0.32 0.96 0.92 0.92 0.85

50% -0.12 0.00 -0.20 0.01 -0.12 0.00 0.97 0.95 0.95 0.90

90% 0.12 0.35 0.48 0.49 0.12 0.35 0.98 0.96 0.97 0.93

95% 0.20 0.43 0.64 0.57 0.20 0.42 0.99 0.97 0.97 0.93

___________________________

Notes: The data generating process is: y  = y  + u , where u  is i.i.d. standard normal.  Thet t-4 t t

Monte Carlo simulations involved 10000 replications.  The autocorrelations r , k = 1, 2,^
4k

3, 4 and 8 are defined in (2.1) and use the unconditional sample mean while the r4k
*

autocorrelations involve seasonal means.  They are defined in (2.6).  Entries to the table
are the Monte Carlo distribution mean and percentiles.
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Table B.2: Monte Carlo Simulations Autocorrelation Functions
DGP: Seasonal Dummies Process

-------------------------------------------10 years----------------------------------------------------

Mean -0.50 -0.00 0.46 -0.01 -0.47 0.00 0.44 -0.10 0.39 -0.10

5% -0.69 -0.27 0.24 -0.26 -0.66 -0.26 0.22 -0.33 0.19 -0.32

10% -0.65 -0.21 0.29 -0.20 -0.62 -0.20 0.27 -0.29 0.24 -0.26

50% -0.51 0.00 0.46 -0.01 -0.48 0.00 0.45 -0.10 0.39 -0.10

90% -0.33 0.20 0.61 0.18 -0.31 0.21 0.59 0.09 0.53 0.08

95% -0.29 0.26 0.65 0.25 -0.25 0.26 0.62 0.14 0.56 0.13

-------------------------------------------20 years----------------------------------------------------

Mean -0.50 0.00 0.48 0.00 -0.48 0.00 0.47 -0.05 0.45 -0.05

5% -0.64 -0.20 0.33 -0.18 -0.62 -0.18 0.32 -0.23 0.30 -0.22

10% -0.61 -0.15 0.37 -0.13 -0.59 -0.14  0.35 -0.19 0.34 -0.18

50% -0.51 0.00 0.49 0.00 -0.49 0.00 0.48 -0.05 0.45 -0.05

90% -0.38 0.15 0.59 0.14 -0.37 0.14 0.58 0.09 0.55 0.09

95% -0.35 0.19 0.62 0.19 -0.34 0.18 0.61 0.13 0.58 0.12

------------------------------------------100 years---------------------------------------------------

Mean -0.50 0.00 0.50 0.00 -0.50 0.00 0.49 0.00 0.49 -0.01

5% -0.56 -0.08 0.43 -0.08 -0.56 -0.08 0.43 -0.09 0.42 -0.09

10% -0.55 -0.06 0.45 -0.06 -0.55 -0.06 0.44 -0.07 0.44 -0.07

50% -0.50 0.00 0.50 0.00 -0.50 0.00 0.49 -0.01 0.50 -0.01

90% -0.45 0.06 0.54 0.06 -0.45 0.06 0.54 0.05 0.54 0.06

95% -0.44 0.08 0.56 0.08 -0.43 0.08 0.56 0.07 0.55 0.07

___________________________

Notes: The data generating process is  where u  is i.i.d. standardt

normal.  The seasonal mean shifts are  =-1 for s = 1, 3 and  = 1 for s = 2, 4.  The Montes s

Carlo simulations involved 10000 replications.  The autocorrelations r , k = 1, 2, 3, 4 and^
4k

8 are defined in (2.1) and use the unconditional sample mean while the  autocorrelations
involve seasonal means.  They are defined in (2.6).  Entries to the table are the Monte Carlo
distribution mean and percentiles.
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