Strategic Sample Selection

Alfredo Di Tillio!  Marco Ottaviani?  Peter N. Sgrensen3

October 28, 2017

Bocconi
2Bocconi
3Copenhagen



Impact of Sample Selection on Quality of Inference?

e Typically observational data are non-randomly selected:

e Either self selection induced by choices made by subjects
e Or selection from sample inclusion decisions made by analysts

e Experimental data can also suffer from selection problems challenging
internal validity: subversion of randomization to treatment/control
¢ |nadequate allocation concealment increases treatment effects by as much
as 41%, according to Schulz et al. (1995)

e Berger (2005) documents researchers’ ability to subvert assignment of
patients depending on expected outcomes toward end of block

e When treatment is given to healthiest rather than random patient:

e Favorable outcomes are weaker evidence that treatment is effective
e But how is accuracy of evaluator's inference affected?



Impact of Selection on Inference?

e When feeding a consumer review to potential buyers with limited
attention:

e Should an e-commerce platform post a random review or allow merchant to
cherry-pick one?

e Similarly, peremptory challenge gives a defendant the right to strike
down a number of jurors:

e Given that the defendant selects the most favorable jurors, how is quality of
final judgement affected?

e When testing a student in an exam:

e Should teacher pick a question at random or allow student to select most
preferred question out of a batch?
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e Lehmann's dispersion for comparison of location experiments
e Analysis of Fk. distribution of max of k iid variables, as k varies

. Local impact of selection on evaluator

e Local version of Lehmann's dispersion
e Local effects of varying k
e Extreme selection k — oo and link to extreme value theory

. Strategic selection

e Equilibrium persuasion
e Impact on researcher’s payoff from selection
e Impact of uncertain and unanticipated selection



Setup

Evaluator interested in the true value of unknown state 6 € {0,604}
e Here, 8y > 0/, and prior p = Pr(0y)

Data: Evaluator observes a signal x =0 + ¢

Noise € independent from 6, with known c.d.f. F (experiment)
e Assume logconcave density f

Manipulation will shift the distribution of ¢
Specifically: F is shifted to F* where k > 1
e First-order stochastic higher ¢ and x
As if € is selected: best of k independent draws
We will focus on a rational evaluator, aware of selection
e For this evaluation, can proceed for now with some known F



Information and Optimal Decision

Evaluator’s reservation utility R
Decision payoff for Evaluator:

state ; state Oy
reject R R
accept 0, o

e Case of interest: 0, < R < 0y
Evaluator accepts iff Pr(6y|x)0n + (1 — Pr(0n|x))0L > R
Optimal strategy is a cutoff rule: accept iff

f(X*GH) = 1*pR*0L

l =2 >( = ——
FO) = Fo—a) = p O4—R
Likelihood Ratio Acceptance Hurdle

Log-concavity of f = Monotone Likelihood Ratio Property
o (r(x) is increasing = Optimal to accept iff x > x%(/)



False Positives v. False Negatives

F(x—6p)
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F(x—0y
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X X Oy X’

e For every —oo < Xf({) < oo, a=1—F(Xx—6;) and = F(x —6y)
o Higher cutoff x%(£) results in

e decrease in type | errors (false positives) «
e increase in type |l errors (false negatives) S



Information Constraint (a.k.a. ROC curve, qq plot)

F(x-06p) l-a
—— T
/ X a
oL
F(x -0y PBr(@)
X X Oy x' * o e

e Define the Information Constraint of Experiment F as
B=Bpa)=F(FY1-a)+0,—0n),

decreasing and convex (by logconcavity/MLRP)



Problem Reformulation

e Reformulate evaluator problem in terms of a and

e Disregarding constants, evaluator maximizes
MC False Neg.

——
—(1=p)(R—0)a—p(0 — R) B
MC False Pos.

subject to the InfoC

Br(a) = F(F (1 —a)+60,—04)

e Substituting InfoC & ¢ = PTpgj_ef? into objective function, problem is

mcin la+ BE(a)



min la+ B

o

st. B=Bpla)=F(F(1—a)+6,—6y)



Random v. Selected Experiment

Compare two regimes:

e Random data point, experiment F
e Selected data point, experiment FX

e density kF*~!f still logconcave by Prekopa’s theorem

Threshold becomes

k—1
Cre(x) = [’;((’;__gi’))} Ur(x) > 1.

Is evaluator better off with F or with G = Fk?

More generally, let's compare F and G
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Comparison of Experiments

G is preferred to F iff
oG (D) + Bo(ag (D) < Lap(l) + Be(ak (D)),

So, G is globally (VY R, q,0y > 0,) preferred to F iff B¢(a) < Br(a) V «

Example: F = A(0,1) and G = F*

Laxer constraint: better power 1 — « for any significance 1 —



Comparison of Experiments

o Lehmann (1988) orders experiments without computing InfoC:

G is globally preferred to F < G is less dispersed than F
e Definition G less dispersed than F: G~ — F~1 is decreasing, i.e.
G lv)-FYv) <G Yu)— FYu) forall0<u<v<l.

e Intuition: Constraint F71(1 —a) — F~1(B) = Oy — 0, relaxed with G

F(s),F(9?




Global Comparison Based on Dispersion

e Double Logconvexity Theorem

F* is less (more) dispersed the greater is k > 1
=

—log (— log F) is convex (concave)

e Corollary
The evaluator prefers F¥' to Fk (resp. F¥ to Fk/) for all K > k> 1 and
all parameter values (0;, Oy, p, and R) if and only if —log(— log F) is
convex (resp. concave)



Double Logconvexity Theorem: Intuition
e Rewrite the condition of G less dispersed than F as:
fF(F'(u) <g(G'u)) forall0<u<l.

G at quantile G~1(u) is steeper than F at quantile F~1(u), Vu
e Transform F and FX by strictly increasing u +— — log(— log u)

e Transformed functions are parallel shifts of each other:
—log(— log F¥) = — log(— log F) — log k

—_F | T

— F® ' — ,B[:(a’)

— —log(~log(F#))
—— ~log(~log(F(e)) - log(k) /

— Bp(@)

I\




Special cases

e Gumbel's Extreme Value Distribution F(g) = exp(— exp(—¢))

e F is such that — log(— log F) is linear—both convex and concave

e For every k the experiment F¥ is neither less nor more dispersed than F and
the evaluator is therefore indifferent to selection

e Logistic distribution: F (¢) = 1re==

e Double logconvex, so selection benefits evaluator
o Exponential distribution: F(¢) =1—¢e7¢, fore >0
e Double logconcave, so selection harms evaluator



Analysis of Double Logconvexity

e —log(—log F) is convex function if and only if

reverse hazard rate

——
fle)

F(e)
log F(¢)
——

reverse hazard function

is decreasing

e The reverse hazard rate decreases less fast than the cumulative reverse
hazard rate increases

e Equivalently, F has a quantile density function less elastic than Gumbel's
f'(e)
f(eE ~l+logF (¢)

)
J— <
f(e

% log F (&)

for all




Empirical Diagnostic Test

We derive a practical diagnostic test in actual experimental studies
e where it may be unknown whether selection occurred
Selection-invariance property of double logconvexity /logconcavity:

e —log(—log F) and — log(— log F¥) differ only by a constant =

F double log-concave <= F¥ double log-concave

Double log-concave data distributions should “raise a flag”
e if selection does occur, analyst is bound to having less informative data
If data is double logconvex instead

e selection actually results in a more informative experiment, if analyst
properly adjusts for selection
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Local Dispersion
e First rewrite the condition of G less dispersed than F as:
FIF Yu)+6) < G(GHu)+8) foralld>0and0<u< 1.

e Definition (Local Dispersion)
Experiment G is locally less d-dispersed than experiment F on
[ul, U2] g [07 1] if

FIF Y (u)+0) < G(GMu)+6)  forall uy < u < up

6 0 0

— —

u
us (03]
up

us

— F(o)

, Uus
"i — Gl
Zi / Bray) = Bglar)

e & — &

0 0 0




Local Dispersion Theorem

e Equivalence between:

e G less dispersed than F for a specific § and for all u in some interval
e G preferred to F in a corresponding interval

e Local Dispersion Theorem: Let 6 =0y — 0,. For all N > 1, the
following conditions are equivalent:

(L) There exist 0 =/¢1 < --- < /loyy1 =o00: forall n=1,... N, the evaluator
prefers F to G for £ € [¢2n—1,¥2n] and G to F for le [€2n, boni1]-

(A) Thereexistl=a3 > - > ant1 =0 Vn=1,... N, 8g(a) < B¢(a) for
all « € [agn, a2p—1] and Be(a) > Be(a) for all a € [aznt1, a2n].

(D) 0= << pyy1 =1: Vn=1,...,N, F is locally less o-dispersed
than G on [u2,—1, U2p] and more d-dispersed than G on [uap, t2pi1]-



Local Dispersion: ldea

Fixd=60y—60,>0
Consider any given (3

Under F, we obtain ar on the information constraint curve,
5= Fl(1-ap) - F(3)
G does better with this 3

G ll-ap)— G LB <d=F'1-ar)—F (B

G(G™Y(B) +0) < F(FT(B) +4)

In particular, if G™1 is flatter than F~! at 3, this is true when ¢ is small



Info Constraint Crossing Really Matters

— Br(@)
— Bel@)
""""""""""" 7= —B&(ao)
——— I=-fse)
— [=-Bia)
= (’1

l

0 a 1 O



Bayesian vs. Frequentist Evaluator

o Frequentist Evaluator fixes & and prefers the experiment with higher 5(&)

o Bayesian Evaluator reoptimizes & for every experiment
B

— Br(@)
— Bsl@)
...................... = —PB&(ap)
——— [=-fa)
— 7 =-BHa))
(=1

1

0 o 1

o Bayesian and Frequentist Evaluator agree iff S (a) < Bp(a) Vo



Locally Variable Impact of Selection

Back to comparison of F and FX
Focus on F¥ first more & then less locally dispersed than F

Proposition: Let F be an experiment such that — log(— log(F)) is first
concave (resp. convex) and then convex (resp. concave). Then for every
k > 1 there exists £, such that the evaluator prefers F to F (resp. F¥ to
F) for £ < £, and F¥ to F (resp. F to F) for £ > ¢,

If F is first double log-concave and then double log-convex

e quantile difference (F¥)~(u) — F~1(u) is first increasing and then
decreasing in u

Selection hurts evaluator less concerned about type | errors: low £

e benefits for high acceptance hurdle ¢



Uniform Example

Uniform distribution, F(g) = € for € € [0, 1]
Double-log transformation of F is — log(— log(¢))

Concave for ¢ < 1/e & convex for e > 1/e

Bell-shaped quantile difference

— Fe) —_— lj’F((y)

777777 — Bp(@)

— =4

e Evaluator is hurt by selection when concerned about type Il errors (low /)

o benefits from selection when more concerned about type | errors (high ¢)



Laplace Example
e Laplace distribution

F(s):{ S fore <0

1—%8 fore >0

e Double-log transformation of F is convex for € < 0 and concave for ¢ > 0

e U-shaped quantile difference

——  ~log(~log(F(&))

e Evaluator benefits from selection for low £ but is hurt for high ¢



Extreme Selection

e What happens when presample size k — co?

e Suppose that, for some nondegenerate distribution F and for some
location and scale normalization sequences by and a; > 0

F* (b + axe) — F ()

for every continuity point € of F
e By the Fundamental Theorem of Extreme Value Theory

e F is Gumbel, Extreme Weibull or Frechet
e For logconcave F, either Gumbel or Extreme Weibull



Extreme Selection: Results

e Distribution of noise term is systematically shifted upwards as k increases
e Location normalization sequence by is growing

e but evaluator can adjust for any translation without impact on payoff
¢ Limit impact of selection thus hinges on

e whether the scale normalization sequence a, shrinks to zero or not

1. If ax — 0, noise distribution is less and less dispersed as k grows
e evaluator gets arbitrarily precise information about the state
2. If instead we can choose a constant sequence ay

e extreme selection based on experiment F amounts to a random
experiment based on F



Extreme Selection - Exponential Power Family

e Proposition: Let F be an exponential power distribution

s s
fle) = — 2 el
&=
of shape s > 1. As k — oo, the limiting distribution has Gumbel shape,
and there is arbitrarily precise information about the state

e But the limit result is very different when s = 1, Laplace
e Laplace (like exponential) converges to Gumbel with ay = 1 for each k
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Strategic Selection

e So far we assumed that the researcher is willing to show a selected
experiment to the evaluator

e We now verify this posited behavior is an equilibrium in natural game

e Assume researcher is fully biased toward acceptance
i.e. bears no losses due to type | errors



Selective Sampling Game - Setting

e Timeline

1. Researcher privately observes €1,...,ex

2. Researcher chooses i € {1,..., k}

3. Evaluator observes x; = 0 + ¢;

4. Evaluator chooses whether to accept or reject
o Payoffs

e Evaluator: Same as before
e Researcher:

e ( if the evaluator rejects
e 1 if the evaluator accepts



Selective Sampling Game - Equilibrium

e Proposition: There exists a Bayes Nash equilibrium where the researcher
chooses maximal selection, i € arg max;<j<x €;, and the evaluator accepts
for signals x satisfying

Fk_l(X — GH)f(X — GH)
Fk_l(X — 9L)f(X — GL)

>/

e The researcher’s strategy is a best response because the evaluator will
observe a higher signal and will be more likely to accept



Equilibrium Impact of Selection on Researcher’s Welfare

Impact of selection on researcher’s welfare

e depends on direction of change in pair («, 3) chosen by evaluator

For any pair («, /3), the researcher’s payoff is

p(L—p)+ (1 - p)a.

Thus, a generic indifference curve of the researcher is a line of the form

1—
B:<1—U>+p0z,
p P

where 0 < u < 1 is researcher’s payoff

Researcher benefits from selection < Evaluator reacts to selection
(experiment FK) by choosing a new pair (¢/, ') below and to right of
indifference line going through optimal pair in experiment F



Equilibrium Impact of Selection on Researcher’s Welfare

o Intuitively:
e If R is high, informative selection increases the acceptance chance
e but info-reducing selection reduces acceptance
e Conversely, when R is low

e To illustrate consider normal noise, with Sp«(a) > Br(«)

B

6] On

Pyl




Impact of Selection on Researcher’'s Welfare: Examples

e Gumbel example—pure rat race

e Selection is welfare neutral for evaluator & researcher

e Laplace example:

e Evaluator is worse off with F¥ than with F for large values of R

e Researcher is hurt by selection for small or large values of R, but benefits
for intermediate values

e Credibility Crisis at high R — both parties lose from selection

e Uniform example:

e Evaluator is better off with F¥ than with F for large values of R
e Researcher benefits for small or large values of R, but hurt for intermediate
values



Data Production

e At t = 0 researcher privately sets presample size k

e at increasing & convex cost C (k)

e Evaluator correctly anticipates k optimally chosen by the researcher:

e best responds with acceptance at X

e Researcher correctly anticipates acceptance threshold x and
maxp (1= F* (%= 1)) + (1= p) (1= F¥(x = 00)) = C (k).

concave problem



Equilibrium with Data Production
¢ Proposition: Equilibrium is characterized as the solution (X, k) to

Fk=Y(x — 0p)f(X — 0p)

FFi(x—0)f(x—0,) £

and
—plog (F (X — 01)) F* (X — 01) — (1 — p)log (F (X — 0,)) F* (x — 6,)
= C' (k)

e Rat race effect:
e Evaluator correctly anticipates degree k of selection
e = manipulation cost C (k) largely wasted

o Gumbel example:

e Apart from C(k), payoffs independent of k
e Researcher would gain from making k observable



Evaluator's Value of Commitment

e Slope of researcher’s best response k (X) depends on parameters:
e When prior strongly favors rejection, F (x — 6,) is sufficiently small
® best response k is an increasing function of X
e When the prior strongly favors acceptance
® best response k is a decreasing function of X
e Under double logconvexity, evaluator wants to induce greater k

e Commit to a weaker standard for high R

o Conversely, when evaluator loses from greater k



Uncertainty of Manipulation: Negative Impact

e Under uncertain selection, evaluator does not know whether researcher
manipulates — the number k is random

e In location experiment, difficult to adjust estimate correctly
e Logconcavity could fail, so monotonicity could fail: some experimental
results may be “too good to be true”

e Consider the Gumbel case

e If the evaluator knew realized k, since F¥ is as effective as F, the
randomness made no difference
e Not knowing k is then Blackwell worse

e More general force: Uncertainty in selection harms evaluator



IMPACT OF MANIPULATION UNCERTAIN (red); KNOWN (green)
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e Evaluator's payoff gain at k = 2 over benchmark, Normal example

e Red curve has equal chance of k =1,2



Impact on Unwary Evaluator

We have assumed that the evaluator correctly anticipates k
If not, the threshold s* does not adjust to k

e No doubt that the researcher gains from raising k (gross)
The impact on the evaluator turns out to be ambiguous

e Wrong threshold: bad
e More informative experiment: good

Under symmetry and equipoise, indifference to k = 1,2
e Equipoise: £ = 1. Symmetry, F(1—¢) =1— F(e)
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Summary

e We develop tractable model of challenges to internal validity:
1. Dispersion of G = F¥ decreases in k <> — log(— log F (¢)) is convex
e Then, selection has global and monotonic impact on evaluator

2. To provide general characterization of impact of selection, we compare any
two experiments F, G based on local dispersion, for a subset of parameters

e We compare experiments when G~*(p) — F~*(p) is not monotonic
e Evaluator benefits from known sample selection unless

e Data has sufficiently thin tails & prior strongly favors acceptance
e Data has sufficiently thick tails & prior strongly favors rejection

e Uncertain manipulation tends to harm evaluator



Open Questions

e In companion paper we developed toy (all-binary) model of sample
selection challenging external validity

o Alcott (2015) documents hard-to-control-for site selection: study sample
not representative of population of interest

e Initial trials are implemented in high impact sites, then impact declines,
= no reliable inference of ATE even after sample of 8 million Americans!



LITERATURE on Stochastic Orders of Order Statistics

No existing results for strictly logconcave distributions

Khaledi and Kochar's (2000) Thm 2.1: if X;'s are i.i.d. according to F with
Decreasing Hazard Rate (DHR), Xi., is less dispersed than Xj.,, whenever i < j
andn—i>m—j. Thus, fori=n=1and j = m= k: If F has DHR, FX is
more dispersed than F

By Prekopa's Thm: Logconcavity => IHR

Thus exponential (loglinear, with constant HR) is the only logconcave
distribution to which Khaledi and Kochar applies

Converse of Khaledi and Kochar'sThm 2.1 not valid for IHR distribution

Our characterization applies to logconcave distributions



Testing for Double Logconvexity: Approach

Suppose researcher obtains data (xi, ..., xy) and estimates 0
Residuals £, = x,, — 0 are independent draws from F¥

Under assumption of homogeneous treatment effect, test can be
performed on &, or (x1, ..., xn)

e Use Kolmogorov-Smirnov 2-sample test to evaluate homogeneity in
treatment effect, comparing treatment and control distribution
Double logconvexity of F is equivalent to concavity of log(— log F)

o IDEA: test for logconcavity of — log F

1

Similarly, to test double logconcavity of F <logconcavity of —Tog F



Testing for Double Logconvexity/Logconcavity: Procedure

We extend Hazelton's (2011) test for logconcavity

e start from empirical CDF F of an outcome variable
e compute the non-negative transformation — log F
e rescale it to integrate to one over the original support

The test requires as input a sample generated by the density whose
logconcavity we want to test, so we cannot just use original sample,but

e we can treat this transformation as a PMF and
e draw an independent random sample from it

Run the test for logconcavity on the simulated sample:

Ho : transformed density is logconcave (=dlogcx)
H; : transformed density is not logconcave

Replacing — log F with — —TogF We have Hy =dlogcv



Application to Andrabi, Das, and Khwaja (2017) AER

Field experiment on
e impact of providing test scores on educational markets
Considered outcome variable: scores in treated villages

e K-S test for homogeneity in distributions returns p-value>0.3
e Test for logconcavity of original sample: p-value>0.77

Left: Distribution of original outcome variable
Right: Computed empirical F (red) and — log(— log F) (blue)

Qriginal distribution of test scores in treated villages. Fand —log(—log(#))

10
— —og(-log()




Application to Andrabi, Das, and Khwaja (2017), Cont.

Rescaled — log F to fit a PMF & sample of 1,000 iid obs from it (right
panel)

Rescaled —TogF tO fit a PMF & sample of 1,000 iid obs from it (left panel)
Test p—value. 0.9 for Hp: transformed density — log F is logconcave;
e evidence in favor of F double logconvex

Test p-value = 0 for Hp: transformed density — “TogF is logconcave

1/(~log(#) rescaled as a pmtand random sample —log(# rescaled as a pmf and random sample
0z

ER T




Application to Lyons (2017) AEJ Applied Econ

Field experiment on
e impact of teamwork on productivity
Outcome variable: productivity for groups allowed to work in teams

e K-S test for homogeneity in distributions returns p-value>0.97
e Test for logconcavity of original sample: p-value>0

Left: Distribution of original outcome variable
Right: Computed empirical F (red) and — log(— log F) (blue)

 hourly productiviy for teamwork groups. Fand —log(—log(#))




Application to Lyons (2017) AEJ Applied Econ — cont.

Rescaled — log F to fit a PMF & sample of 1,000 iid obs from it (right
panel)

Rescaled —-— to fit a PMF & sample of 1,000 iid obs from it (left panel)
Test p- value = 0.99 for Hp: transformed density — “TogF is logconcave
Test p-value: 0 for Hp: transformed density — log F is logconcave;

e evidence in favor of F double logconcavity

1/(~109(5) rescaled as a pmf and random sample —log(#) rescaled as a pmf and random sample
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