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Stochastic Volatility: Univariate
and Multivariate Extensions

Eric Jacquief, Nicholas G. Polsoh Peter E. Ros$;i
Résumé / Abstract

Les modéles de volatilité stochastique, alias SVOL, sont plus durs a
estimer que les modeles traditionnels de type ARCH. La littérature récente offre
des estimateurs éprouvés pour un modéle SVOL univarié de base. Ce modele est
trop contraignant pour une utilisation en économie financiere. Les prévisions de
volatilité qu'il produit peuvent etre biaisées, particulierement quand la volatilité
est élevée. Nous généralisons le modéle de base en y ajoutant des effets de levier
par le biais d'une corrélation entre les chocs observables et de variance, et la
possibilité de distributions conditionnelles a queues épaisses. Nous développons
un algorithme bayésien a chaines markoviennes de Monte Carlo. Nous
développons aussi un algorithme pour I'analyse d'un modele SVOL multivarié a
facteurs. Ces estimateurs permettent une inférence en échantillon fini pour les
parametres et les volatilités. Nous documentons les performances de I'estimateur
et montrons que les extensions sont nécessaires. Nous testons la normalité des
distributions conditionnelles. Cette méthode est mise en ceuvre sur plusieurs séries
financieres. Il y a une forte évidence (1) de distributions conditionnelles a queues
épaisses, et (2) d'effets de levier pour les actifs financiers. Les résultats sont
robustes et ont d'importantes implications sur les décisions fondées sur les
prédictions de volatilité, particulierement pour la gestion de risques.

Sochastic volatility models, aka SYOL, are more difficult to estimate than
standard time-varying volatility models (ARCH). Advances in the literature now
offer well tested estimators for a basic univariate SYOL model. However, the
basic model is too restrictive for many economic and finance applications. The
use of the basic model can lead to biased volatility forecasts especially around
crucial periods of high volatility. We extend the basic SYOL needs to allow for the
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leverage effect, through a correlation between observable and variance errors,
and fat-tails in the conditional distribution. We develop a Bayesian Markov Chain
Monte Carlo algorithm for this extended model. We also provide an algorithm to
analyze a multivariate factor SYOL model. The method simultaneously performs
finite sample inference and smoothing. We document the performance of the
estimator and show why the extensions are warranted. We provide the researcher
with a range of model diagnostics, such as the identification of outliers for
stochastic volatility models or the assessment of the normality of the conditional
distribution. We implement this methodology on a number of univariate financial
time series. There is strong evidence of (1) non-normal conditional distributions
for most series, and (2) a leverage effect for stock returns. We illustrate the
robustness of the results to the choice of the prior distributions. These results have
policy implications on decisions based upon prediction of volatility, especially
when dealing with tail prediction asin risk management.

Mots Clés : Volatilité stochastique, ARCH, algorithme MCMC, effets de levier, gestion de
risque, distributions a queues épaisses

Keywords.  Stochastic volatility, ARCH, MCMC algorithm, leverage effect, risk management,
fat-tailed distributions

JEL: C1, C11, C15,G1



1 Introduction

Time varying volatility is a characteristic of many financial series. The discrete time SVOL
model is a natural alternative to standard time-varying volatility models of the ARCH family. It
allows the conditional mean and variance to be driven by separate stochastic processes. There is
evidence implying that the additional flexibility of the SVOL is warranted, e.g., Geweke (1994b),
Fridman and Harris (1998). This is especially true when the current level of volatility is high and
the ARCH model may not provide enough mixing. The SVOL model provides more mixing than
the ARCH because the volatility and the observable shocks are imperfectly correlated with one
another. However, the basic SVOL featuring normal errors and zero correlation between mean and
volatility errors is still too restrictive for economic and financial series.

The basic SVOL model requires extendions for several reasons. The results in Gallant,
Hsieh, and Tauchen (1994) show that the conditional distribution of financial series in a SVOL
model may be skewed and fat-tailed. First, Geweke (1994c) shows that the basic SVOL model may
inadequately model the large outliers. It is when volatility is high that the cost of a misspecified
model may be the highest. This is the cause for the frequent critiques of the standard value-at-
risk methods. This is remedied by allowing the conditional distribution to have fat-tails. Second,
the basic SVOL model does not address the leverage effect, whereby changes in volatility are
asymmetrically related to the sign and magnitude of price changes, e.g., Black (1976), Nelson (1991),
and Glosten, Jagannathan and Runkle (1993). A negative correlation between the errors of the
variance and the observable, e.g., stock returns, can produce this effect. This approach is favored
in stochastic volatility based option pricing models.

We show that these two extensions have empirical and economic importance because they
significantly modify volatility predictions. This in turn affects economic modeling based upon
these predictions such as option pricing, e.g., Hull and White (1987), risk management and asset
allocation. There is also a clear need for a multivariate extension of the basic model, for example
in portfolio management and asset pricing applications.

Earlier estimation and smoothing strategies were based upon a normality approximation in
order to use the Kalman filter, e.g., Melino and Turnbull (1990), Harvey, Ruiz, and Shephard (1993).
This approximation is not necessary. Jacquier, Polson, and Rossi (1994), hereafter JPR, introduced
Markov Chain Monte Carlo techniques (MCMC), for the estimation of basic SVOL models with
normally distributed conditional errors. This paper extends this MCMC framework and shows that
the method performs well and the extensions are warranted.

We develop models to allow for (1) the leverage effect through a correlation between ob-
servable and variance errors and (2) fat-tails in the conditional error distribution. The fat-tails are
modeled via scale mixtures of normals. This allows for an outlier diagnostic for each observation.
First, we show that the different models produce different volatility forecasts. Second, we document
the sampling performance of the estimator and smoother for the extended models. In particular,
we show that the performance amply justifies an a priori decision to use an extended rather than
a basic model. Finally, we estimate the extended models for a number of financial series and con-
clude that the extensions are supported by the data. We show how to use the model as an outlier
diagnostic or conduct posterior analysis for the relevant parameters. The posterior analysis is the
basis for a diagnostic of non-normality of the conditional distribution. We assess the robustness of
the results to the prior specification. An algorithm to analyze a multivariate factor SVOL model



is also provided.

Our methodology allows the researcher to perform a comprehensive sensitivity analysis. For
example, the persistence of the AR(1) volatility process increases when fat-tails are allowed in the
first stage distribution. The extensions can yield very different predictive densities. The proper
modeling of the first two stages affects the quality of prediction, and is of paramount concern for
many uses of the model. Our hierarchical modeling approach will therefore prove extremely useful
for researchers concerned with the influence of distributional assumptions on resulting inferences.
We assess the robustness of the results to the third stage parameter distribution.

The paper is organized as follows. Section 2 describes the hierarchical modeling framework
and develops specific MCMC algorithms for implementation of the model extensions. It also shows
that the extended models depart from the basic SVOL in ways which affect the user, e.g., inference
and marginal density. Section 3 discusses inference, outlier and conditional normality diagnostics.
It documents the performance of the estimators. Section 4 applies the extended models to equity
indices and exchange rates. We conduct posterior analysis, and apply the outlier and conditional
normality diagnostics. The sensitivity of the results to the choice of priors is discussed. Section 5
concludes.

2 Extensions of SVOL Models

We view SVOL modeling as a three stage hierarchical process. The three conditional
distributions are p(y|h), p(h|w) and p(w) where y, h, and w are the data, the volatilities, and the
parameters. The first stage distribution p(y|h), reflects probability beliefs about the data given the
volatilities. The basic SVOL assumes conditional normality. In this paper we allow for fat-tailed
and correlated errors. The second stage p(h|w), models beliefs about the stochastic evolution of
the volatility sequence, e.g., a log-AR(1) process. The third stage p(w) reflects beliefs about the
parameters of the volatility process. This three stage hierarchical model allows the implementation
of MCMC procedures that allow the researcher to make inferences concerning the joint posterior
p(h,w|y). Marginal distributions such as p(h|y) and p(w|y), are obtained by simply averaging the
appropriate conditional distributions over the simulated draws.

2.1 Basic Model and MCMC

The basic SVOL model extended in this paper is

Yyt = \/h_tfta (1)
loghy = a+dloghy 1 +oyvy, t=1,...,T
(€s,v¢) ~ N2(0,I)
(Oé, 5a UU) ~ p(aaéa 011),

The parameter vector w = (a, §, 0, ) consists of a location a, a volatility persistence § and a volatility
of volatility o,. Although not presented as a hierarchical model in JPR (1994), it is a particular
example of the general framework discussed here. The first stage assumes normality. The second
stage specifies a stationary volatility sequence where p(log h|w) follows an AR(1) process. The third



stage assumes a diffuse distribution for p(w) restricted to the region of stationarity of the volatility
process.

MCMC methods, such as the Gibbs and Metropolis algorithms, construct Markov chains
with equilibrium distribution equal to the joint posterior distribution of the volatilities and param-

eters given the data. The parameter space © is partitioned into r blocks. The Gibbs sampler consists
(n+1) (n—|—1)|®(n—|—1) ®(n+1) (__)(n) G(n))
1 g ey i—1 9 Z+1""’ T

in the iterative sampling of ©; from the conditional p(©;

or p(®§"+1)|®(_"i)) for s = 1,...,r. For some blocks, the conditional may not be easily sampled di-
rectly. One can then use a Metropolis step whereby @Z(_m—l) is sampled from a Metropolis kernel,

ie., blanketing density, Q(©" ", ©{"). The new draw from Q is accepted with probability

(@)D o)
min - ,1
7(©)Q(6M), h+1))

(2)

Otherwise, the previous draw is repeated, and one moves to the next block. Ones starts from an
initial state, possibly picked at random. The draws of the simulated distribution converge to draws
of the stationary distribution namely the required joint posterior.

The MCMC algorithm for computing the joint posterior distribution of p(h, w) developed in
JPR (1994) uses an independence Hastings-Metropolis algorithm for the underlying Markov chain.
It can be defined with only local movements in the parameter space and is particularly useful for
SVOL models. See Hastings (1970) and Tierney (1994), and Chib and Greenberg (1995) for an
exposition. For the model in (1), JPR (1994) show that the Gibbs block can be written as

p(a, 6,0y |y, h) x £(a,d,0, | y,h) X p(a,d,0,),

and T conditionals p(hy | h—¢, yt, @, 0,0,) for t =1,...T.

1 -y 1 —(log ht — pt)?
p(hilhi—1, hit1, 0, 0,0,,y) 705 eXP 5 X [P v — (3)

where p; = ((1 — 6) + §(log hyr1 + log hy_1))/(1 + 62) and 02 = 02 /(1 + §2). Given the vector of
h’s, the first conditional distribution is similar to a linear regression. Direct draws from p in (3)
are not feasible, so an accept/reject Metropolis step is used. The Metropolis kernel, or blanketing
density, is obtained by best approximating p. For this, the log-normal kernel in (3) is approximated
by an inverse gamma with same mean and variance. The inverse gamma kernel can then be
multiplied by the first kernel, itself an inverse gamma. This yields an inverse gamma distribution
from which direct draws are made. The blanketing density is g(he | .) o hy **Ve=Mht | where
¢=0.5+(1—2expo?)/(1—expo?), and A = 0.5y7 + (¢ — 1) exp (p¢ + 0.502). In JPR, the (n+1)%t
draw of h; first goes through an accept/reject step. That is, the draw is accepted with probability
p(h)/cq(h), where p is unnormalized. The constant c is chosen as the median value of p/q for three
values of h around the mode of q. If the draw is rejected, another draw is made. Otherwise the
draw enters the Metropolis step. There, hg"H)
the previous draw hg") is repeated and one moves to the block h;;1. This choice of ¢ balances the
rejections (below 20%) and repeats (below 5%).

is accepted with the probability in (2). Otherwise,

Note that (2) is implemented with q as Q, and p from equation (3) as w. So the kernel
Q(G)(n+1), 91('”)) is in fact Q(@gnﬂ)), an independence Metropolis kernel. Also, a pure Metropolis,

i



without the extra accept/reject step described above, would have the same theoretical convergence
properties. We found that eliminating the computation of ¢ and the extra accept/reject step cuts
the CPU time in half. However, we noticed that, for the fat-tail model and when starting from
extreme parameter values, the initial conditions sometimes dissipate faster with the accept/reject
step. The CPU time needed to run the algorithm is quite short. So we keep the accept/reject step
since it does not impose any measurable burden. In this paper we compute ¢ as the value of p/q
at the mode of gq.

Since JPR (1994)’s first implemented this MCMC method, alternatives have been suggested
to address issues of computational efficiency with respect to the posterior, p(h|w,y). For example,
Geweke (1994c) recognizes that the density in (3) is log-concave. He proposes a pure accept/reject
step based on the algorithm in Wild and Gilks (1993). The two approaches have similar theoretical
convergence properties. Geweke’s approach extends to the fat-tail that does not modify p(h | .),
as we will see below. It may also extend to the correlated case if one uses the algorithm of Gilks
et al. (1995) instead. This would be necessary because the conditional posterior of h; is not log-
concave in the correlated case, see equation (11) below. Also, a pure accept/reject step requires
the normalization constant of p in (3), a possibly significant computational burden. It is unclear
then, which algorithm would be faster.

Another estimation approach for the basic SVOL is suggested by Carter and Kohn (1994),
Mahieu and Schotman (1994), and Kim and Shephard (1994). It allows a joint draw of the vector
of volatilities by approximating the distribution of loge? with a discrete mixture of normals. Kim
and Shephard note that the sampler based on (3) fails to converge at the limiting case of a unit
root coupled with o, = 0. First, this argument, though correct, is not very relevant since the
limiting case invoked is that of constant variance. Second, JPR (1994) document the convergence
of their algorithm by several means, most noticeably by simulating the sampling behavior of location
estimates of relevant posterior distributions. Here we see no reason to use an approximation of the
model when we can estimate the exact one. Some alternative strategies may offer a computing
time advantage. But we have not found computing time to limit in any way our analysis. More
importantly, the mixture of normal approximation does not extend readily to the correlated case
developed below. Finally, recall that we model the extensions so as to nest the basic SVOL model via
latent variables. If desired, feasible alternatives for p(h|.), can be incorporated into our approach.
The goal of this paper is to document the need for, and provide models and a reliable algorithm for
the extensions of the basic SVOL. We document the convergence and performance of our MCMC
strategy.

The major assumption relaxed here is that of an uncorrelated bivariate normal distribution
for ¢, and v;. The natural extensions of the model are skewed and fat-tailed error distributions,
and correlated errors. We introduce a correlation p between €; and v;, a scale variable A\; where
Yyt = VAtheer, and a fat-tailness parameter v. Straightforward extensions not considered here
include regressors in the mean/volatility equations. We also model multivariate time series with
stochastic volatility by a hierarchical factor model. The state space © is extended to include the
needed additional parameters and state variables. For example, in the full correlated and fat-tailed
model, ® = w X A x h where w = («, §, 04, p, ). The algorithms described below sample from the
joint posterior m(h,w, Aly). This modular approach is convenient because a feature of the model
can be turned-off or modified without affecting the rest of the algorithm. For clarity of exposition,
we describe separately the fat-tailness and the correlation extensions. We then show that the



combination of these two extensions is straightforward.

2.2 Fat-tailed Departures from Normality
2.2.1 The Model

For most financial time series, the conditional distribution resulting from ARCH models is
strongly fat-tailed, see Bollerslev, Chou, and Kroner (1994). For SVOL models one suspects that, al-
beit possibly to a lesser extent, this could also be the case, e.g., Gallant, Hsieh, and Tauchen (1994).
Geweke (1994c) shows that the basic model may be inadequate with respect to outliers. To fatten
the tail of p(e;) whilst keeping it symmetric, we model it as a scale mixture of normals. Consider
the model

Yy = \/}tht = \/h_t\/)\_tzt (4)
loghy = a+dloghi 1 +o,v, t=1,...,T
(z¢,v¢) ~ No(0,1)
A~ p(Ae|v)
ple,6,00,v) = pla,d,00)p(v).

Within the hierarchical framework, fat tails in the error v; would be modeled in an identical fashion
to that shown below. The distributions p(A; | v) and p(v) are chosen to allow flexibility in the
modeling of the fat-tailness of the distribution p(e;). p(A: | ¥) can be specified so as to allow for a
wide range of fat-tailed behavior for p(e;), such as a double exponential, exponential power, stable,
logistic, or Student-t distributions. Carlin and Polson (1991), with a fixed v, and Geweke (1993),
who estimates v apply this idea in the context of linear regressions.

Given a prior p(v), the posterior distribution p(r|y) is an output of the algorithm. Through
this posterior we can infer from the data the severity of the departure from normality. In this paper,
we focus on a t,, fat-tailed model. That is, p(\; | v) is an inverse gamma distribution, i.e., v/\; ~ x2.
The model has noteworthy features even if v is fixed. p(A; | v) is an inverse gamma distribution,
even if v is not updated. This still nests the basic model and allows for an outlier robustification.
The model transfers some of the outliers from the autocorrelated h; to the non-autocorrelated ;.
This down-weighs the outliers in the estimation of the stochastic volatility parameters and of h,
itself.

The importance of the tail assumption is illustrated in figure 1 with an example of the
British Pound to US Dollar exchange rate. It shows that this effect has major consequences. The
top left plot shows the time series of the daily percentage change in exchange rate. The bottom left
plot shows the exchange rate, divided by its sample standard deviation, for the subsequence from
January to November 1985. We now concentrate on this period. We use the estimated parameters
of both basic and fat tail models for this example (see table 4 discussed later). The top right plot
contrasts the volatility estimates of the two models. The thick and dashed lines show the in-sample
posterior means of /h; for the basic and fat-tail models respectively. The basic SVOL produces a
less persistent volatility series because it tries to meet the outliers. The thin line is the time series
of posterior means of s; = v/h;\;. Compare the thin and dotted lines. It reveals the robustness of
the fat-tail model to the outliers. Their effect on h; is reduced because they are incorporated in ;.



Now consider having observed the series until September 237?, i.e., the thick part of the
bottom left plot. We now want to make out-of sample predictions of the time varying standard
deviation for the upcoming days. For the basic model, the estimated AR(1) is used to produce fore-
casts of v/hy, starting from the last estimated h;. For the fat-tail model, the (smoother) estimated
AR(1) is used. It it also inflated by the (non-time varying) posterior mean of v/}, to produce
forecasts of \/Ah;. Formally, each joint draw of h,w,v is used to generate a draw of the future
vector of standard deviations, see Geweke (1994c) and Geweke (1989). The draws are averaged to
produce predictive means. This is more efficient than the approach suggested in JPR (1994).

The bottom right plot in figure 1 shows the results. For the basic model, the forecast starts
at 0.012 and reverts to the long term mean of v/h;. For the fat-tail model, the forecast starts from
0.0088. This large relative difference in forecast profiles between normal and fat-tail models stems
from differences in the estimates of h; as well as §. At any time at which the two models make
different inferences on h;, their forecast profiles will diverge. Looking back at the top right plot,
one sees that the two models often disagree markedly on h;. So the difference between the basic
and the fat-tail models has important practical implications.

In this framework, the identification of outliers can be modeled as follows. Posterior in-
ference about the scale A; can be used as an outlier diagnostic. Observations with a marginal
posterior centered on a large \; are possible outliers. A simple diagnostic is to plot the posterior
means E()\|y) and compare them with the quantiles of the prior distribution p(\;).

2.2.2 The Algorithm

We now describe an MCMC algorithm to implement the model. The parameter space
is augmented with the vector of latent variables (\,v). The algorithm simulates from the joint
posterior 7(h,w, A,v|y) by cycling from the conditional posterior distributions p(h | w, \,v,y),
plw | h, A\ v,y), p(A | h,w,v,y), and p(v | h,w, A, y). Each block is simulated as follows:

e p(h|w, A\, v,y): The model is rewritten

ve/V M = Vi, 2~ N(0,1)

loghy = a+dloghs 1 +oyv, t=1,...,T

Since y;/+/ At is observable, this is exactly the basic model in (1). We cycle from the conditional
distributions p(h; | yt, w, ht—1,hir1) in equation (3). We only need to replace y; with y;/v/ ;.
The blanket q used is that discussed in section 2.1.

e p(a,d,0, | h, A\, v,y): The h’s are a sufficient statistics for (e, d, 0, ). Therefore, as in the basic
model in (1), this step is a regression. The draws are the same as in the original algorithm.

¢ p(A|h,w,v,y): Note that p(A | h,w,v,y) = Hle p(At | ye, he, v,w). The fact that A is not
autocorrelated, unlike h;, is an essential identifying feature of the model. Then

Py, by vy w) = (i | %,u) ocp(% | A v) pOh | )



For Student-t, errors, the prior and posterior of A\; are

1 —v 2
PO V) & e e ~Ig(” )
A

g1 2’ v
1 2/h 1 2
PO b)) & lexp(—W) o e G
AT t Re TV

e p(v|\, h,w,y): Consider a prior distribution p(r). Note that p(v|\, h,w,y) ~ p(v|\) because
A is a sufficient statistic for . One can make direct draws from the posterior distribution of
v which is

T
p(vI\hwy) o p(v) [[p(Aelv)
t=1

v/2

T
o p(v) x (T/m) exp (—§2<%+logxt>) (6)

t

We now discuss the choice of priors and further document the behavior of the fat-tail model.

2.2.3 The Priors

First, we use the same specification of p(«, 6, 0, ) as in the basic model, i.e., a Normal-Gamma
prior as in a standard regression model. We truncate the prior for ¢ to force the stationarity of
log hy. In a simulation framework, this truncation is effected by rejecting posterior draws that
violate stationarity. Alternative priors for § are possible. Kim et al. (1998) use a Beta prior for 4.
One must be careful here not to unwittingly force a very tight prior around, say 0.9. This could
produce a false impression of convergence or precision of the algorithm. Our method of truncating
the posterior could be feared to be ineffective. We track the number of times we encounter and
reject draws of  above 1. For all the estimations performed on ten financial series, each with often
above 50000 draws, we encountered draws above 1 only twice after burn-in periods of 5000 draws.
This is independent of where the algorithm starts. The data are tremendously informative about
persistence but equally so in favor of stationarity.

An alternative view is that this is due to a phenomenon similar to that noted for near
non-stationarity in the mean, i.e., the likelihood goes to —oco as one approaches the unit root. On
the one hand the location estimates we obtain seem quite far from one for this to be the reason.
No matter what model we use, most location estimates are below 0.98, sometimes around 0.9. On
the other hand the non-stationarity of an unobserved latent variable has a more complex effect on
the likelihood than that of the observed mean process. Geweke (1994) discusses the plausibility
of flat priors as a function of the sampling interval. He proposes an alternate prior to allow the
formulation of odds ratios for non stationarity. Here we also believe for economic reasons that a non-
stationary stochastic volatility may be undesirable as well as unlikely. For example it would mean
that portfolio managers should permanently re-balance their portfolios, or traders permanently
re-adjust their option price, after a volatility shock. Also, Christoffersen and Diebold (1997) find
evidence in favor of stationarity in a model free context.



For simplicity we take the prior distribution p(v) to be uniform discrete on [5,30]. An upper
bound as low as 30 may seem surprising. The right plot of figure 2 shows the prior distribution
of VA for v € [5,80]. The difference between p(A|v = 30) and p(A\|v = 80) is not great. So,
excluding the higher values of v does not seem costly. Further, one may argue that a high upper
bound, say 60, implies an undesirably high prior probability on normality. For example, assume
that for practical purpose, one considers values of v above 20 to produce essentially normal errors.
Then a prior domain [5,60] implies a 73% prior belief on normality, whereas a prior domain [5, 30]
implies a 40% prior belief on normality. One may then worry that an upper bound of 30 affects
the behavior of the posterior in small sample, especially its upper quantiles. We will conduct a
sensitivity analysis to our choice of upper bound by reporting some results obtained with an upper
bound of 60.

The left plot of figure 2 illustrates the ability of the fat-tail model to generate marginal
distributions very different from the basic SVOL. It shows the quantile-quantile plot of densi-
ties generated by a basic and a fat-tail. Even a moderately low value of v, here 10, produces
data with markedly more fat-tailness than the basic SVOL data. The other parameters are,
§ = 0.95,Var(h)/E(h)? = 1. So the prior does not require an extremely low bound for v. The
right plot of figure 2 shows that for v = 5, there is a 5% prior probability of a v/\ larger than 2.14.
Values of v below 5 imply that the first four moments of ¢; are undefined. We believe this to be
extreme since there is already a time varying volatility. Also, Eraker, Jacquier, and Polson (1998)
mention possible convergence problems for very low values of v.

We note here an alternative way to decrease the implicit prior odds on normality; p(v) o<
e”9” discussed in Geweke (1993). A point of convenience in favor of the uniform prior is that the
resulting posterior p(v|y) is proportional to the marginal likelihood function for v namely p(y|v).
This provides a model selection criterion for conditional normality analogous to a Bayes factor. We
can then interpret the marginal posterior as the marginal likelihood for inference about v.

2.8 Correlated Errors and the Leverage Effect
2.3.1 The Model

We now discuss the correlation between €; and v;. Melino and Turnbull (1991) estimate this
model on exchange rates with the method of moments, see JPR (1994) and Andersen (1994) for
discussions on the sampling performance of the method of moments. The model may be particularly
important for stock returns. With a negative correlation, a decrease in price, i.e. a negative return
€, is likely to be associated with a positive variance shock v;. This produces the leverage effect. We
will show that it can also generate a significant amount of skewness in the marginal distribution
of returns. This addresses the skewness of the conditional distribution of returns mentioned in
Gallant, Hsieh, and Tauchen (1994). The model is

Yy = \/h_tfta (7)
loghy = a+dloghy 1 +opv, t=1,...,T

1
o ()

Figure 3 documents the behavior of the model. It shows that the marginal distributions



generated are very different from those generated by the basic SVOL. It also shows that the model
produces a degree of leverage effect and skewness as observed in stock returns. We simulated 8000
observations of a basic SVOL and a correlated model with p = —0.6. We choose a negative value
to explore the ability of the model to produce a leverage effect and the skewness observed in the
data.

The top right plot is a Q-Q plot of the two series. The strong skewness is apparent in the
asymmetric tails generated by the correlated model; fat on the left and thin on the right. That is,
over and above a basic SVOL model. The correlation should be modeled because its omission may
result in biases in volatility estimates and forecasts. For a given h; 1, a negative shock ¢; likely
results in a higher h; than a positive €; of the same size. This higher h; propagates into the future
via the persistence §. The larger ¢; is, the larger this effect is. Consider the 8000 data points. The
top left plot shows the boxplots of \/h; 1 after a positive and a negative €;. Volatilities are clearly
higher after a negative shocks. The asymmetry gets more pronounced as |e;| get larger. This is
shown in the last four boxplots where we concentrate on the larger |e;|’s. The bottom left plot
shows that the phenomenon is apparent in the data themselves. It shows the boxplots for |z441]-
The differences clearly occur in the bulk of the distribution and are not due to outliers. In fact, in
this sample the most extreme observations did not occur after very large shocks.

For comparison, the bottom right plot shows these boxplots for the daily value weighted
CRSP index return from 1962 to 1987. To avoid crushing the bodies of the distributions, we
removed the -20% return of October 19, 1987. Each pair of boxplots reveals the difference in
volatility on a day after negative versus positive shocks. The volatility also increases with the size
of z; while, in the bottom left plot it does not. This is because, for the simulated sample, we
allocate an observation to a boxplot on the basis of ¢, which we know since we know h;. This lets
us isolate somewhat the leverage effect. For the CRSP, we allocate on the basis of z;, the return
standardized by its unconditional variance. So we also see the SVOL effect: the size of x; is directly
related to h;. The leverage effect persists a long time. For the CRSP index, the standard deviation
of observations ten days after a z; < —2 is 24% larger than after z; > 2.

The basic model can not fit this phenomenon and most likely produces smoothed estimates
of h; that are too variable. This is because the larger h;’s coming along with negative shocks can
only be incorporated in the model with a higher o,. This may lead to the observation made that
“negative outliers are more frequent than positive outliers”. The fat-tailed model is also tricked. It
mistakes the negative observations for outliers. This results in a lower estimate of v, larger \;’s
and too low h;’s for the negative observations. This is because a fraction of h; goes into A; which
has no persistence. This in turn biases downward the predictions following these observations.

2.3.2 The Algorithm

In the correlated case, one needs to specify a prior in the space of covariance matrices where
one element is fixed, see below. Our approach allows us to make direct draws of (transformed)
parameters, see McCulloch et al. (1998) for another application. Let u; = oy, then ry = (€4, up)’
is the vector of noises for the correlated model. Consider its covariance matrix

o 1 poy
poy oy )’



The joint distribution of the data and the volatilities is then

T 3 T 3
p(y, o 5, 5%) o [] by ¥ p(-Y log hulher, @, 8,5%) = T[ by ?*7% exp (—1tr(z*—1A)) . ®)
t=1 \/h_t t=1 2

where A = ", ryr} is the residual matrix. The joint posterior p(h, ©*, o, d | y) is then

T 3 1
p(h, 5%, o, 8ly) o p(5*) p(e, 6) [ by 2[5*| 72 exp (—ﬁtr(ﬁ*_lflo (9)
t=1

Specifying the prior p(X*) is difficult because one element is fixed. One cannot use the standard
conjugate family, i.e., inverse Wishart, as it does not allow a subset of the elements to be fixed. We
model (o, p) jointly by considering the regression of u; on €;:

up = Peg + 1y, me ~ N(0,8).

1 and ) are the slope and noise variance of the regression, so 02 = 9?2 + Q and p = 9//92 + Q.
An additional intuition on this parameterization is gained by noticing the alternative formulation
for equation (7):

loghs = a+ 6loghy_1 + oyper + oy /1 — p?ny,

where 7; is a unit normal shock uncorrelated with ¢;. The parameters 1 = po, and Q = o2(1 — p?)
are apparent in this formulation. The prior on ¥* is now straightforward: p(X*) = p(¢|Q)p(Q).
In this regression setup, a normal-gamma prior is natural for (¢ | ), and Q. A draw of (p,0,) is
computed directly from the draw of (,2). We can now write the various blocks of the MCMC
algorithm.

e p(1,Qa,8,h,y): We note that |$*| = Q, and rewrite ¥* ! as a function of ¢ and Q:

w1 L[ % — 10\ _C 10
x 1_§<—¢ 1 )+<0 0)=5+(0 0)

Then it follows from (9) that

1 CA
p(, Qe 8, h,y) oc oo exp (tr(ﬂ )) (1, Q).

This is because a1; does not involve 1 or Q. We can now write tr(CA) = age1 + (1 — 1[3)2a11
where 1& = ajz/a11 and age1 = ag — a%z/an, to complete the square. Recall that A is a
function of a and 6. We specify a normal / inverse gamma prior p(Q2) ~ ZG(vg,vot3) and
p( | Q) ~ N(1ho, /po). The joint posterior of this regression step follows by conjugacy of
the prior:

P(¢|Qa @, 9, h, Y) ~ N (@Z, Q/(all + pO))
p(Qloy 8, hy) ~ TG (vo+T — 1,083 + a1 ) (10)

where ¢ = (a119+potbo) /(a114p0)- 0w and p are recovered through the inverse transformation.
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e p(a,d | ,Q,h,y): h and o, are sufficient statistics for this step. It is a regression where the
error variance o2 is known. Given the normal prior p(a, §) ~ N(Py, Ao2), a direct draw of
the posterior is made as for the basic model.

e p(h|y,Q,,d,y): As previously, we can break h into T components h; | hy—1, hyy1 due to the
AR(1) specification. It follows from the likelihood (8) that

_3 tr(Z*trrl) + tr(2* ey
p(he | hi—1, hi11, 5%, 0, 0,y) o< by * exp <— ( tr) 2( SELIAEY

Rewriting this in terms of (¢, Q) and after simplifications, we obtain

¢_2) _ (loghy — p)? @bytut) )

Q) T2/ vk

3
270 /i1

2
p(helhi—1, hir1, 9, y) o % exp (ﬂ(l +
where p; is the same as in equation (3), and we recall that u; = log hy —a—dlog hy—1. We now
consider the choice of the blanket ¢g. The power term and the first two terms in the exponent
can be treated as in the basic model, albeit with changes in the parameters. We approximate
the log-normal kernel by an inverse gamma and combine it to the inverse gamma kernel. The
resulting combined inverse gamma, and its parameters are

Q
Yoy 1 —2e1+5? POy41
G = din+054+ L T T L g5 oL
t o Qv/hit 1 — etts? Qi
2
Ay = (¢LN—1)6M+'51+% + %(1+%)
(o | Bt hosnsth, Quan) ~ TG (e, Ar) oc —— e/ (12)
q\hy t—1, N+1, P, 34, Yt ty LA hft+1 )

The question remains of the third term in the exponent of (11). Theoretical convergence
results offer little guidance on the effect of ignoring this term in the design of the blanket. If
we use the inverse gamma in (12), the Metropolis steps should adjust for the shape difference
via the acceptance probability in (2). Our experimentation showed that this convergence does
not occur for a practical number of draws. Figure 4 illustrates this. Consider typical values
of the parameters § = 0.95,V}, /E,zl =1, and a possibly large p = —0.6. We simulated samples
of this model and plotted p and q for various observations. For the observation used in figure
4, y;/+/hy = 2.02. The top left plot shows the (exact) p and the approximate p ignoring the
third term. The bottom left plot shows the first two terms in the exponent and the third
term, dotted line. Here ignoring the downward sloping third term leads to an overestimation
of the location of p. The top right plot shows p again, and q computed as in (12), dotted line.
The densities are normalized to sum to 1. This was done by simple univariate integration.
The vertical bars are the 57, 50", and 95" quantiles of p. One should find a better blanket
than (12).

The third term involves log h; and +/h;. Its approximation by an inverse gamma
was unstable. This is because it sometimes implies a mode at a very unrealistic value of h;.
Instead, we implement a very simple approximation of the third term as a linear function of
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1/hy. To do this, we computing its value in two points on either side of the mode, and then its
slope s. We then rewrite the kernel as %%s. We just subtract 1y:s/Q from A; in (12). This
simple modification which hardly adds CPU time, has a dramatic effect on performance. In
the top right plot in figure 4, the modified q in thick dashes now matches p very well. Another
way to assess the potential performance of an algorithm is to plot the ratio p/q. This ratio
drives acceptance and repeat probabilities. The flatter it is, the better the algorithm will
perform. The bottom right plot in figure 4 shows the dramatic improvement in p/q resulting
from the incorporation of the third term.

Without accounting for the third term, simulations showed that the algorithm sys-
tematically underestimated p. Typical posterior means would be as high as -0.2 for a true
p = —0.6 and several thousand observations. We also computed a measure of (lack of) flatness
for p/q, as the squared relative differences for p/q at the mode versus one point on each side.
This measure was then averaged across all draws and observations. The results confirmed
that the incorporation of the third term in q dramatically improves the flatness of p/q.

2.3.3 The Priors

Consider the parameters ¢ = o,p and Q = 02(1 — p?). The priors for ), and Q allow
flexibility in the implied priors for o, and p. The joint density of p, o, follows from the normal
gamma prior for 2,1 by a change of variables. It can be shown to be

W (_%(%P—TZJOV +V0t3>

v — s 13
plp, o) o - e (13

-

Even for the most general values of the hyper-parameters, the moments and shape of the
distribution are quickly implied by bivariate integration or simulation. When vy = 0, or if the prior
on (2 is diffuse, (13) simplifies considerably.

If 4 = 0, then p = 0 as well. If ¥)g = 0, the prior of p is symmetric around zero. pg is the
precision of 1. It has an intuitive and direct effect on p. When pq is very large, this implies a tight
prior for p. When py gets small, this results in a bimodal distribution for p since it is bounded.
This allows the specification of a prior in favor of a non zero correlation of either sign. For the
estimation, we chose 1y = 0, and py = 2.5. This value of py was low enough to allow large values
of p of either sign. For €2, we chose a very diffuse prior with 1 degree of freedom and a very small
sum of squares 0.005. This is consistent with the prior used for ¢, for the uncorrelated models.
Figure 5 shows the joint and marginal distribution of this prior. A close inspection of the marginal
for p shows a very small bimodality. One could be worried that the prior seems to taper off quickly
beyond 0.8. We will address this concern by overlaying our posterior histograms with the prior.
This will show that the data information overwhelms our prior for the series studied. If desired,
large values of p of either sign can be allowed by further decreasing the precision. This will be at
the cost of more bimodality, which is logical. As for €2, the degree to which the data may swamp
the prior can be anticipated by putting reasonable data values in the posterior in (10). v is much
smaller than T. The expectation of azo.; can be shown to be To2(1 — p?), i.e., 96002 for p = —0.6
and T' = 1500. This is orders of magnitude larger than our choice vpt3 = 0.005 for realistic values
of o,.
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2.4 Algorithm for Fat-tails and Correlation

The full model is

v = Vh ez, (14)

loghy = a+dloghs 1 +oyv, t=1,...,T
viXg ~ X12/

1
w61 7))

with prior p(e, d, 0y, v, p) as before. Consider extending the correlated model to allow for fat tails.
The extension is simple because of the hierarchical modeling. First, given ), replace y; with y;/v/A;
and the algorithm described in section 2.3 applies exactly. Second, h and y are sufficient statistics
to draw from the posteriors in (5) and (6). The iteration of these two steps constitutes the algorithm
of the full model.

2.5  Factor Model for Multivariate SVOL
2.5.1 The Model

A very popular approach to the modeling of homoskedastic covariance matrices in financial
application is a factor structure. The factor structure, widely used in asset pricing, reduces the
dimensionality of the parameter space. A MCMC algorithm for this model with constant variance is
implemented by Geweke and Zhou (1996). Here we allow for stochastic volatility in the factors. This
in turns allows for stochastic cross-correlations. This type of specification is needed in the study
of cross-sections of assets when dynamic factors are hypothesized to be priced. See for example
Uhlig (1997), and Jacquier, Polson, and Rossi (1995) for alternative multivariate specification.
See Engle, Ng, and Rothschild (1990) for an incorporation of the factor structure into the ARCH
framework. Harvey, Ruiz, and Shephard (1994) approximate the model in order to use the Kalman
filter. This unnecessary approximation, however exhibits poor performance even in univariate
setups. Finally Aguilar and West (1998) implement a model similar to the one below.

Consider g assets with returns y; = (yi¢, ..., yqt)! where 1 <t < T. Suppose that there are k
underlying time varying factors ¥y = (Fy, ..., Fi;)/ with variance covariance matrix Hy = diag(h;;).
These factors generate the returns according to

y. = BF,+Q 2¢, (15)
F;, ~ Nk(O,Ht)
loghyy = o;+ 0; log hi,t—l 4+ opve, 1=1,...,k
k
p(B,Qw) = p(Q) [[pBi)p(w:),
=1

where B = (By,...,By) is a matrix of factor loadings, and €; ~ N (0,1;). Let w = (..., @;, 8,05 .. .)
be the vector of volatility parameters and ¥, = diag(o;,) the matrix of volatilities. Then, this model
assumes that the £ underlying factors are independent of each other and follow a simple univariate
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stochastic volatility model. Under these assumptions we have a time-varying factor structure to
the evolution of the variance of the observations X, = BH;B' 4+ Q. We do not necessarily assume
that Q is diagonal, only that it is constant. That is, the k factors are introduced to model the
stochastic variation in the covariance matrix of ¥,,. The model will be simplified if one assumes
that Q is diagonal.

The product BF; does not identify B and F uniquely when the factors are not observable.
A common approach in the i.i.d. factor literature is to set the factor variance to 1. For example
this can be achieved here by setting o; = —0.502;/(1+6;). This is however not sufficient to identify
the parameters in B. See Geweke and Zhou (1996) and Aguilar and West (1998) for discussions
of the further restrictions on the number of parameters in B and the maximum number of factors
possible.

2.5.2 The Algorithm

With this specification of the covariance matrix, the posterior distribution 7 (F, B, w|y) can
be broken into k conditionals 7(F;|F_;,B,w,y), and the conditional 7(B,w|F,y). The first set of
conditionals is simulated via a simple transformation of the basic univariate algorithm. For the
model in (15), the joint posterior distribution conditional on the factors is

n(H,w,B,Q[F,y) o |2 % exp l—%tr (91 > (y: — BFY) (y: — BFt)ﬂ p(H|w)p(w)p(B, Q).

where p(H|w) is the product of independent log AR(1) volatilities and B, 2 has a standard matrix
normal/inverse Wishart prior distribution given by

p(BIQ) o |0 % exp (—%tr (271(B - Bo)Ao(B - BO))>
p() |Q|_VT0 exp (—%tr (Q_lBo))

for specified hyper-parameters (Ag, By, ).

We consider two cases. First, the underlying factors are observed as in the case of factor
mimicking portfolios or economic variables. Second, the factors are unobserved. In the first case, by
independence of the factors, the joint posterior of the volatilities and parameters, 7(B,H,w | F,y)
decomposes as a product

k
m(H,w, B, Q|F,y) = n(B, 2[F,y) [[ w(hi,wi[F)
=1

The individual terms 7 (h;,w;|F) can be generated with the univariate SVOL algorithm, with fat
tails if desired.
Then the density 7(B, Q|F,y) follows from standard conjugate multivariate analysis.

When F is unobserved we need to simulate from the joint posterior 7(H,w, B, Q, F|y). It is
broken into into the conditionals 7(H,w, B, Q|F,y), and n(F|B,Q,H,w,y). The first distribution
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reduces to the case with known factors since it is conditional on F. The second conditional can be
decomposed as

n(FB,Q,H,w,y) « p(F|H)p(y|F,B,Q) =pFH) ||ply:|F,BQ)

=

t

o |Q|_§ exp (—%tr (Q—l(y —BF)'(y — BF))) exp (—%tr (F'HF)) ,

1

where F = {F;}. This is a standard matrix normal multivariate distribution from which we can
make direct draws.

3 A Simulation Study

3.1 Parameter Settings

We have shown that, if present in the data, the extension of the conditional distribution can
have important practical consequences, for example on forecasts made with the model. We now
incorporate parameter estimation to further our argument that these extensions are crucial. We
do this by studying the sampling performance of the algorithms for various scenarios, or parameter
settings. First, we show that, even if the data are generated by the basic model, estimating the
extensions does not cause much performance deterioration. Then we show that if the extensions are
present in the data, ignoring them and estimating the basic model instead does lead to significant
performance deterioration. Finally, we show that the algorithms presented in section two above
can reliably retrieve the extended models and result in better smoothing, especially for outliers.

The basic idea is to document performance when one estimates the right model, and also
when one estimates the wrong model, i.e., the basic model when the data originate from an extended
model or vice-versa. There are clearly many such combinations and we report on a subset of these
for the sake of brevity. We will show results for both the parameters, table 1, and the smoothed
volatilities, table 2.

The top row of table 1 gives the parameter values common to all the settings. They are
§ = 0.95, Ep, = 0.0009, V},/E? = 1, the values in a central cell in JPR (1994) used by others as well.
Ep, and Vj, are the unconditional mean and variance of h;. They follow from the assumption that h;
is lognormally distributed. These are realistic values for financial series. For the extensions, v = 10
and p = —0.6 represent the presence of a strong deviation from the basic model. These deviations
are stronger actually found in the financial series. In this section, we set the domain of v at [5, 40]
when we estimate it. The table shows 5 sets of simulations. We will refer to them as setting 1 to
setting 5. Each setting includes 500 samples of either 500 or 1000 observations. For each sample
the estimation is based upon the 15000 draws that follow a burn-in period of 5000 draws.

3.2 Results

Consider setting 1, the basic model with sample size T = 500. The first two rows show the sample
mean and RMSE of the posterior mean as an estimator of the true parameter. These numbers are
from JPR (1994). The last three rows show the performance when we estimate v even though it is
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not needed since the data are generated by the basic model. The first row shows that this has no
effect on the bias of g, and §. The second row shows an increase in RMSE for 4, a decrease for o,.
However the RMSE’s remain small.

The third row shows a specification test based on the entire posterior not just the mean.
We report the percentage of samples for which a 50% and a 90% posterior credibility interval covers
the true value. The numbers in the third row for 6, o,, E}, prove the remarkable reliability of the
posterior uncertainty delivered by the algorithm. The coverage intervals for V},/ EZ shows the extent
to which the algorithm allocates some variation in volatility to A, slightly underestimating V},/E?.

We now look at the posterior mean of v. Its sampling average is high; 26. For v, the
second row reports the sampling average of the 3 quartiles of the posterior distribution. So, the
first quartile was 19 on average. The third row reports the percentage of the samples for which
the quartile was larger than 20. This tells us how much information we can hope to get on v for
a given sample size. Here, the median was above 20 for 89% of the samples. The fourth column
reports the sampling average of the posterior probability p(v < 20), here 31%. The two numbers
on the second row for p(v < 20) show the fraction of samples which resulted in p(v < 20) > 0.5
and > 0.75 respectively. In this case, only 10% of the samples produced a p(v < 20) above .5.

Overall, the results in setting 1 show that (1) the estimation of the fat-tail extension imposes
little cost on the parameters of the basic model, and (2) the posteriors for » unambiguously point
towards values above 20. This is even for a sample as small as T=>500.

Parameter setting 2 involves 500 samples of 500 observations with fat-tails (v = 10). The
inspection of &, 0y, Ep, E2/V}, shows the excellent performance of the algorithm. There are hardly
any biases and the RMSE’s are small. The 50% and 90% posterior credibility intervals are on
the mark for these parameters. The posterior means for Ej and V},/ E,QL show that the algorithm
allocates the right fraction of variability to h; versus A;. With only 500 observations, the posterior
mean of v is now below 20 on average. The evidence against normality is strong though not
overwhelming. The third row for v show that only 4% of the samples produce a posterior first
quartile above 20, which could be seen as misleading evidence in favor of normality. The posterior
distribution of v is indeed very different from that documented in setting 1 above. p(r < 20) is
now .58 on average. It is above .5 for 63% of the samples.

In setting 3, we consider v = 10 again, but with 1000 observations. The dramatic increase
in precision for all the parameters is documented by their sampling RMSE’s. The RMSE for §
is 0.02. The other RMSE’s are now a third less than for T=500 observations. The identification
of v also improves, albeit less dramatically. The posterior median of v is below 20 for only 71%
of the samples. Now 42% of the samples result in p(v < 20) > 0.75. For these samples, we also
estimated the basic model. This is the second set of numbers under setting 3 in table 1. Apart
from 4, all the posterior distributions now have important biases. As we might expect, o,, E}, and
Vn/ E,2L are overestimated. This is confirmed by the posterior credibility intervals. For example, a
50% credibility interval for E}, covers the true value for only 21% of the samples. A 90% credibility
interval for o, covers the true value for only 65% of the samples. So, not allowing for fat-tails when
they are present results in misspecified posteriors for the parameters of the basic model.

In setting 4, we study the estimation of the correlated model when the true p is -0.6.
This is arguably a very large value. The prior we use puts a relatively low weight on values of
lp € [-0.6,—1]. Yet, the sampling average of the posterior mean, -0.54, is close to this. The
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posterior of p delivers coverage intervals close to their theoretical values of 0.5 and 0.9. The
estimation of the other parameters does not suffer measurably from the introduction of p. Setting
5 shows the estimation of both p = —0.6 and v = 10 together in a full model. Again, the posteriors
for the parameters other than p and v are very well specified with little or no bias, low RMSE, and
good coverage intervals.

We now see that the introduction of p does not affect the performance for v. The average
posterior mean of v is 14. The average value of p(v < 20) is 0.79, and it is above 0.5 for 93% of the
samples. p however is affected by the introduction of v. This average posterior mean for p is now
-0.42, and the coverage intervals miss the value of -0.6. Nevertheless, the posterior mean is high
and the correlation is unambiguously identified at no cost for the other parameters. Classic tests
of convergence, such as the autocorrelation of the sequences of draws indicate that the algorithm
has converged. We also experimented with different starting points and longer sequences of draws.
Neither changed the results. However, a limited number of simulations, not included here, show
that the use of larger samples improves the posterior of p even when v is estimated. To an extent, v
and p compete for the interpretation of outliers, including the negative ones. Note that the sample
size T=1000 is much smaller that the shortest sample used in the empirical section. We discuss
this issue further in section 4.5.

Table 1 shows that (1) the costs of not estimating the extensions when they are present
is high, and (2) the costs of unnecessarily estimating the extensions when they are not present
are minor in comparison. The other stylized result apparent from these studies is that, with a
short sample of T=1000 or less, one may want to do some sensitivity analysis to better understand
the robustness of the posterior of p. We discuss this further in the empirical section. p and v
are probably revealed efficiently by only a subset of the observations. One may argue that the
parameters are only a vehicle for the really interesting use of the model; the estimation of the time
varying volatility. So we now document the performance of the algorithms with respect to the
volatility estimates.

Table 2 reports the smoothing performance for setting 3 where v = 10, and 7' = 1000. For
each observation we compute an error, equal to the difference between the posterior mean and the
true value. We do this for the standard deviation s; = /h:\; and for /h;. We then compute
the Root Mean Squared Error and the Relative Mean Absolute Error by averaging over the 1000
observations of the 500 samples. The last three columns show the results broken down by the size
of \¢. The first (last) three rows show the performance when estimating the fat-tail (basic) model.
The two models have very similar performance in fitting o;. This is actually not good for the basic
model because the key here is to fit /h; properly, recall figure 1. If the basic model fits s; nearly
as well as the fat-tail model, then it must result in a misspecified v/h;. The second and third rows
of results show the extent of the problem. In both absolute or relative terms, the fit of the basic
model for v/h; is significantly worse than that of the fat-tail model. It is worse by a factor of 21%
on average. The worst fit occurs for the observations with the larger \;’s. For example, the fit is
30% worse with A\; in the top 10 percent. This confirms that the use of the fat-tail model greatly
improves the quality of the volatility estimates.
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4 Empirical Applications: Equities and Exchange Rates

4.1 The Data

We now report the results of the analysis of weekly and daily financial series. There is
evidence in the literature that these series may have different volatility patterns. For example,
higher frequency series have been argued to exhibit more volatility persistence. Lower frequency
series have also been argued to exhibit less non-normality as the higher frequency jumps may
average out over time. The weekly series are the equal and value weighted CRSP indices and three
size sorted decile portfolios. We choose the first, tenth and fifth deciles, that is the 10% smallest
and largest firms as well as a representative index of medium size firms. The sample period goes
from 1962 to 1991. This constitute 1539 weekly returns. The returns are prefiltered for an AR(1)
component as in JPR (1994).

The daily series include two stock index returns and three exchange rates. Whereas one can
find good reasons for a leverage effect in equities, it is less clear with respect to exchange rates. The
stock indexes are the S&P500 from 1980 to 1987 filtered to remove calendar effects see Gallant et
al. (1992), and the CRSP value weighted index from 1962 to 1987. The latter is the dataset used by
Nelson in his work on EGARCH. It contains 6409 observations. The S&P500 index contains only
large firms while the CRSP index contains all the firms on the exchange. The exchange rates are
the £, Deutsche Mark, and Canadian dollar to the US dollar. The sample periods go from January
1975 to December 1986 for the Canadian dollar, that is 3010 observations. It is the series used in
Melino and Turnbull (1990) and JPR (1994). The £ and DM series go from January 1980 to June
1990, that is 2613 observations. We analyze the first difference of the logarithm of the exchange
rate series. They display essentially no autocorrelation.

We first report on the model with fat-tails and no correlations, tables 3 and 4. We then
report on the model with fat-tails and correlations in tables 5 and 6. This allows to include
our sensitivity analysis of the results as we discuss the posteriors. Further sensitivity analysis is
contained in table 7, including the estimation of the correlation model with no fat-tails.

4.2 Fat-tail Errors: Parameters

Let us first discuss the results of our analysis of the fat-tailed model of section 2.2 The
degrees of freedom parameter v will provide an inference on the severity of the departure from
normality. Table 3 summarizes the posterior distribution of the parameters for the weekly series.
Table 4 shows the results for the daily series.

Consider first the weekly data. The decile results show that the volatility of the smaller
firms is less persistent, see the posterior means ¢ for d1, d5, d10. Also, the smaller firms exhibit a
higher volatility of volatility. This is shown by the posterior means of o, and V},/EZ for d1, d5, and
d10. Table 3 also provides posterior means for 6,0, and V},/E? from the basic model. It confirms
that the introduction of v has lowered the posterior estimates of the volatility of volatility. This
is revealed by the comparison of o, and V},/EZ for EW, VW, d5, d10. A fraction of what was
construed in the basic model as volatility of volatility is now reallocated to the A:’s.

We now turn to the posterior distribution of v. They are all centered at or below 21. The
smaller firms, represented in EW and d1, exhibit the thickest tails. The odds ratios of v < 20/v > 20

18



confirm this. Recall that our prior distribution on v implies a prior ratio of 1.5 to 1. These results
also confirm the simulations. One should not expect extreme precision in the inference on v. The
posterior distributions are relatively spread out. This might cause estimation difficulties for a
maximization approach to estimation. See Gallant, Hsieh and Tauchen (1994) for a discussion of
these problems. However, the MCMC estimator does not get stuck on a flat area of the likelihood
surface. Instead, it simply navigates across the flat and provides a valid representation of the
posterior uncertainty.

One might argue that the results are hard to interpret because of the choice of prior domain
[5, 30]. How strong is the evidence against normality? We conduct a sensitivity analysis by
estimating the models with v € [5,60]. The results are reported in the last row of table 3 (and 4).
The difference between small and large firm portfolios is now clear. The upper bound at 30 did not
significantly affect inference for EW and d1, which posterior location have not changed. However,
the posterior means for VW, d5, and d10 have moved up to 25, with 95" percentile around 57.
Also, the prior specification on v did not affect the other parameters. So we do not report them.
Note finally that even for VW, d5, and d10, that have relatively high values of v, the mere freeing
of v hence of \; produces estimates of o, and V},/ E,QL lower than with the basic model.

Table 4 reports the daily results. The persistence of daily series does seem higher, as shown
by 6. This is however by no means an overwhelming pattern. The evidence of low v is very strong
for the exchange rates and the daily S&P500. The Canadian $ results depart from this pattern.
The posterior mean of v is 26. There appears to be mass close to the upper bound. This is reflected
in the posterior odds ratio of 0.13 to 1 in favor of v > 20. The last row contains the estimation
with v € [5,60]. The posterior mean for v is then 47. For the other series, the posteriors are not
affected by the choice of domain for v.

The comparison of the S&P500 and the CRSP index is also interesting. The S&P500
exhibits more fat-tailness than the CRSP. This can be due to the fact that the S&P estimates are
for 1980-1987 only. A day such as in October 19, 87 may have more weight than in the CRSP
estimation which includes 35 years of data.

The data provide strong evidence against normality. However, they do not support a very
low degree of freedom for the Student-t distribution. This is in contrast with the findings of the
ARCH literature. As we might expect, after the extra mixing induced by the SVOL model results in
somewhat less fat-tailed conditional distributions than the ARCH models. Still it does in no ways
obviate the need to model the fat-tailness of this conditional distribution. Finally, even though the
estimated persistence of the fat-tailed models is often higher than that of the basic model, there is
still no hint of non stationarity in volatility even for daily data.

We now show one diagnostic which confirms that the data do not require very low degrees
of freedoms. Consider the S&P 500 daily returns. We generate the marginal distribution of the
fat-tail SVOL model by simulating 500 samples from the model, with parameters equal to the
posterior means in table 4. We sort each sample. Then we average the sorted observations over the
samples. This produces an empirical estimate of the quantiles of the marginal distribution of the
fat-tail SVOL. We use it in a qq-plot against the actual data. We omit the -20% return of Oct 19,
1987 in order to make the Q-Q plot more informative. Granted that no model fits that day very
well, a plot including it prevents us from seeing how well the rest of the distribution is fitted.

The top plot of figure 6 shows the Q-Q plots of the returns versus the marginal distribution of
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the fat-tail model with the parameters as in table 4. We then build another marginal distribution
using v = 5 instead. The bottom plot shows a Q-Q plot of that distribution against the stock
S&P500 returns. The straight line is a 45 degree line along which the plot should be in case
of perfect distributional equality. The dotted line is a least square fit lines. It allows to ignore
differences in unconditional mean and variance and concentrate on the fit of higher moments. The
top panel shows the close fit between the marginal distribution of the data and the fat-tail SVOL
model estimated in table 4. The bottom plot shows that a smaller value of v leads to a very
poor fit even in the bulk of the distribution. First, this confirms the difference between SVOL and
ARCH models for which very low degrees of freedoms were required in the conditional distribution.
Second, it confirms that the algorithm converges on appropriate values for v. Very small values of
v would be unreasonable and most likely the result of a convergence failure.

4.8 Scale Parameters )\

A unique feature of our hierarchical framework is the ability to infer about the draws of the
scale-mixing parameter )\;, for each observation. This is a convenient method of outlier analysis
which we document. If a particular observation is outlying, the model centers the posterior p(\; | y)
at a large value. This re-weighs the outlier and brings p(h; | y) more in line with the rest of the
observations. We can then identify outliers by looking at each marginal posterior p(A¢]y).

The top plot of Figure 7 shows the daily S&P 500 index returns. Obviously, October 19,
1987 is easily detected by a mere time series plot of the series. Other observations which are
outlying in terms of the pattern of returns around a given time period may be more difficult to
detect. The bottom plot show the daily posterior means E(); | y). This estimation was done with
v fixed. For robustness of the result we estimated p as well, see the next section and table 7 for
the parameter estimates. We note that the outlier diagnostic does not require the estimation of v.
The implied prior on v/A; | ¥ = 15 can be seen in figure 2. It is quite spread out. This prior mean
is the horizontal line on the bottom plot of figure 7. Higher quantiles could be plotted and this
would allow for the flagging of outlying observation.

4.4 Correlated and Fat-tailed Errors

We now augment the fat-tail model and allow for correlated errors. Tables 5 and 6 summarize
the posterior distributions for the correlated case for the weekly and daily series. In table 6, we
add estimates for the CRSP return for the period 80-87. This is to match the S&P500 estimation
period. Recall that the daily CRSP value-weighted is the series used in Nelson’s seminal (1991)
paper where he introduces the EGARCH model with asymmetric conditional variance.

Nelson’s estimates of the EGARCH parameters are on the edge of non-stationarity. This
is the case for most GARCH estimates as well. Compare the persistences in tables 5 and 6, with
those in tables 3 and 4. Despite differences in point estimates, there is still no evidence of unit
roots in the volatility equation. The posteriors damp down near 1 and no appreciable mass is put
on the region above .99. This occurs in spite of a prior which is locally uniform around 1.0. So the
introduction of the correlation has not appreciably affected the persistence. The difference between
the persistences reported by ARCH and SVOL models is robust to the class of SVOL model used.
Our results are consistent with the model free conclusions of Christoffersen and Diebold (1997).
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We now look at the correlation p. It is large, in the vicinity of -0.4 for all weekly stock
indexes, albeit a bit smaller for the small firm index. The correlation for the daily CRSP return
over the 38 year period is also high, -0.43. It is lower for the daily S&P500, only -0.18. Even then,
the evidence of leverage effect is overwhelming. The posterior probability of p < 0 is equal to 0.96.
The posterior mean of p for the CRSP from 1980 to 1987 is -0.23. It is consistent with the S&P500
for the same period, and lower than the estimate for the entire 38 year period. This casts some
doubt over the assumption of constant parameters over 38 years for the daily data. The posterior
mean of § for the 80-87 period is 0.978, lower than the value of 0.989 of the 38 year period. This
is also consistent with some parameter shift. However the two posterior stil have large overlaps as
shown by their quantiles.

The leverage effect is significantly lower for exchange rates, -0.02 for the Deutsche Mark,
-0.13 for the British Pound. The Canadian dollar again stands as an oddity with p = —0.29, more
like an equity than an exchange rate. One could conceive of a leverage effect for an exchange rate.
This would require some economic rationale to attributes a consistent meaning to the direction of
the rate over the sample period. This may be the reason why the Canadian rate exhibits a behavior
different from, say, the Deutsche Mark. Note that p is precisely estimated. Recall that we use the
refinement described in section 2.3.2 for the blanket g(h;|.). Without it, the standard deviation of
p for the CRSP return would not be around 0.04 as in table 6, but 0.16.

We now discuss the estimates for v. They differ sometimes from those in tables 3 and 4, but
not in a significant manner. For the weekly returns, the posterior means in table 5 (p estimated)
are close to those reported in table 3. The evidence for v < 20 which was already strong for EW
is now stronger. For VW and d10, the evidence was weak, it is now weaker. These effects are not
dramatic however. Table 6 shows strong evidence in favor of v < 20 for both the CRSP 80-87 and
the daily S&P500, and for the exchange rates. The exception was the Canadian dollar. It still is.
The introduction of p does not affect the posterior distribution of v which is nearly identical to
that in table 4. So, the introduction of p does not remove the need for fat-tailness where it was
documented in the pure fat-tail models. The odds ratios for normality are qualitatively similar to
those of tables 3 and 4.

We also note that the variances of the various posterior distributions in tables 5 and 6 are
of similar to those in tables 3 and 4. This shows that the introduction of p has not decreased
the precision of estimation of the other parameters. This confirms the simulation result discussed
earlier, that the introduction of the additional parameters does not adversely affect the estimation
of the basic model parameters.

We have taken a practical view that v > 20 resulted in error nearly normal error distribu-
tions. We now allow for the different view that normality is only when v = oco. This is on the basis
that even for v > 20, the model estimated does not behave as the basic model owing to the freedom
left to the A¢’s. Under this strict view, one may argue that the odds ratios shown in tables 3 to 6,
p(v < 20)/p(v > 20) are not very interesting. We address this issue as follows. We generate the
posterior distribution of v resulting from the estimation of a fat-tail model when the data are in
fact generated by the basic model. This posterior distribution is a function of the sample size, and
the prior chosen for v, which we both control for. To achieve stability we generate multiple samples
of the basic model and 20000 draws of the posteriors for each sample. We can then compare this
normal-errors based posterior to the data-based posterior.

In figure 8, we plot the posterior distributions for v and p. We overlay v with the diffuse
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prior which we used and the normal-errors based posterior discussed above. Consider the left plots
showing the posteriors and prior for v. The dots represent the normal-errors based posterior. The
evidence easy to interpret. The weekly EW errors, top plot, are unambiguously fat-tailed. The
data have in fact moved us from the flat prior, i.e. the horizontal line, away from the normal-based
posterior, not toward it. For the weekly VW returns, the data seem to have actually moved us
toward the normal-based posterior. The errors of the daily VW index, bottom plot, on the other
hand have evidence some fat-tailness, clearly centered around 20. The bottom plot of figure 8c
represents the Canadian Dollar. This is an extreme, and only, example of the data pointing toward
strict normality. The posterior is undistinguishable from what would obtain, had the data been
generated by the basic SVOL model.

4.5 Posterior Sensitivity and Convergence

We use figure 8 to highlight the difference between the prior and posterior distributions for
p as well. The right plots show the posterior and prior for p. This serve to reassure us that our
prior did not prevent the data from producing larger values of p. In fact, the prior which we chose
is nearly locally uniform for each of the 8 series plotted.

We conducted diagnostics on the convergence and information content of the chain for all
the estimations presented here. The autocorrelations of the new parameters were not high. The
autocorrelation of p in general starts below 0.6 and decays very fast. Further, the distributions
obtained are always stable. We check this by computing the quantiles for various subsamples of the
whole chain, and verifying their stability. We use an over-cautious burn-in period of 5000 draws.
In nearly all of the cases a few hundred draws would have been more than enough to dissipate even
ludicrous initial conditions.

The autocorrelation of the )\;’s were close to 0 even at lag 1. The time series plots of v
shows that it navigated the entire space for the results which we present here. One must warn
that in some instances, the draws of v can lock into the lower bound of the domain and never
escape. This is obviously easily detected, see Eraker et al. (1998). Here we used a lower bound of
5, as discussed in section 2. However, tests based on a single run may fail to uncover convergence
problems. The evidence from the sampling behavior of the posterior distribution is a much more
robust test of convergence. Note that even there, an unfavorable result may be hard to interpret.
This is because nothing guarantees that a posterior mean should be unbiased in small sample. So
a biased sampling behavior may result from proper convergence to a biased posterior or failure of
convergence to an unbiased posterior.

We now provide further evidence of the reliability of the posterior distributions of p for the
series studied. This evidence is independent from convergence tests based upon the sequence of
draws. Recall that our simulation experiments revealed some bias in the posterior of p when both
p and v are estimated, while there was no such bias for the correlated normal errors model. We
might be concerned that the treatment of v affects the inference on p.

To address this concern, we conducted a sensitivity analysis of the posterior of p (and other
parameters) to the treatment of v. Table 7 reports the posterior 5, 50", and 95" quantiles of
p; Ep, Vi, /E} for three models for each series. The first model is with correlated normal errors.
The second fixes v = 15 and estimates the A;’s. The value 15 was chosen to represent a fairly
low value of v while leaving it fixed. The third model recalls the full model estimates of tables 5
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and 6 for easy comparison. The last column of table 7 shows that the posterior distributions of
p are not affected by the treatment of v. That is, whether v is large or small, and whether there
is uncertainty about it or not, does not change the inference on p for these series. This further
confirms that the posteriors of p for the full model have converged.

There may be two reasons for this difference with the simulation results. Recall that in the
simulation we had a high true p of -0.6 and a sample size T' = 1000. First, the combination of the
large p and the small sample size (relative to the financial series), may have caused the prior to
shrink p away from -0.6. This phenomenom may not be present with longer series better described
with smaller values of p. Second, the smaller sample size used in the simulations may allow for an
interaction (uncertainty) between the effect of v and p when both are free. The larger sample sizes
of the financial series provide enough information to resolve this interaction. This indicates merely
that it is difficult to identify p from v in small samples.

Finally table 7 shows that the basic model parameters react to the treatment of v, exactly
in the expected manner. The central columns report the distributions of d, E and V},/ E,% for the
three models. For each series, the first row is the normal errors model (v = 0o0). The second row
then shows the results for the full model if the posterior mean of v is larger than 15. Otherwise
the second row shows the result of the model with a fixed v = 15. So for each series, going from
row 1 to row 3 represents decreasing values of v. Of course one must remember that for the full
model, v navigates around its posterior mean with draws above and below 15. The inspection of
the column V},/E2 reveals the pervasive fact that the lower v is, the lower the volatility of volatility
is. Similarly, a lower v is often associated with a higher ¢ and a lower average variance E},.

5 Conclusion

A Bayesian hierarchical approach to the modeling of stochastic volatility is presented.
MCMC algorithms coupled with data augmentation are developed. This allows for efficient pa-
rameter and volatility estimation for a large class of stochastic volatility models. This approach
also provides an outlier diagnostic and a diagnostic for assessing conditional normality. Namely,
we implement this framework for two major extensions of the basic stochastic volatility model,
fat-tailed conditional errors and a correlation between conditional observable and variance errors,
i.e., the leverage effect. We describe an algorithm for multivariate stochastic volatility models, see
Aguilar and West (1998) for an implementation.

We show that these extensions can produce very different volatility patterns from the basic
SVOL model, and the failure to incorporate them can lead to dangerously biased forecasts. We
document the performance of the algorithm. First, we show that the incorporation of the extensions
does not have an adverse effect on the estimation of the basic parameters even if the extensions
are unwarranted. Second, the algorithm retrieves the extension parameters and the volatilities
efficiently, effectively leading to predictions significantly different from the basic SVOL model.

The empirical analysis performed for weekly and daily financial series shows that the distri-
butional extensions modeled are pervasive in the data. These extensions do modify the prediction
of variance, most significantly during the periods of high variances or around isolated outliers. Eco-
nomic models based on variance forecasts, especially asset allocation, risk management, and short
term option pricing will most benefit from the incorporation of these extensions. They in fact give
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flexibility to the first four moments of the conditional distribution of returns or growth rates, while
keeping the model parsimomious.

The algorithm which we implemented is reliable and fast. The extensions have been mod-
elled so has to involve direct uncorrelated draws of the additional parameters. For example, on a
360 Mhz workstation, for a sample size of 1000 observations, 15000 draws of the full model were gen-
erated in 7 minutes. A fruitful avenue for future research would be the parsimonious incorporation
of these features in multivariate models of stochastic volatility.
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Table 1
Sampling Performance of the Algorithms: Parameters

5: 0.95 | o, 0.26 v: 10 ‘ Prob(v < 20) ‘ p: -0.6 ‘ Ep: 9 x10~* Va1
Setting 1: Basic Model, T=500

Estimate basic model

0.92 0.28
0.046 0.065
Estimate v
0.92 0.24 26 0.31 0.86 0.93
0.075 0.06 19 26 33 0.24 0.74
50 90 49 91 40 101 47 88 40 81
Setting 2: Fat tails only, v = 10, p = 0, T = 500
Estimate v
0.92 0.25 19 0.58 1.00 1.03
0.09 0.06 12 17 25 0.32 0.67
49 91 49 90 4 63 26 46 87 44 85
Setting 3: Fat tails only, v = 10, p = 0, T = 1000
Estimate v
0.94 0.26 18 0.65 0.98 1.02
0.02 0.04 12 16 22 0.21 0.40
48 91 52 90 5 71 42 45 86 43 84
Estimate basic model
0.93 0.31 1.16 1.19
0.03 0.064 0.34 0.46
3173 26 65 21 60 45 88
Setting 4: Correlation only, p = -0.6, T = 1000
0.94 0.27 -0.54 0.92 1.00
0.023 0.034 0.09 0.18 0.33
40 81 48 87 41 81 45 87 47 89
Setting 5: Fat tails and correlation, v = 10, p= -0.6, T = 1000
0.94 0.27 14 0.79 -0.42 0.93 1.02
0.025 0.039 10 14 18 0.19 0.19 0.34
41 83 49 91 0 93 61 210 52 87 49 91

The sampling distributions are based on 500 samples simulated for each parameter setting numbered
1 to 5. For each sample, the posterior quantities are based on 15000 draws of the samplers, after discarding
up to 5000 draws. The header row indicates the parameter values used. For each model, the first row
reports the sampling average of the posterior means. The second row is the sampling RMSE of the
posterior mean. The two numbers in the third row are the percentage of samples for which a 50% and
90% credibility intervals covered the true value. For v, the second row is the average of the 25t 50k,
and 75" percentiles, and the third row is the percentage of the samples for which the 25" percentile
was larger than 20. The column after v reports the average of the posterior probabilities Prob(v < 20),
and below it, the percentage of samples for which this probability was larger than 0.5, and 0.75.

26



Table 2
Sampling Performance of the Algorithms: Smoothing

Criterion Parameter |  All Top 50% A¢’s  Top 10% A’s  Top 5% A¢’s
v estimated

RMSE s; 0.01043 0.01207 0.01978 0.02372
RMSE A, 0.00713 0.00723 0.00762 0.00786
MAE % +/h: 21.4 22.1 23.7 24.6
Basic model estimated
RMSE s; 0.01065 0.01196 0.01981 0.02394
RMSE h; 0.00823 0.00860 0.00975 0.01037
MAE % +h: 25.9 27.3 30.6 32.3
Nobs 500000 250785 50441 25159

The sampling distributions are based on the 500 samples of dataset 3 of table 1. That
is, § = 0.95,V;,/E7 =1,v =10,p = 0,T = 1000. We report the Root Mean Squared Error
and the Relative Mean Absolute Error for the posterior means as estimators of v/h; and
s = v/hy x A¢. This is done for all the observations, and for those with \; larger than the
50%", 10" and 5" percentile of the prior p(A| v =10.
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Table 3

Posterior Analysis for Weekly Series - Fat Tails Model

EW VW d1 d5 d10
5 0.960 0.959 0.914 0.935 0.959
basic 0.91 0.95 0.93 0.91 0.93
(0.016) (0.014) (0.025) (0.016) (0.014)
0.931, 0.982 | 0.935, 0.979 | 0.872, 0.956 | 0.906, 0.959 | 0.89, 0.97
oy 0.21 0.20 0.34 0.26 0.20
basic 0.39 0.23 0.32 0.32 0.29
(0.044) (0.035) (0.06) (0.04) (0.04)
0.14,029 | 0.15,0.26 | 0.24,043 | 0.20,0.33 | 0.15,0.27
o 0.82 0.71 1.11 0.76 0.72
h
basic 1.61 0.80 1.10 0.92 0.93
(0.23) (0.19) (0.25) (0.17) (0.19)
047,1.36 | 0.43,1.17 | 0.71,1.66 | 0.50,1.15 | 0.44,1.19
Ej, x 10° 0.43 0.42 0.58 0.46 0.44
(0.07) (0.06) (0.07) (0.05) (0.06)
0.32,0.60 | 0.32,0.55 | 0.46,0.73 | 0.37,0.58 | 0.34, 0.57
v <3l 15 19 18 19 21
(6.1) (13.7) (6.4) (6.0) (5.4)
8,14,27 | 10,19,29 | 8,17,29 | 10,18,29 |12,21,29
e 2.1 1.42 2.02 1.67 0.91
v <61 15 25 19 25 25
8,13,37 | 12,20,57 | 9,18,29 | 10,20,57 |10, 21,57

The first number is the posterior mean. For 4,0, and Vh/E,ZL, the second row is the posterior
mean from the basic model, see JPR, (1994). Then the number between parentheses is the posterior
standard deviation. The two numbers below are the posterior 5" and 95" quantiles. For v we
also give the posterior median, and the results based upon prior bounds at 30 and 60. p is fixed at
0. EW = Equal-weighted NYSE; VW = Value-weighted NYSE; d1 = small, d5 = medium, d10 =
large firms; weekly returns, 7/62-12/91. T = 1539. Returns are prefiltered to remove AR(1) and

monthly seasonals from the mean equation.
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Table 4

Posterior Analysis for Daily Series - Fat Tails Model

CRSP SP500 UK.Z DM CDS$
5 0.989 0.954 0.98 0.967 0.951
basic 0.97 0.96 0.95 0.95
(0.003) (0.013) (0.006) (0.009) (0.010)
0.984, 0.993 | 0.931, 0.973 | 0.970, 0.990 | 0.949, 0.979 | 0.934, 0.962
T 0.127 0.218 0.11 0.167 0.255
basic 0.17 0.17 0.13 0.26
(0.01) (0.025) (0.017) (0.023) (0.027)
0.108,0.145 | 0.17,0.26 | 0.086,0.141 | 0.134,0.21 | 0.22,0.30
o 1.12 0.73 0.43 0.53 1.02
h
basic 0.54 0.52 0.69 1.10
(0.27) (0.15) (0.12) (0.11) (0.18)
0.74,1.78 | 0.50,1.07 | 0.27,0.72 | 0.35,0.79 | 0.73,1.41
E, x10% x1 x10% x10% x10°
0.61 1.01 0.38 0.42 0.50
(0.09) (0.12) (0.05) (0.04) (0.05)
047,082 | 0.81,1.26 | 0.30,0.49 | 0.34,0.51 | 0.42,0.61
v <31 19 13 9 11 26
(4.2) (4.7) (1.8) (3.2) (3.7)
13,18,27 | 8,12, 21 7,9, 14 8,11,17 | 18, 26,30
P(v<20
P 1.45 17.5 331 51.6 0.13
v <61 21 11 10 11 47
13,20,35 | 7,10,17 | 7,10,15 | 8,12,19 | 28,49, 60
Nobs 6409 2023 2613 2613 3010

The results shown are as in table 3. CRSP: daily VW returns from 1962 to 1987. S&P500-
daily change in log of the index, filtered to remove calendar effects, see Gallant, Rossi, and
Tauchen (1992); 1/2/80-12/30/87. UK £ and DM/$ daily noon spot rates (log change) from
the board of Governors of the Federal Reserve System, supplied by David Hsieh; 1/2/80-5/31/90.
CDS$ daily noon interbank market spot rates from Bank of Canada supplied by Melino and Turn-
bull (1990); 1/2/75-12/10/86.
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Table 5

Posterior Analysis for Weekly Series - Full Model

EW VW d1 d5 d10
5 0.965 0.962 0.90 0.931 0.950
(0.009) (0.01) (0.027) (0.017) (0.014)
0.949, 0.979 | 0.945, 0.977 | 0.851, 0.940 | 0.901, 0.956 | 0.925, 0.972
oy 0.21 0.208 0.39 0.28 0.23
(0.02) (0.019) (0.06) (0.03) (0.03)
0.176,0.245 | 0.177,0.240 | 0.29,0.48 | 0.23,0.34 | 0.18,0.29
2 0.95 0.84 1.22 0.85 0.79
(0.26) (0.22) (0.25) (0.18) (0.19)
0.58,1.62 | 0.53,1.38 | 0.81,1.77 | 0.58,1.26 | 0.50,1.25
Ep x 10° 0.49 0.48 0.59 0.46 0.44
(0.08) (0.07) (0.07) (0.05) (0.06)
0.36,0.67 | 0.32,0.55 | 0.47,0.74 | 0.37,0.58 | 0.34,0.56
v <31 16 23 20 18 21
(4.9) (4.8) (6.3) (6.0) (5)
9,15,25 | 14,23,30 | 9,20, 29 9,17,29 | 12,21, 29
P(v<20
— 4.5 0.5 1 1.85 0.8
p -0.41 -0.44 -0.16 -0.44 -0.40
(0.06) (0.07) (0.06) (0.06) (0.07)
-0.52,-0.30 | -0.54,-0.33 | -0.26,-0.06 | -0.54,-0.34 | -0.52,-0.26
P(p<0) 1 1 0.994 1 1

The first number is the posterior mean. The number between parentheses is the posterior
standard deviation. The two numbers between brackets are the posterior 5" and 95" quantiles.

For v we also give the posterior median. The series analyzed are as in Table 3.

30



Table 6

Posterior Analysis for Daily Series - Full Model

CRSP CRSP SP500 UK.Z DM CDS$
80-87
3 0.989 0.978 0.971 0.970 0.962 0.957
(0.002) (0.01) (0.008) (0.008) (0.009) (0.009)
0.984, 0.992 | 0.959, 0.992 | 0.957, 0.982 | 0.957, 0.981 | 0.948, 0.974 | 0.941, 0.972
S 0.131 0.124 0.139 0.14 0.174 0.243
(0.01) (0.028) (0.020) (0.021) (0.021) (0.025)
0.117,0.147 | 0.09,0.18 | 0.11,0.174 | 0.111,0.175 | 0.14,0.212 | 0.21,0.29
o 1.20 0.49 0.42 0.43 0.51 1.05
(0.28) (0.15) (0.10) (0.12) (0.10) (0.20)
0.81,1.89 | 029,088 | 027,065 | 0.27,0.72 | 0.350.74 | 0.75,1.50
E, x10% x10% x1 x10% x10% x10°
0.62 0.70 0.97 0.39 0.41 0.51
(0.094) (0.11) (0.11) (0.05) (0.04) (0.05)
0.46,0.84 | 053,095 | 0.78,1.20 | 0.32,047 | 0.34,0.50 | 0.42,0.63
v <31 20 10 16 11 12 24
(4.2) (2.6) (5.2) (2.8) (3.7) (2.4)
14,20,28 | 7,10,15 | 9,15,26 | 7,10,16 | 8,11,19 | 18,26,30
P(r<20
P 1.4 25 4.1 149.9 26 0.15
p -0.48 -0.23 -0.18 -0.13 -0.018 -0.29
(0.04) (0.08) (0.09) (0.08) (0.07) (0.06)
-0.54,-0.42 | -0.37,-0.08 | -0.33,-0.02 | -0.26,-0.00 | -0.14, 0.097 | -0.38, -0.20
P(p <0) 1 0.99 0.96 0.953 0.59 1
Nobs 6409 2023 2023 2613 2613 3010

The numbers are as in table 5. The series analyzed are as in table 4. The second series is the CRSP index

returns from 1980 to 1987.
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Table 7
Sensitivity of posteriors to the treatment of v

v 1) % Ey p
EW 00 910 .937 .958 | .72 1.03 1.6 | .40 .495 .64 | -.55-.45-.35
15 917 .944 965 | .65 0.95 1.5 | .35 .434 .57 | -.55-.46 -.36

free (15) | .949 .965 .979 | .58 0.89 1.6 | .36 .476 .67 | -.52-.42-.30

Vw () 916 .944 965 | .61 0.88 1.4 | .38 .470 .61 | -.58 -.47 -.36
free (23) | .945 .962 .977 | .53 0.79 1.4 | .32 .470 .55 | -.54 -.44 -.33

15 922 .948 .967 | .53 0.80 1.3 | .33 .409 .53 | -.56 -.47 -.35

D1 () .855 .893 .925 | .92 1.27 1.8 | .55 .655 .81 | -.23 -.14 -.04

free (20) | .851 .898 .940 | .81 1.19 1.8 | .47 .589 .74 | -.26 -.16 -.06
15 874 .912 .944 | .76 1.09 1.6 | .47 .570 .72 | -.26 -.16 -.05

D10 () 918 .944 964 | .57 0.84 1.3 | .39 478 62 | -.51 -.39 -.27
free (21) | .925 .951 .972 | .50 0.76 1.3 | .34 .430 .56 | -.52-.40 -.26
15 928 954 974 | 490.741.2 | .34 418 .55 | -.52-.41-29

SP500 () .947 968 982 | .350.52 .84 | .92 1.121.4 | -.35-.22-.07
free (16) | .957 .972 982 | .27 0.41 .65 | .78 .959 1.2 | -.33 -.18 -.02

15 968 .981 .991 | .29 0.46 .88 | .77 .977 1.3 | -.35-.21-.05

CRSP (o) 984 .988 .992 | .85 1.191.9 | .54 .680 .93 | -.56 -.51 -.45
free (20) | .984 .989 .992 | .81 1.14 1.9 | .46 .611 .84 | -.54 -.48 -.42

15 984 .989 .992 | .80 1.13 1.9 | .46 .592 .81 | -.53 -.47 -41

UK £ () 932 .960 .978 | .39 0.56 .82 | .41 .485 .59 | -.25-.13-.01

15 965 .979 .990 | .28 0.44 .76 | .34 .415 .53 | -.29-.16 -.03
free (10) | .957 .971 .981 | .27 0.42 .72 | .32 .385 .47 | -.26 -.13 -.00

DM 00 932 .953 .968 | .45 0.61 .88 | .43 .503 .60 | -.11-.04 +.10
15 944 .962 .976 | .39 0.55 .82 | .37 .437 .53 | -.13-.02 +.09
free (11) | .948 .962 .974 | .35 0.50 .74 | .34 .408 .50 | -.14 -.02 +.10

Three models are estimated. The first model fixes all A\¢’s to 1. v is mentioned as co. The second fixes
v = 15 but estimates the A¢’s. The third model is the full model. It is the row where v is mentioned as free.
The number in parentheses is the posterior mean of v. For each series, we show first the model with v = co.
Then we show the full model if the posterior mean of v is larger than 15. Otherwise we show the model
with v = 15 fixed. For the other parameters, the three numbers are the 5", 50", and 95" percentiles.
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Figure 2: Fat Tail - nu=10 vs Basic SVOL Model
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Figure 6: SP500 Daily Returns vs Marginal SVOL Distributions
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Figure 8a: Stock Market Indexes, Posterior Distributions of Nu and Rho
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Figure 8b: Stock Markets 1980-1987, Posterior Distributions of Nu and Rho
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Figure 8c: Exchange Rates, Posterior Distributions of Nu and Rho
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