Network Search: Climbing the Ladder Faster

Marcelo Arbex Dennis O'Dea David Wiczer

University of Windsor University of Washington Stony Brook University.

April 30, 2018

Motivation

Networks are important in labor market search

1. Significant fraction of workers search using contacts

- SCE: $\sim \frac{1}{4}$ found their job by referral from professional-connections (Arbex et al 2018)
- PSID: ~ ¹/₂ found their job through social network (Corcoran, Datcher and Duncan, 1980).
- 2. Firms use referrals when filling a vacancy.
 - EOPP: 36% of firms filled their last vacancy through a referral (Holzer, 1987).

Networks are "irregular"

People differ in the number of links they have, which:

- implies heterogeneity in finding rate both on and off the job
- implies heterogeneity in the quality of offers drawn.

This paper: Different people climb the ladder differently

What we do

- Put an irregular network into a model of on/off-the-job search
 - Workers find jobs through network
 - Firms' workers become search capital
- Use mean-field approach to tractably describe the network
- Calibrate and compare vis-à-vis common empirical findings
 - New evidence from SCE

Key results

- Use mean-field approach to reduce an ∞-dimensional state to 3
- Analytical results:
 - Network search draws from a "better" (FOSD) distribution than direct contact search
 - Network search reduces firms' profit

Key results

- Use mean-field approach to reduce an ∞ -dimensional state to 3
- Analytical results:
 - Network search draws from a "better" (FOSD) distribution than direct contact search
 - Network search reduces firms' profit
- Calibrate to direct contact & network search. The latter:
 - Have higher wages on acquisition (Marmaros & Sacerdote, 2002)
 - Occur after a shorter unemployment spell (Goel & Lang, 2009)
 - Longer match duration (Dustmann et al 2014)
 - More likely higher on the ladder (Arbex et al. 2018)

Basic environment

On-the-job search (as in Burdett and Mortensen 1998)

- Firms post wages that may be found via direct contact
- Workers are ex ante heterogeneous in their peers
- Employees pass offers to peers for positions just like own

Easily extensible to additional heterogeneity

Before getting into the weeds

The mechanism is:

- Workers with more connections sample jobs more quickly
- They climb the ladder faster
- Referrals are useful for 2 reasons:
 - Draw from the wage distribution rather than direct offer distribution
 - Draw from friends who are better connected (paradox of friendship)

Before getting into the weeds

The mechanism is:

- Workers with more connections sample jobs more quickly
- They climb the ladder faster
- Referrals are useful for 2 reasons:
 - Draw from the wage distribution rather than direct offer distribution
 - Draw from friends who are better connected (paradox of friendship)

Network search is done by better connected workers:

- Jobs through the network are higher paid
- Jobs through the network last longer
- Jobs through the network follow shorter unemployment

Literature

- Network theory: Vega-Redondo (2007), Calvo-Aremengol & Jackson (2007), Calvo-Aremengol & Jackson (2004)
- Empirical finding: Cornelissen, Dustmann & Schoenberg (2015), Hellerstein, Kutzbach, Neumark (2014), Holzer (1988)
- Search and networks: Galenianos (2014), Fontaine (2008), Ioannides & Soetevent (2006), Mortensen & Vishwanath (1995)

Model of search and networks in labor markets

Technology, flows and types

Technologies:

- Workers heterogeneous in number of peers, z
 - Characterized by degree distribution $\Omega(z)$
- Workers homogeneous in non-employment flow value, b
- Firms are homogeneous, with productivity 1

Flows:

- Random search, matched via either *direct* or *network* search
- Jobs break up exogenously at rate δ

Vanilla direct search

- Firms post wages w, distributed as F(w), firm offer distribution
- A worker meets vacancy at rate γ^i
- An unemployed worker exits if $w \ge R(\cdot)$
- An employed worker accepts jobs above her current wage

Networks search

- Employed find & pass along jobs at their firm at rate $\gamma^1 \nu$
- Workers sample via their network connections, arrival rate $\rho(\cdot)$
 - Any employed peer equally likely to send a referral
 - Any peer of employed worker equally likely to receive a referral
- Connections pass jobs with the same wage (i.e. same firm)
- Same acceptance rules: reservation wage $R(\cdot)$ or w.

What is a worker type?

Define χ recursively:

- Each worker has z peers
- χ is $z \times 4$. Element *c* is a triple
 - ▶ *i*(*c*), the labor status
 - *w*(*c*), the wage
 - k(c), the history of wages
 - $\chi(c)$, the position in the network
- *χ*(*c*) is also a *s* × 4 dimensional object, s.t. *s* is the number of peers of peer *c*

To forecast the value of a peer:

- His wage that might be passed
- His potential wage next period

The mean-field approach

Goal:

- Remove local information from the state
- Instead of how particular atoms interact, use average atom effect
- Will take the position in network from χ to z

Requires:

- Incomplete information about peers
- 2 A locally tree-like structure

We didn't make this up

- Vega-Redondo (2007) uses this approach so that the average state of the network is replicated *locally*: No neighborhood effects (Vega-Redondo 2007).
- Good representation of the long-run dynamics of networks (Vega-Redondo 2007, Jackson 2008).
- This or similar idea used in network search papers: Calvo-Armengol & Zenou (2005) or Bramoulle & Saint Paul (2010)

Assumption 1: Tree structure

Assumption:

- The network is described *completely* by the degree distribution, Ω
- As nodes $n \rightarrow \infty$, probability of a cluster $\rightarrow 0$

The effect:

- For any χ and χ' if z = z' then $E[s|\chi] = E[s'|\chi']$
- z has no information about local conditions

Networks we rule out

- The clustered network has local structure
- The regular network is uninteresting

Our network structure: A tree

No local "neighborhood," but number of connections differs

Arbex, O'Dea, Wiczer (SBU) Network Search: Climbing the Ladder Faster

Assumptions 2& 3: Incomplete information/memory

- 2 Limited observability assumption:
 - Agents do not know the state $(i(c), w(c), k(c), \chi(c))$ of peer c
 - Agents know c exists and can use degree distribution, Ω
 - Use k to form beliefs $(\hat{i}(c), \hat{w}(c), \hat{k}(c), \hat{\chi}(c)) \forall c$
- 3 Limited memory assumption
 - Agents know c exists and can use degree distribution, Ω
 - No information on which to form beliefs

Proposition: z is a sufficient statistic

Under each assumption

- z = z' can differ only in $\{i(c), w(c)\}$
- 2 Cannot directly observe $\{i(c), w(c)\}$
- Solution Cannot use k to infer $\{i(c), w(c)\}$

Workers will differ in "connectedness," but that is unidimensional

Type-distribution of referral passer

• $\Psi(s)$: probability a worker's peer has *s* peers herself

$$\Psi(oldsymbol{s}) = rac{oldsymbol{s}\Omega(oldsymbol{s})}{\langle oldsymbol{z}
angle}$$

• $\Psi(s) < \Omega(s)$ is the *paradox of friendship*

Type-distribution of referral passer

• $\Psi(s)$: probability a worker's peer has *s* peers herself

$$\Psi(oldsymbol{s}) = rac{oldsymbol{s}\Omega(oldsymbol{s})}{\langle oldsymbol{z}
angle}$$

- $\Psi(\boldsymbol{s}) < \Omega(\boldsymbol{s})$ is the *paradox of friendship*
- Probability a peer is s and passes referral:

$$\gamma^1 \nu \frac{n(s)}{s} \Psi(s)$$

Then the distribution is

$$\tilde{\Psi}(\boldsymbol{s}) = \frac{\gamma^{1} \nu \frac{n(\boldsymbol{s})}{\boldsymbol{s}} \Psi(\boldsymbol{s})}{\int \gamma^{1} \nu \frac{n(\boldsymbol{z})}{\boldsymbol{z}} \Psi(\boldsymbol{z}) d\boldsymbol{z}} = \frac{n(\boldsymbol{s}) \Omega(\boldsymbol{s})}{\int n(\boldsymbol{z}) \Omega(\boldsymbol{z}) d\boldsymbol{z}}$$

Network search arrival rate

The probability a worker of type *z* receives an offer via a peer is

$$\rho(z) = \lim_{\Delta \to 0} \left(1 - \left[1 - \int_{s} \Psi(s) \gamma^{1} n(s) \frac{\nu}{s} ds \Delta \right]^{z/\Delta} \right)$$
$$= \left(1 - \exp\left(-z\nu\gamma^{1} \int \frac{n(s)}{s} \Psi(s) ds \right) \right)$$

- *n*(*s*)γ¹ is the probability this peer is employed and hears of an vacancy
- ν/s is the probability this information is passed along

Network offer distribution/earnings distribution

The earnings distribution among agents of type z

G(w, z)

Earnings distribution in the population:

$$G(w) = \int_{z} G(w, z) \Omega(z) dz$$

Network offer distribution:

$$ilde{G}(oldsymbol{w}) = \int_{oldsymbol{s}} G(oldsymbol{w},oldsymbol{s}) \mathbf{ ilde{\Psi}}(oldsymbol{s}) doldsymbol{s}$$

Offers through the network are drawn from $\tilde{G}(w)$

Model of search and networks in labor markets:

Workers' value functions

Unemployed Worker's Value Function

The value function of an unemployed worker of type z is

$$rV^{0}(z) = b + \underbrace{\gamma^{0}\left\{\int_{R(z)}^{\bar{W}}\left[V^{1}(z,x) - V^{0}(z)\right]dF(x)\right\}}_{\text{The value of direct search}} + \underbrace{(1 - \gamma^{0})\rho(z)\int_{R(z)}^{\bar{W}}\left[\left(V^{1}(z,x) - V^{0}(z)\right)\right]d\tilde{G}(x)}_{\text{The value of network search}}$$

Employed Worker's Value Function

The value of an employed worker with *z* connections and wage *w* is

$$rV^{1}(z, w) = w + \delta \left[V^{0}(z) - V^{1}(z, w) \right] + \gamma^{1} \left\{ \int_{w}^{\tilde{w}} \left[V^{1}(z, x) - V^{1}(z, w) \right] dF(x) \right\}$$

The value of direct search
$$+ \underbrace{(1 - \gamma^{1})\rho(z) \int_{R(z)}^{\tilde{w}} \left[\left(V^{1}(z, x) - V^{1}(z, w) \right) \right] d\tilde{G}(x)}_{\text{The value of network search}}$$

Reservation Wage

At the reservation wage R(z), we have that $V^1(z, R(z)) = V^0(z)$.

$$R(z) - b = \left(\gamma^{0} - \gamma^{1}\right) \left\{ \int_{R(z)}^{\bar{w}} \left[V^{1}(z, w) - V^{0}(z) \right] dF(w) \right\} \\ + \left[\begin{array}{c} (1 - \gamma^{0})\rho(z) \\ -(1 - \gamma^{1})\rho(z) \end{array} \right] \left\{ \int_{R(z)}^{\bar{w}} \left[\theta(w) \left(V^{1}(z, w) - V^{0}(z) \right) \right] dw \right\}$$

$$= \left(\gamma^{0} - \gamma^{1}\right) \left\{ \int_{R(z)}^{\bar{w}} V_{w}^{1}(z, w) \left[1 - F(w)\right] dw \right\}$$
$$+ \left[(\gamma^{0} - \gamma^{1})\rho(z) \right] \left\{ \int_{R(z)}^{\bar{w}} V_{w}^{1}(z, w) (1 - \tilde{G}(w)) dw \right\}$$
(1)

Wage Distribution and Workers per Firm

l(w, z): Labor force of type z per firm at a firm paying wage w
 L(w): Total labor input per firm paying wage w:

$$L(w) = \int_{1}^{\infty} \ell(w, z) dz$$
(2)

• Each employer offers a wage that gives steady state profit:

$$\pi(w) = (1 - w)L(w) \tag{3}$$

Steady state equilibrium and analytic results

Steady State Employment of Workers

Flows in and out of unemployment must balance, give the steady state employment rate:

$$n(z) = \underbrace{\overbrace{\gamma^{0}\left[1 - F\left(R(z)\right)\right]}^{\text{Recruiting from direct search}}}_{\delta + \gamma^{0}\left[1 - F\left(R(z)\right)\right]} + \underbrace{\overbrace{(1 - \gamma^{0})\rho(z)\left[1 - \tilde{G}\left(R(z)\right)\right]}^{\text{Recruiting from network search}}}_{\left(1 - \gamma^{0})\rho(z)\left[1 - \tilde{G}\left(R(z)\right)\right]}, \quad (4)$$

The economy's employment rate is given by

$$n = \int_{1}^{\infty} n(z)\Omega(z)dz$$
(5)

Steady State Earnings Distribution

G(w, z) =

 $\underbrace{ \left[1-n(z)\right] \left\{ \overbrace{\gamma^{0} \left[F(w)-F(R(z))\right]}^{\text{Direct search effect}} + \overbrace{\left(1-\gamma^{0}\right)\rho(z) \left\{\tilde{G}(w)-\tilde{G}(R(z))\right\}}^{\text{Network search effect}} \right\} }{n(z) \left[\delta+\gamma^{1} \left[1-F(w)\right]+(1-\gamma^{1})\rho(z)(1-\tilde{G}(w)]}$

Because $\frac{F(w)-F(R)}{(1-F(w))} \ge \frac{\tilde{G}(w)-\tilde{G}(R)}{(1-\tilde{G}(w))}$, averaging in dominating distribution

Steady State Firm Size

Separating of *z*-type workers equal the *z*-type workers:

$$\ell(w, z)\beta(w, z) = h(w, z)$$
(6)

where

6

•
$$\beta(w, z) = \frac{\gamma^{1}(1 - F(w))}{Loss \text{ to poaching via direct search}} + \underbrace{(1 - \gamma^{1})\rho(z) \left[1 - \tilde{G}(w)\right]}_{Loss \text{ to poaching via network search}}$$

• $h(w, z) = \frac{Hired \text{ via direct search}}{\frac{\Omega(z)}{M} \left\{ \left[1 - n(z)\right] \gamma^{0} \mathbb{I}_{R(z) \le w} + n(z) \gamma^{1} G(w, z) \right\} + 2\gamma^{1} \int \ell(w, t) t \Psi(z) \left\{ \left[1 - n(z)\right] \nu \mathbb{I}_{R(z) \le w} + n(z) \nu G(w, z) \right\} dz}$

Hired via network search

The steady state equilibrium

Definition

A Sufficient Recursive Equilibrium: V^0 , V^1 , R, π and F(w), G(w, z), n(w), such that:

- V^0 , V^1 , R solve household problem
- G, n consistent with worker flows
- *F* implies $\pi(w) = \pi \ \forall w$

Ordering offer distributions, $\tilde{G} \leq F$

Proposition

Ĝ First Order Stochastically Dominates F

- As in Burdett Mortensen, $G \leq F$ because $\gamma^1 > 0$
- \tilde{G} weights G by $n(\cdot)$: $\int \frac{n(s)G(w,s)\Omega(s)}{\int n(z)\Omega(z)} ds$
- n' > 0, which is guaranteed by
 - $\rho' > 0$ by definition
 - R' < 0 because $V_{wz}^1(z, R(z)) > 0$

The equilibrium effect of network search

Proposition

Beginning from $\nu = 0$, for sufficiently high γ^1

•
$$\frac{\partial \underline{w}}{\partial \nu} \leq 0$$
 and $\frac{\partial \overline{w}}{\partial \nu} \geq 0$
• $\frac{\partial L(\underline{w})}{\partial \nu} \leq 0$ and $\frac{\partial L(\overline{w})}{\partial \nu} \geq 0$
• $\frac{\partial \pi}{\partial \nu} \leq 0$

•
$$\frac{\partial \underline{w}}{\partial \nu} \leq 0$$
 because $\frac{\partial R(z)}{\partial \nu} \leq 0$

•
$$\frac{\partial L(\underline{w})}{\partial v} \leq 0$$
 because poaching is faster

- $\frac{\partial \pi}{\partial v}$ depends on $\frac{\partial L(\underline{w})}{\partial v}$ (Envelope condition takes care of $\frac{\partial \underline{w}}{\partial v}$)
- $\frac{\partial L(\bar{w})}{\partial v} \ge 0$ because own workers increase hiring

Results from the calibrated economy

SCE: Higher wage workers use networks more

- Model prediction: higher-wage workers find jobs through networks
- Survey of Consumer Expectations (SCE) asks workers their current job's finding method

Parameter values

Parameter	Value	Moment	Model	Data
γ^0	0.24	Finding rate UE	0.24	0.25
γ^1	0.10	Finding rate EE	0.02	0.02
ν	0.04	Hires through the network	0.13	0.23
α	2.34	Network finding slope	0.26	0.25
δ	0.013	Average EU		

Average offer distribution by type

Figure: Average distribution of wage offers by contact method conditional on number of peers.

Average hiring method by wage

Figure: At higher wage levels, most hiring occurs through referral.

The half-life by connections

Figure: Half-life of wage growth paths to maximum wage: different starting wages and different network connections *z*.

The effect is not just heterogeneous search

We let arrival rates differ by z, but not the offer distribution

Figure: Half-life of wage growth comparing heterogeneous search rates and network search model

Results from the calibrated economy: Relationship to empirical findings

The different distributions of workers

Figure: Distribution of number of peers: Direct search and network search.

Summarizing the effects

	Network Search	Direct Search	
Average z relative to unemployed	4.14	0.93	
Expected wage qtile; UE	0.251	0.075	
Search time relative to avg	0.951	1.001	
Average <i>z</i> relative to employed	2.67	0.80	
Expected wage qtile; job-to-job	0.444	0.224	
Expected duration of job match	4.87 years	2.70 years	

Table: Expected differences between workers finding jobs through network or directed search. Above the line describe finding from unemployment, below adds features of job-to-job transitions.

Conclusion

Conclusions

- We presented a model of network search
- The mean-field approach allows for tractable, irregular networks
- Highly extensible to other search frameworks
- Empirical findings on search consistent with type heterogeneity and job ladders