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Impact of Sample Selection on Quality of Inference?

• Typically observational data are non-randomly selected:

• Either self selection induced by choices made by subjects
• Or selection from sample inclusion decisions made by analysts

• Experimental data can also suffer from selection problems challenging
internal validity: subversion of randomization to treatment/control

• Inadequate allocation concealment increases treatment effects by as much
as 41%, according to Schulz et al. (1995)

• Berger (2005) documents researchers’ ability to subvert assignment of
patients depending on expected outcomes toward end of block

• When treatment is given to healthiest rather than random patient:

• Favorable outcomes are weaker evidence that treatment is effective
• But how is accuracy of evaluator’s inference affected?



Impact of Selection on Inference?

• When feeding a consumer review to potential buyers with limited
attention:

• Should an e-commerce platform post a random review or allow merchant to
cherry-pick one?

• Similarly, peremptory challenge gives a defendant the right to strike
down a number of jurors:

• Given that the defendant selects the most favorable jurors, how is quality of
final judgement affected?

• When testing a student in an exam:

• Should teacher pick a question at random or allow student to select most
preferred question out of a batch?



Outline

1. Statistical model: Simple hypothesis testing under MLRP

2. Global impact of selection on evaluator

• Lehmann’s dispersion for comparison of location experiments
• Analysis of F k , distribution of max of k iid variables, as k varies

3. Local impact of selection on evaluator

• Local version of Lehmann’s dispersion
• Local effects of varying k
• Extreme selection k →∞ and link to extreme value theory

4. Strategic selection

• Equilibrium persuasion
• Impact on researcher’s payoff from selection
• Impact of uncertain and unanticipated selection



Setup

• Evaluator interested in the true value of unknown state θ ∈ {θL, θH}
• Here, θH > θL, and prior p = Pr (θH)

• Data: Evaluator observes a signal x = θ + ε

• Noise ε independent from θ, with known c.d.f. F (experiment)
• Assume logconcave density f

• Manipulation will shift the distribution of ε

• Specifically: F is shifted to F k where k > 1
• First-order stochastic higher ε and x

• As if ε is selected: best of k independent draws

• We will focus on a rational evaluator, aware of selection
• For this evaluation, can proceed for now with some known F



Information and Optimal Decision

• Evaluator’s reservation utility R

• Decision payoff for Evaluator:

state θL state θH
reject R R
accept θL θH

• Case of interest: θL < R < θH

• Evaluator accepts iff Pr(θH |x)θH + (1− Pr(θH |x))θL ≥ R

• Optimal strategy is a cutoff rule: accept iff

`F (x) :=
f (x − θH)

f (x − θL)︸ ︷︷ ︸
Likelihood Ratio

≥ ¯̀ :=
1− p

p

R − θL
θH − R︸ ︷︷ ︸

Acceptance Hurdle

• Log-concavity of f ⇒ Monotone Likelihood Ratio Property

• `F (x) is increasing ⇒ Optimal to accept iff x ≥ x̄∗F (¯̀)



False Positives v. False Negatives
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• For every −∞ ≤ x̄∗F (¯̀) ≤ ∞, α = 1− F (x̄ − θL) and β = F (x̄ − θH)

• Higher cutoff x̄∗F (¯̀) results in

• decrease in type I errors (false positives) α
• increase in type II errors (false negatives) β



Information Constraint (a.k.a. ROC curve, qq plot)
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• Define the Information Constraint of Experiment F as

β = βF (α) = F
(
F−1(1− α) + θL − θH

)
,

decreasing and convex (by logconcavity/MLRP)



Problem Reformulation

• Reformulate evaluator problem in terms of α and β

• Disregarding constants, evaluator maximizes

−(1− p)(R − θL)︸ ︷︷ ︸
MC False Pos.

α

MC False Neg.︷ ︸︸ ︷
−p(θH − R) β

subject to the InfoC

βF (α) = F
(
F−1(1− α) + θL − θH

)
• Substituting InfoC & ¯̀ = 1−p

p
R−θL
θH−R into objective function, problem is

min
α

¯̀α + βF (α)



α

β�(α)

α′

min
α

¯̀α + β

s.t. β = βF (α) = F
(
F−1(1− α) + θL − θH

)



Random v. Selected Experiment

• Compare two regimes:

• Random data point, experiment F
• Selected data point, experiment F k

• density kF k−1f still logconcave by Prekopa’s theorem

• Threshold becomes

`F k (x) =

[
F (x − θH)

F (x − θL)

]k−1
`F (x) ≥ ¯̀.

• Is evaluator better off with F or with G = F k?

• More generally, let’s compare F and G
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Comparison of Experiments

• G is preferred to F iff

¯̀α∗G (¯̀) + βG (α∗G (¯̀)) ≤ ¯̀α∗F (¯̀) + βF (α∗F (¯̀)),

• So, G is globally (∀ R, q, θH > θL) preferred to F iff βG (α) ≤ βF (α) ∀ α

α

β
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• Example: F = N (0, 1) and G = F k

• Laxer constraint: better power 1− α for any significance 1− β



Comparison of Experiments

• Lehmann (1988) orders experiments without computing InfoC:

G is globally preferred to F ⇔ G is less dispersed than F

• Definition G less dispersed than F : G−1 − F−1 is decreasing, i.e.

G−1(v)− F−1(v) ≤ G−1(u)− F−1(u) for all 0 < u < v < 1.

• Intuition: Constraint F−1(1− α)− F−1(β) = θH − θL relaxed with G
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Global Comparison Based on Dispersion

• Double Logconvexity Theorem

F k is less (more) dispersed the greater is k ≥ 1

⇔

− log (− log F ) is convex (concave)

• Corollary

The evaluator prefers F k ′ to F k (resp. F k to F k ′) for all k ′ ≥ k ≥ 1 and
all parameter values (θL, θH , p, and R) if and only if − log(− log F ) is
convex (resp. concave)



Double Logconvexity Theorem: Intuition

• Rewrite the condition of G less dispersed than F as:

f
(
F−1(u)

)
≤ g

(
G−1(u)

)
for all 0 < u < 1.

G at quantile G−1(u) is steeper than F at quantile F−1(u), ∀u
• Transform F and F k by strictly increasing u 7→ − log(− log u)

• Transformed functions are parallel shifts of each other:
− log(− log F k) = − log(− log F )− log k
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Special cases

• Gumbel’s Extreme Value Distribution F (ε) = exp(− exp(−ε))

• F is such that − log(− log F ) is linear—both convex and concave

• For every k the experiment F k is neither less nor more dispersed than F and
the evaluator is therefore indifferent to selection

• Logistic distribution: F (ε) = 1
1+e−ε

• Double logconvex, so selection benefits evaluator

• Exponential distribution: F (ε) = 1− e−ε, for ε ≥ 0
• Double logconcave, so selection harms evaluator



Analysis of Double Logconvexity

• − log(− log F ) is convex function if and only if

reverse hazard rate︷ ︸︸ ︷
f (ε)

F (ε)

log F (ε)︸ ︷︷ ︸
reverse hazard function

is decreasing

• The reverse hazard rate decreases less fast than the cumulative reverse
hazard rate increases

• Equivalently, F has a quantile density function less elastic than Gumbel’s

−
f ′(ε)
f (ε)

f (ε)
F (ε)

< −1 + log F (ε)

log F (ε)
for all ε



Empirical Diagnostic Test

• We derive a practical diagnostic test in actual experimental studies

• where it may be unknown whether selection occurred

• Selection-invariance property of double logconvexity/logconcavity:

• − log(− log F ) and − log(− log F k) differ only by a constant =⇒

F double log-concave⇐⇒ F k double log-concave

• Double log-concave data distributions should “raise a flag”

• if selection does occur, analyst is bound to having less informative data

• If data is double logconvex instead

• selection actually results in a more informative experiment, if analyst
properly adjusts for selection
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Local Dispersion

• First rewrite the condition of G less dispersed than F as:

F (F−1(u) + δ) ≤ G (G−1(u) + δ) for all δ > 0 and 0 < u < 1.

• Definition (Local Dispersion)
Experiment G is locally less δ-dispersed than experiment F on
[u1, u2] ⊆ [0, 1] if

F (F−1(u) + δ) ≤ G (G−1(u) + δ) for all u1 ≤ u ≤ u2
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Local Dispersion Theorem

• Equivalence between:

• G less dispersed than F for a specific δ and for all u in some interval
• G preferred to F in a corresponding interval

• Local Dispersion Theorem: Let δ = θH − θL. For all N ≥ 1, the
following conditions are equivalent:

(L) There exist 0 = `1 ≤ · · · ≤ `2N+1 =∞: for all n = 1, . . . ,N, the evaluator
prefers F to G for ¯̀∈ [`2n−1, `2n] and G to F for ¯̀∈ [`2n, `2n+1].

(A) There exist 1 = α1 ≥ · · · ≥ α2N+1 = 0: ∀n = 1, . . . ,N, βF (α) ≤ βG (α) for
all α ∈ [α2n, α2n−1] and βF (α) ≥ βG (α) for all α ∈ [α2n+1, α2n].

(D) ∃0 = u1 ≤ · · · ≤ u2N+1 = 1: ∀n = 1, . . . ,N, F is locally less δ-dispersed
than G on [u2n−1, u2n] and more δ-dispersed than G on [u2n, u2n+1].



Local Dispersion: Idea

• Fix δ = θH − θL > 0

• Consider any given β

• Under F , we obtain αF on the information constraint curve,

δ = F−1(1− αF )− F−1(β)

• G does better with this β

G−1(1− αF )− G−1(β) < δ = F−1(1− αF )− F−1(β)

i.e.,
G (G−1(β) + δ) < F (F−1(β) + δ)

• In particular, if G−1 is flatter than F−1 at β, this is true when δ is small



Info Constraint Crossing Really Matters
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Bayesian vs. Frequentist Evaluator

• Frequentist Evaluator fixes α̃ and prefers the experiment with higher β(α̃)

• Bayesian Evaluator reoptimizes α̃ for every experiment
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• Bayesian and Frequentist Evaluator agree iff βG (α) ≤ βF (α) ∀α



Locally Variable Impact of Selection

• Back to comparison of F and F k

• Focus on F k first more & then less locally dispersed than F

• Proposition: Let F be an experiment such that − log(− log(F )) is first
concave (resp. convex) and then convex (resp. concave). Then for every
k ≥ 1 there exists `k such that the evaluator prefers F to F k (resp. F k to
F ) for ¯̀≤ `k and F k to F (resp. F to F k) for ¯̀≥ `k

• If F is first double log-concave and then double log-convex

• quantile difference (F k)−1(u)− F−1(u) is first increasing and then
decreasing in u

• Selection hurts evaluator less concerned about type I errors: low ¯̀

• benefits for high acceptance hurdle ¯̀



Uniform Example

• Uniform distribution, F (ε) = ε for ε ∈ [0, 1]

• Double-log transformation of F is − log(− log(ε))

• Concave for ε ≤ 1/e & convex for ε ≥ 1/e

• Bell-shaped quantile difference
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• Evaluator is hurt by selection when concerned about type II errors (low ¯̀)

• benefits from selection when more concerned about type I errors (high ¯̀)



Laplace Example

• Laplace distribution

F (ε) =

{ eε

2 for ε < 0

1− e−ε

2 for ε ≥ 0

• Double-log transformation of F is convex for ε < 0 and concave for ε > 0

• U-shaped quantile difference
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• Evaluator benefits from selection for low ¯̀ but is hurt for high ¯̀



Extreme Selection

• What happens when presample size k →∞?

• Suppose that, for some nondegenerate distribution F̄ and for some
location and scale normalization sequences bk and ak > 0

F k (bk + akε)→ F̄ (ε)

for every continuity point ε of F̄

• By the Fundamental Theorem of Extreme Value Theory

• F̄ is Gumbel, Extreme Weibull or Frechet
• For logconcave F , either Gumbel or Extreme Weibull



Extreme Selection: Results

• Distribution of noise term is systematically shifted upwards as k increases

• Location normalization sequence bk is growing

• but evaluator can adjust for any translation without impact on payoff

• Limit impact of selection thus hinges on

• whether the scale normalization sequence ak shrinks to zero or not

1. If ak → 0, noise distribution is less and less dispersed as k grows

• evaluator gets arbitrarily precise information about the state

2. If instead we can choose a constant sequence ak

• extreme selection based on experiment F amounts to a random
experiment based on F̄



Extreme Selection - Exponential Power Family

• Proposition: Let F be an exponential power distribution

f (ε) =
s

Γ(1/s)
e−|ε|

s

of shape s > 1. As k →∞, the limiting distribution has Gumbel shape,
and there is arbitrarily precise information about the state

• But the limit result is very different when s = 1, Laplace
• Laplace (like exponential) converges to Gumbel with ak = 1 for each k



Outline

1. Statistical model: Simple hypothesis testing under MLRP

2. Global impact of selection on evaluator

• Lehmann’s dispersion for comparison of location experiments
• Analysis of F k as k varies

3. Local impact of selection on evaluator

• Local version of Lehmann’s dispersion
• Local effects of varying k
• Extreme selection k →∞ and link to extreme value theory

4. Strategic selection

• Equilibrium persuasion
• Impact on researcher’s payoff from selection
• Impact of uncertain and unanticipated selection



Strategic Selection

• So far we assumed that the researcher is willing to show a selected
experiment to the evaluator

• We now verify this posited behavior is an equilibrium in natural game

• Assume researcher is fully biased toward acceptance
i.e. bears no losses due to type I errors



Selective Sampling Game - Setting

• Timeline

1. Researcher privately observes ε1, . . . , εk
2. Researcher chooses i ∈ {1, . . . , k}
3. Evaluator observes xi = θ + εi
4. Evaluator chooses whether to accept or reject

• Payoffs

• Evaluator: Same as before
• Researcher:

• 0 if the evaluator rejects
• 1 if the evaluator accepts



Selective Sampling Game - Equilibrium

• Proposition: There exists a Bayes Nash equilibrium where the researcher
chooses maximal selection, i ∈ arg max1≤j≤k εj , and the evaluator accepts
for signals x satisfying

F k−1(x − θH)f (x − θH)

F k−1(x − θL)f (x − θL)
≥ ¯̀

• The researcher’s strategy is a best response because the evaluator will
observe a higher signal and will be more likely to accept



Equilibrium Impact of Selection on Researcher’s Welfare

• Impact of selection on researcher’s welfare

• depends on direction of change in pair (α, β) chosen by evaluator

• For any pair (α, β), the researcher’s payoff is

p(1− β) + (1− p)α.

• Thus, a generic indifference curve of the researcher is a line of the form

β =

(
1− u

p

)
+

1− p

p
α,

where 0 ≤ u ≤ 1 is researcher’s payoff

• Researcher benefits from selection ⇔ Evaluator reacts to selection
(experiment F k) by choosing a new pair (α′, β′) below and to right of
indifference line going through optimal pair in experiment F



Equilibrium Impact of Selection on Researcher’s Welfare

• Intuitively:
• If R is high, informative selection increases the acceptance chance
• but info-reducing selection reduces acceptance
• Conversely, when R is low

• To illustrate consider normal noise, with βF k (α) ≥ βF (α)
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Impact of Selection on Researcher’s Welfare: Examples

• Gumbel example–pure rat race

• Selection is welfare neutral for evaluator & researcher

• Laplace example:

• Evaluator is worse off with F k than with F for large values of R
• Researcher is hurt by selection for small or large values of R, but benefits

for intermediate values
• Credibility Crisis at high R — both parties lose from selection

• Uniform example:

• Evaluator is better off with F k than with F for large values of R
• Researcher benefits for small or large values of R, but hurt for intermediate

values



Data Production

• At t = 0 researcher privately sets presample size k

• at increasing & convex cost C (k)

• Evaluator correctly anticipates k optimally chosen by the researcher:

• best responds with acceptance at x̄

• Researcher correctly anticipates acceptance threshold x̄ and

max
k

p
(

1− F k (x̄ − θH)
)

+ (1− p)
(

1− F k (x̄ − θL)
)
− C (k) ,

concave problem



Equilibrium with Data Production

• Proposition: Equilibrium is characterized as the solution (x̄ , k) to

F k−1(x̄ − θH)f (x̄ − θH)

F k−1(x̄ − θL)f (x̄ − θL)
= ¯̀

and

−p log (F (x̄ − θH))F k (x̄ − θH)− (1− p) log (F (x̄ − θL))F k (x̄ − θL)

= C ′ (k)

• Rat race effect:

• Evaluator correctly anticipates degree k of selection
• ⇒ manipulation cost C (k) largely wasted

• Gumbel example:

• Apart from C (k), payoffs independent of k
• Researcher would gain from making k observable



Evaluator’s Value of Commitment

• Slope of researcher’s best response k (x̄) depends on parameters:

• When prior strongly favors rejection, F (x̄ − θL) is sufficiently small

• best response k is an increasing function of x̄

• When the prior strongly favors acceptance

• best response k is a decreasing function of x̄

• Under double logconvexity, evaluator wants to induce greater k

• Commit to a weaker standard for high R

• Conversely, when evaluator loses from greater k



Uncertainty of Manipulation: Negative Impact

• Under uncertain selection, evaluator does not know whether researcher
manipulates — the number k is random

• In location experiment, difficult to adjust estimate correctly
• Logconcavity could fail, so monotonicity could fail: some experimental

results may be “too good to be true”

• Consider the Gumbel case

• If the evaluator knew realized k , since F k is as effective as F , the
randomness made no difference

• Not knowing k is then Blackwell worse

• More general force: Uncertainty in selection harms evaluator
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• Evaluator’s payoff gain at k = 2 over benchmark, Normal example

• Red curve has equal chance of k = 1, 2



Impact on Unwary Evaluator

• We have assumed that the evaluator correctly anticipates k

• If not, the threshold s∗ does not adjust to k

• No doubt that the researcher gains from raising k (gross)

• The impact on the evaluator turns out to be ambiguous

• Wrong threshold: bad
• More informative experiment: good

• Under symmetry and equipoise, indifference to k = 1, 2

• Equipoise: ¯̀ = 1. Symmetry, F (1− ε) = 1− F (ε)



Literature

• Selection bias: Heckman (1979)

• Methods to estimate and test, correcting for bias

• Subversion of randomization: Blackwell and Hodges (1957) assume
Evaluator loses from manipulation

• Characterize optimal randomization mechanism to be unpredictable

• Disclosure: Grossman (1980), Milgrom (1981), ..., Henry (2009)

• Information provision & persuasion: Johnson and Myatt (2005) &
Kamenica and Gentzkow (2011)

• The researcher freely chooses an experiment

• Selective disclosure: Fishman and Hagerty (1990), Glazer and
Rubinstein (2004), Hoffmann, Inderst & Ottaviani (2014)

• Here, systematic study of selection, based on statistical properties

• Signal jamming: Holmström (1999)

• Selective trials: Chassang, Padró and Snowberg (2012)



Summary

• We develop tractable model of challenges to internal validity:

1. Dispersion of G = F k decreases in k ⇔ − log(− log F (ε)) is convex

• Then, selection has global and monotonic impact on evaluator

2. To provide general characterization of impact of selection, we compare any
two experiments F ,G based on local dispersion, for a subset of parameters

• We compare experiments when G−1(p) − F−1(p) is not monotonic

• Evaluator benefits from known sample selection unless

• Data has sufficiently thin tails & prior strongly favors acceptance
• Data has sufficiently thick tails & prior strongly favors rejection

• Uncertain manipulation tends to harm evaluator



Open Questions

• In companion paper we developed toy (all-binary) model of sample
selection challenging external validity

• Alcott (2015) documents hard-to-control-for site selection: study sample
not representative of population of interest

• Initial trials are implemented in high impact sites, then impact declines,
⇒ no reliable inference of ATE even after sample of 8 million Americans!



LITERATURE on Stochastic Orders of Order Statistics

• No existing results for strictly logconcave distributions

• Khaledi and Kochar’s (2000) Thm 2.1: if Xi ’s are i.i.d. according to F with

Decreasing Hazard Rate (DHR), Xi :n is less dispersed than Xj :m whenever i ≤ j

and n − i ≥ m − j . Thus, for i = n = 1 and j = m = k : If F has DHR, F k is

more dispersed than F

• By Prekopa’s Thm: Logconcavity => IHR

• Thus exponential (loglinear, with constant HR) is the only logconcave

distribution to which Khaledi and Kochar applies

• Converse of Khaledi and Kochar’sThm 2.1 not valid for IHR distribution

• Our characterization applies to logconcave distributions



Testing for Double Logconvexity: Approach

• Suppose researcher obtains data (x1, ..., xN) and estimates θ̂

• Residuals εn = xn − θ̂ are independent draws from F k

• Under assumption of homogeneous treatment effect, test can be
performed on εn or (x1, ..., xN)

• Use Kolmogorov-Smirnov 2-sample test to evaluate homogeneity in
treatment effect, comparing treatment and control distribution

• Double logconvexity of F is equivalent to concavity of log(− log F )

• IDEA: test for logconcavity of − log F

• Similarly, to test double logconcavity of F ⇔logconcavity of 1
− log F



Testing for Double Logconvexity/Logconcavity: Procedure

• We extend Hazelton’s (2011) test for logconcavity

• start from empirical CDF F of an outcome variable
• compute the non-negative transformation − log F
• rescale it to integrate to one over the original support

• The test requires as input a sample generated by the density whose
logconcavity we want to test, so we cannot just use original sample,but

• we can treat this transformation as a PMF and
• draw an independent random sample from it

• Run the test for logconcavity on the simulated sample:{
H0 : transformed density is logconcave (=dlogcx)
H1 : transformed density is not logconcave

• Replacing − log F with 1
− log F we have H0 =dlogcv



Application to Andrabi, Das, and Khwaja (2017) AER

• Field experiment on

• impact of providing test scores on educational markets

• Considered outcome variable: scores in treated villages

• K-S test for homogeneity in distributions returns p-value>0.3
• Test for logconcavity of original sample: p-value>0.77

• Left: Distribution of original outcome variable

• Right: Computed empirical F (red) and − log(− log F ) (blue)



Application to Andrabi, Das, and Khwaja (2017), Cont.

• Rescaled − log F to fit a PMF & sample of 1,000 iid obs from it (right
panel)

• Rescaled 1
− log F to fit a PMF & sample of 1,000 iid obs from it (left panel)

• Test p-value: 0.9 for H0: transformed density − log F is logconcave;

• evidence in favor of F double logconvex

• Test p-value = 0 for H0: transformed density 1
− log F is logconcave



Application to Lyons (2017) AEJ Applied Econ

• Field experiment on

• impact of teamwork on productivity

• Outcome variable: productivity for groups allowed to work in teams

• K-S test for homogeneity in distributions returns p-value>0.97
• Test for logconcavity of original sample: p-value>0

• Left: Distribution of original outcome variable

• Right: Computed empirical F (red) and − log(− log F ) (blue)



Application to Lyons (2017) AEJ Applied Econ – cont.

• Rescaled − log F to fit a PMF & sample of 1,000 iid obs from it (right
panel)

• Rescaled 1
− log F to fit a PMF & sample of 1,000 iid obs from it (left panel)

• Test p-value = 0.99 for H0: transformed density 1
− log F is logconcave

• Test p-value: 0 for H0: transformed density − log F is logconcave;

• evidence in favor of F double logconcavity


