Price Discovery
 in a Matching and Bargaining Market with Aggregate Uncertainty

Artyom Shneyerov ${ }^{1}$ and Adam Chi Leung Wong ${ }^{2}$

Workshop in Memory of Artyom Shneyerov CIRANO

October 12, 2018

[^0]- In a market where buyers and sellers are strategic and uncertain about demand and supply, at what price should they trade?
- Study dynamic market with search frictions and decentralized bilateral bargaining
- e.g. second-hand housing market, used car market, labor market
- 2 states:
- H: high-demand low-supply (sellers' market)
- L: high-supply low-demand (buyers' market)
- Traders learn from search experiences
- If search frictions are small, would the transaction prices be close to the true-state Walrasian (or competitive, or market-clearing) price?

Main Results

In our model, as search frictions converge to 0 , the market discovers the true-state Walrasian price quickly:

- transaction prices converge to the true-state Walrasian price in expectation
- the rate of convergence is linear in search frictions, the same as it would be if the state were commonly known

Literature (Dynamic matching and bargaining games)

- Initiated by Rubinstein \& Wolinsky (1985), homogeneous buyers/sellers, no uncertainty
- Heterogeneous buyers/sellers, complete info bargaining
- Gale (1987), Mortensen \& Wright (2002)
- Heterogeneous buyers/sellers, IPV bargaining
- Wolinsky (1988), Satterthwaite \& Shneyerov (2007, 2008), Atakan (2008, 2009), Shneyerov \& Wong (2010a,b), Lauermann $(2012,2013)$
- Common values uncertainty
- Wolinsky (1990), Blouin \& Serrano (2001), Serrano (2002)
- Aggregate (demand-supply) uncertainty
- Majumdar, Shneyerov, \& Xie (2016), Lauermann, Merzyn, \& Virag (2018)

Model

- Buyers/sellers arrive at market deterministically and continuously
- Each seller has a unit supply of a homogeneous, indivisible good; cost is 0
- Each buyer has a unit demand; valuation is 1

Model

- Buyers/sellers arrive at market deterministically and continuously
- Each seller has a unit supply of a homogeneous, indivisible good; cost is 0
- Each buyer has a unit demand; valuation is 1
- Two possible states: $\omega \in\{H, L\}$; inflow rates of buyers/sellers in state ω are λ_{B}^{ω} and λ_{S}^{ω}
Assumption 1: $\lambda_{B}^{H}>\lambda_{S}^{H}$ and $\lambda_{B}^{L}<\lambda_{S}^{L}$.
- State is constant over time. No one knows the true state; common prior belief ϕ^{ω}
Note: flow Walrasian price is 1 if $\omega=H$ and 0 if $\omega=L$

Model

- Buyers/sellers arrive at market deterministically and continuously
- Each seller has a unit supply of a homogeneous, indivisible good; cost is 0
- Each buyer has a unit demand; valuation is 1
- Two possible states: $\omega \in\{H, L\}$; inflow rates of buyers/sellers in state ω are λ_{B}^{ω} and λ_{S}^{ω}
Assumption 1: $\lambda_{B}^{H}>\lambda_{S}^{H}$ and $\lambda_{B}^{L}<\lambda_{S}^{L}$.
- State is constant over time. No one knows the true state; common prior belief ϕ^{ω}
Note: flow Walrasian price is 1 if $\omega=H$ and 0 if $\omega=L$
- Every trader is risk neutral
- Continuous time, infinite horizon; focus on steady state
- Given stocks of buyers/sellers Λ_{B}, Λ_{S}, the mass of pairs matched per unit time is $\mu \cdot \min \left\{\Lambda_{B}, \Lambda_{S}\right\}$
- Who gets matched and Who matches whom are random
- Once matched, they bargain:
(1) Nature randomly chooses a proposer: buyer with prob. $\beta_{B} \in(0,1)$; seller with prob. $\beta_{S} \equiv 1-\beta_{B}$
(2) Proposer makes take-it-or-leave-it price offer
(3) Responder chooses to accept or reject
- Given stocks of buyers/sellers Λ_{B}, Λ_{S}, the mass of pairs matched per unit time is $\mu \cdot \min \left\{\Lambda_{B}, \Lambda_{S}\right\}$
- Who gets matched and Who matches whom are random
- Once matched, they bargain:
(1) Nature randomly chooses a proposer: buyer with prob. $\beta_{B} \in(0,1)$; seller with prob. $\beta_{S} \equiv 1-\beta_{B}$
(2) Proposer makes take-it-or-leave-it price offer
(3) Responder chooses to accept or reject

Assumption 2: Upon meeting, each trader observes the total time his partner has participated in the market.

- If trade at p, buyer leaves with payoff $1-p$, seller leaves with p
- If don't trade, stay searching for another match
- Friction profile: (r, δ)
- $\delta>0$: exogenous exit rate
- $r \geq 0$: time discount rate

Full trade (steady state) market equilibrium

Basic equilibrium objects:

- steady state stocks and distributions of traders
- traders' beliefs about state
- traders' bargaining strategies

Full trade (steady state) market equilibrium

Basic equilibrium objects:

- steady state stocks and distributions of traders
- traders' beliefs about state
- traders' bargaining strategies
such that
- Given bargaining strategies, steady state equations are satisfied to maintain the stocks and distributions
- Given steady state stocks and distributions, the traders' beliefs and bargaining strategies constitute Perfect Bayesian Equilibrium
- In addition, restrict attention to full trade equilibria (FTE), in which every meeting on equilibrium path results in trade.

Steady state stocks

For each $\omega=L, H$, stocks $\Lambda_{B}^{\omega}, \Lambda_{S}^{\omega}$ satisfy

$$
\begin{aligned}
& \lambda_{B}^{\omega}=\delta \Lambda_{B}^{\omega}+\mu \min \left\{\Lambda_{B}^{\omega}, \Lambda_{S}^{\omega}\right\} \\
& \lambda_{S}^{\omega}=\delta \Lambda_{S}^{\omega}+\mu \min \left\{\Lambda_{B}^{\omega}, \Lambda_{S}^{\omega}\right\}
\end{aligned}
$$

so that

$$
\begin{aligned}
\Lambda_{B}^{\omega} & =\frac{(\delta+\mu) \lambda_{B}^{\omega}-\mu \min \left\{\lambda_{B}^{\omega}, \lambda_{S}^{\omega}\right\}}{\delta(\delta+\mu)} \\
\Lambda_{S}^{\omega} & =\frac{(\delta+\mu) \lambda_{S}^{\omega}-\mu \min \left\{\lambda_{B}^{\omega}, \lambda_{S}^{\omega}\right\}}{\delta(\delta+\mu)}
\end{aligned}
$$

Note: $\Lambda_{B}^{H}>\Lambda_{S}^{H}$ and $\Lambda_{B}^{L}<\Lambda_{S}^{L}$.

Steady state finding rates
For each $\omega=L, H$, finding rates $\alpha_{B}^{\omega}, \alpha_{S}^{\omega}$ are

$$
\alpha_{B}^{\omega} \equiv \frac{\mu \min \left\{\Lambda_{B}^{\omega}, \Lambda_{S}^{\omega}\right\}}{\Lambda_{B}^{\omega}}, \alpha_{S}^{\omega} \equiv \frac{\mu \min \left\{\Lambda_{B}^{\omega}, \Lambda_{S}^{\omega}\right\}}{\Lambda_{S}^{\omega}}
$$

Steady state finding rates

For each $\omega=L, H$, finding rates $\alpha_{B}^{\omega}, \alpha_{S}^{\omega}$ are

$$
\alpha_{B}^{\omega} \equiv \frac{\mu \min \left\{\Lambda_{B}^{\omega}, \Lambda_{S}^{\omega}\right\}}{\Lambda_{B}^{\omega}}, \quad \alpha_{S}^{\omega} \equiv \frac{\mu \min \left\{\Lambda_{B}^{\omega}, \Lambda_{S}^{\omega}\right\}}{\Lambda_{S}^{\omega}}
$$

In particular, short sides' finding rates are

$$
\alpha_{B}^{L}=\alpha_{S}^{H}=\mu,
$$

long sides' finding rates are

$$
\begin{aligned}
\alpha_{B}^{H} & =\frac{\delta \mu \lambda_{S}^{H}}{(\delta+\mu) \lambda_{B}^{H}-\mu \lambda_{S}^{H}}<\mu, \\
\alpha_{S}^{L} & =\frac{\delta \mu \lambda_{B}^{L}}{(\delta+\mu) \lambda_{S}^{L}-\mu \lambda_{B}^{L}}<\mu
\end{aligned}
$$

Lemma 1. α_{B}^{H} and α_{S}^{L} are $O(\delta)$.

Steady state distributions

- Let $G_{B}^{\omega}\left(t_{B}\right)$ be the fraction of buyers' steady-state stock in state ω who have been in the market for less than time t_{B}
- Steady-state equation for $G_{B}^{\omega}(\cdot)$ implies

$$
G_{B}^{\omega}\left(t_{B}\right)=1-\exp \left(-\left(\delta+\alpha_{B}^{\omega}\right) t_{B}\right)
$$

Steady state distributions

- Let $G_{B}^{\omega}\left(t_{B}\right)$ be the fraction of buyers' steady-state stock in state ω who have been in the market for less than time t_{B}
- Steady-state equation for $G_{B}^{\omega}(\cdot)$ implies

$$
G_{B}^{\omega}\left(t_{B}\right)=1-\exp \left(-\left(\delta+\alpha_{B}^{\omega}\right) t_{B}\right)
$$

Alternative Interpretation: conditional distribution of searching time

- $G_{B}^{\omega}\left(t_{B}\right)$ is, from an unmatched buyer's perspective, the prob. of being matched after some searching time less than t_{B}, conditional on the event that the true state is ω and this buyer will meet a seller (rather than exogenously exit before meeting)
- Similar note for $G_{S}^{\omega}\left(t_{S}\right)=1-\exp \left(-\left(\delta+\alpha_{S}^{\omega}\right) t_{S}\right)$

000000

Belief formation

Search history and bargaining history
Search history (on or off equilibrium path) of a buyer who has met n sellers:

$$
\left(t_{B 1}, \ldots, t_{B n}, t_{B(n+1)} ; t_{S 1}, \ldots, t_{S n}\right)
$$

- $t_{B i}$ for $i \in\{1, \ldots, n\}$ is searching time spent to have the i-th meeting
- $t_{S i}$ for $i \in\{1, \ldots, n\}$ is the observed time on the market of the i-th seller met
- $t_{B(n+1)}$ is the time on the market since last meeting

Belief formation

Search history and bargaining history
Search history (on or off equilibrium path) of a buyer who has met n sellers:

$$
\left(t_{B 1}, \ldots, t_{B n}, t_{B(n+1)} ; t_{S 1}, \ldots, t_{S n}\right)
$$

- $t_{B i}$ for $i \in\{1, \ldots, n\}$ is searching time spent to have the i-th meeting
- $t_{S i}$ for $i \in\{1, \ldots, n\}$ is the observed time on the market of the i-th seller met
- $t_{B(n+1)}$ is the time on the market since last meeting

Bargaining history:

- which side proposed in previous meetings
- previous price offers
- that these offers are rejected

Belief formation

Search history and bargaining history
Search history (on or off equilibrium path) of a buyer who has met n sellers:

$$
\left(t_{B 1}, \ldots, t_{B n}, t_{B(n+1)} ; t_{S 1}, \ldots, t_{S n}\right)
$$

- $t_{B i}$ for $i \in\{1, \ldots, n\}$ is searching time spent to have the i-th meeting
- $t_{S i}$ for $i \in\{1, \ldots, n\}$ is the observed time on the market of the i-th seller met
- $t_{B(n+1)}$ is the time on the market since last meeting

Bargaining history:

- which side proposed in previous meetings
- previous price offers
- that these offers are rejected

Can WLOG assume every trader only uses search history to update belief, since focus on FTE.

Belief formation
Updating from search history

$$
h_{B} \equiv\left(t_{B 1}, \ldots, t_{B n}, t_{B(n+1)} ; t_{S 1}, \ldots, t_{S n}\right)
$$

- Given $\alpha_{B}^{\omega}, \alpha_{S}^{\omega}, G_{B}^{\omega}\left(t_{B}\right), G_{S}^{\omega}\left(t_{S}\right)$, a buyer's belief $\pi_{B}^{\omega}\left(h_{B}\right)$ about state ω after h_{B} can be computed from Bayes' rule
- $\pi_{B}^{\omega}\left(h_{B}\right)$ depends on h_{B} only through $\sum_{i=1}^{n+1} t_{B i} \equiv t_{B}, \sum_{i=1}^{n} t_{S i} \equiv t_{S}$ and n

Belief formation
Updating from search history

$$
h_{B} \equiv\left(t_{B 1}, \ldots, t_{B n}, t_{B(n+1)} ; t_{S 1}, \ldots, t_{S_{n}}\right)
$$

- Given $\alpha_{B}^{\omega}, \alpha_{S}^{\omega}, G_{B}^{\omega}\left(t_{B}\right), G_{S}^{\omega}\left(t_{S}\right)$, a buyer's belief $\pi_{B}^{\omega}\left(h_{B}\right)$ about state ω after h_{B} can be computed from Bayes' rule
- $\pi_{B}^{\omega}\left(h_{B}\right)$ depends on h_{B} only through $\sum_{i=1}^{n+1} t_{B i} \equiv t_{B}, \sum_{i=1}^{n} t_{S i} \equiv t_{S}$ and n
- Similarly, $\pi_{S}^{\omega}\left(h_{S}\right)$ depends on h_{S} only through $\sum_{i=1}^{n} t_{B i} \equiv t_{B}$, $\sum_{i=1}^{n+1} t_{S i} \equiv t_{S}$ and n
- Write $\pi_{B}^{\omega}\left(t_{B}, t_{S}, n\right)$ and $\pi_{S}^{\omega}\left(t_{B}, t_{S}, n\right)$

Belief formation

Updating from search history

$$
h_{B} \equiv\left(t_{B 1}, \ldots, t_{B n}, t_{B(n+1)} ; t_{S 1}, \ldots, t_{S n}\right)
$$

- Given $\alpha_{B}^{\omega}, \alpha_{S}^{\omega}, G_{B}^{\omega}\left(t_{B}\right), G_{S}^{\omega}\left(t_{S}\right)$, a buyer's belief $\pi_{B}^{\omega}\left(h_{B}\right)$ about state ω after h_{B} can be computed from Bayes' rule
- $\pi_{B}^{\omega}\left(h_{B}\right)$ depends on h_{B} only through $\sum_{i=1}^{n+1} t_{B i} \equiv t_{B}, \sum_{i=1}^{n} t_{S i} \equiv t_{S}$ and n
- Similarly, $\pi_{S}^{\omega}\left(h_{S}\right)$ depends on h_{S} only through $\sum_{i=1}^{n} t_{B i} \equiv t_{B}$, $\sum_{i=1}^{n+1} t_{S i} \equiv t_{S}$ and n
- Write $\pi_{B}^{\omega}\left(t_{B}, t_{S}, n\right)$ and $\pi_{S}^{\omega}\left(t_{B}, t_{S}, n\right)$

Feature: $\pi_{B}^{\omega}\left(t_{B}, t_{S}, 1\right)=\pi_{S}^{\omega}\left(t_{B}, t_{S}, 1\right)$ for every t_{B}, t_{S}

- meeting on eqm path is the first meeting for both
- bargaining on eqm path is under sym info

Bellman equations

- Bargaining strategies are fully characterized by the continuation payoffs (or search values) $W_{B}\left(h_{B}\right)$ and $W_{S}\left(h_{S}\right)$ just after breaking-up
- Write $W_{B}\left(t_{B}, t_{S}, n\right)$ and $W_{S}\left(t_{B}, t_{S}, n\right)$

Bellman equations

- Bargaining strategies are fully characterized by the continuation payoffs (or search values) $W_{B}\left(h_{B}\right)$ and $W_{S}\left(h_{S}\right)$ just after breaking-up
- Write $W_{B}\left(t_{B}, t_{S}, n\right)$ and $W_{S}\left(t_{B}, t_{S}, n\right)$

Let T_{B}, T_{S} be independent r.v. that follow distributions $G_{B}^{\omega}(\cdot), G_{S}^{\omega}(\cdot)$.
$W_{B}\left(t_{B}, t_{S}, n\right)=\sum_{\omega=L, H} \pi_{B}^{\omega}\left(t_{B}, t_{S}, n\right) \frac{\alpha_{B}^{\omega}}{\delta+\alpha_{B}^{\omega}} \mathbb{E}\left[e^{-r T_{B}} q_{B}\left(t_{B}+T_{B}, t_{S}, n ; T_{S}\right) \mid \omega\right]$
where $q_{B}\left(t_{B}+T_{B}, t_{S}, n ; T_{S}\right) \equiv$

$$
\begin{aligned}
& \beta_{B} \max \left\{1-W_{S}\left(t_{B}+T_{B}, T_{S}, 1\right), W_{B}\left(t_{B}+T_{B}, t_{S}+T_{S}, n+1\right)\right\} \\
& +\beta_{S} \max \left\{W_{B}\left(t_{B}+T_{B}, T_{S}, 1\right), W_{B}\left(t_{B}+T_{B}, t_{S}+T_{S}, n+1\right)\right\}
\end{aligned}
$$

Similarly for $W_{S}\left(t_{B}, t_{S}, n\right)$

Equilibrium

- Given $\alpha_{B}^{\omega}, \alpha_{S}^{\omega}, G_{B}^{\omega}(\cdot), G_{S}^{\omega}(\cdot), \pi_{B}^{\omega}(\cdot), \pi_{S}^{\omega}(\cdot)$ derived above, full trade (market) equilibrium (FTE) can be redefined as functions

$$
W_{B}, W_{S}: \mathbb{R}_{+} \times \mathbb{R}_{+} \times \mathbb{N} \rightarrow[0,1]
$$

that solve buyers' and sellers' Bellman equations and such that the trading condition

$$
W_{B}\left(t_{B}, t_{S}, 1\right)+W_{S}\left(t_{B}, t_{S}, 1\right) \leq 1
$$

holds for every $\left(t_{B}, t_{S}\right)$.

- Transaction prices on equilibrium path are:
- either $W_{S}\left(t_{B}, t_{S}, 1\right)$ when buyer proposes
- or $1-W_{B}\left(t_{B}, t_{S}, 1\right)$ when seller proposes

No uncertainty benchmark
Existence, uniqueness, rate of convergence under certainty

Suppose true state ω is commonly known ($\phi^{\omega}=1$).

- W_{B}, W_{S} become constants

$$
\begin{aligned}
\bar{W}_{B}^{\omega} & =\frac{\beta_{B} \alpha_{B}^{\omega}}{r+\delta+\beta_{B} \alpha_{B}^{\omega}+\beta_{S} \alpha_{S}^{\omega}}, \\
\bar{W}_{S}^{\omega} & =\frac{\beta_{S} \alpha_{S}^{\omega}}{r+\delta+\beta_{B} \alpha_{B}^{\omega}+\beta_{S} \alpha_{S}^{\omega}} .
\end{aligned}
$$

- $\bar{W}_{B}^{\omega}+\bar{W}_{S}^{\omega}<1$
- $\bar{W}_{B}^{H}, 1-\bar{W}_{S}^{H}, 1-\bar{W}_{B}^{L}, \bar{W}_{S}^{L}=O(r+\delta)$
- because $\alpha_{B}^{L}=\alpha_{S}^{H}=\mu$ and $\alpha_{B}^{H}, \alpha_{S}^{L}=O(\delta)$

No uncertainty benchmark
Existence, uniqueness, rate of convergence under certainty

Proposition 1. If true state ω is commonly known,

- $\forall(r, \delta) \in \mathbb{R}_{+} \times \mathbb{R}_{++}, \exists$ a unique FTE.
- $\exists \bar{C}_{0}, \bar{C}_{1}>0$, not depending on r, δ, s.t. when $r+\delta>0$ is sufficiently small,

$$
\bar{C}_{0} \cdot(r+\delta) \leq \begin{gathered}
\bar{W}_{B}^{H}, \\
1-\bar{W}_{S}^{H}, \\
1-\bar{W}_{B}^{L}, \\
\bar{W}_{S}^{L}
\end{gathered}
$$

i.e., discrepancy between equilibrium transaction prices and Walrasian price is of order $r+\delta$.

Uniqueness

Return to the aggregate uncertainty case $\left(\phi^{L}, \phi^{H} \in(0,1)\right)$

- Neglect the trading condition: FTE candidate defined only by a pair of Bellman equations

Proposition 2 (Uniqueness). $\forall(r, \delta) \in \mathbb{R}_{+} \times \mathbb{R}_{++}$, there is at most one FTE.

Sketch of proof: Apply Contraction Mapping Theorem to show that the system of Bellman equations has a unique solution.

Basic equilibrium properties

Proposition 3. In any FTE,

- $\pi_{B}^{L}\left(t_{B}, t_{S}, n\right)$ and $W_{B}\left(t_{B}, t_{S}, n\right)$ are continuous in $\left(t_{B}, t_{S}\right)$, nonincreasing in t_{B}, and nondecreasing in t_{S};
- $\pi_{S}^{H}\left(t_{B}, t_{S}, n\right)$ and $W_{S}\left(t_{B}, t_{S}, n\right)$ are continuous in $\left(t_{B}, t_{S}\right)$, nondecreasing in t_{B}, and nonincreasing in t_{S};
- $\forall\left(t_{B}, t_{S}, n\right) \in \mathbb{R}_{+} \times \mathbb{R}_{+} \times \mathbb{N}$,

$$
\begin{aligned}
& \bar{W}_{B}^{H} \leq W_{B}\left(t_{B}, t_{S}, n\right) \leq \bar{W}_{B}^{L} \\
& \bar{W}_{S}^{L} \leq W_{S}\left(t_{B}, t_{S}, n\right) \leq \bar{W}_{S}^{H}
\end{aligned}
$$

Belief convergence

- Traders' bargaining values (on equilibrium path) depend on their outside option values.
- Their outside option values depend on their first-order beliefs and their bargaining values of off-equilibrium future bargaining.
- Values of off-equilibrium future bargaining depend on second-level outside option values, which in turn depend on second-order beliefs and bargaining values of second-level off-equilibrium future bargaining; and so on.
- In a off-equilibrium bargaining, buyer and seller do not have symmetric info; one or both of their beliefs are formed based on wrong info about n
- However, all these on- and off-equilibrium beliefs become asymptotically precise in expectation.

Belief convergence

Let $T_{B i}$'s and $T_{S i}$'s be independent random copies of T_{B} and T_{S} respectively.

Lemma 3. For $j=B, S$,

$$
\begin{aligned}
& \max _{1 \leq k_{1}, k_{2}, k_{3} \leq n}\left\{\mathbb{E}\left[\pi_{j}^{L}\left(\sum_{i=1}^{k_{1}} T_{B i}, \sum_{i=1}^{k_{2}} T_{S i}, k_{3}\right) \mid H\right]\right\} \leq\left(c_{1}+c_{2} n\right) \cdot \delta, \\
& \max _{1 \leq k_{1}, k_{2}, k_{3} \leq n}\left\{\mathbb{E}\left[\pi_{j}^{H}\left(\sum_{i=1}^{k_{1}} T_{B i}, \sum_{i=1}^{k_{2}} T_{S i}, k_{3}\right) \mid L\right]\right\} \leq\left(c_{1}+c_{2} n\right) \cdot \delta,
\end{aligned}
$$

where c_{1}, c_{2} are constants not depending on r, δ, n.

Intuition:

- Say true state is H, and let $\delta \rightarrow 0$.
- Recall that $\alpha_{S}^{H}=\mu$ but $\alpha_{B}^{H}=O(\delta)$.
- Buyers' random searching time $T_{B} \rightarrow \infty$ in probability, but T_{S} does not.
- The reverse is true if true state is L.
- Realizations of T_{B}, T_{S} are more and more informative as $\delta \rightarrow 0$.

Convergence of prices

To no uncertainty benchmark

Proposition 4. In any FTE,

$$
\begin{aligned}
& \mathbb{E}\left[W_{B}\left(T_{B}, T_{S}, 1\right) \mid H\right]-\bar{W}_{B}^{H}, \\
& 0 \leq \bar{W}_{S}^{H}-\mathbb{E}\left[W_{S}\left(T_{B}, T_{S}, 1\right) \mid H\right], \leq C \cdot \delta, \\
& \bar{W}_{B}^{L}-\mathbb{E}\left[W_{B}\left(T_{B}, T_{S}, 1\right) \mid L\right], \\
& \mathbb{E}\left[W_{S}\left(T_{B}, T_{S}, 1\right) \mid L\right]-\bar{W}_{S}^{L}
\end{aligned}
$$

where C is a constant that does not depend on r, δ.

- Convergence in expectation (Recall that $\forall\left(t_{B}, t_{S}\right)$ $\bar{W}_{B}^{H} \leq W_{B}\left(t_{B}, t_{S}, 1\right) \leq \bar{W}_{B}^{L}$ and $\left.\bar{W}_{S}^{L} \leq W_{S}\left(t_{B}, t_{S}, 1\right) \leq \bar{W}_{S}^{H}\right)$
- expected discrepancy between equilibrium transaction prices and true-state no uncertainty benchmark price is of order δ.

To true-state Walrasian price

Main Theorem: \exists constants $C_{0}, C_{1}>0$ not depending on r, δ s.t. if $r+\delta>0$ is sufficiently small, any FTE satisfies

$$
\begin{gathered}
\mathbb{E}\left[W_{B}\left(T_{B}, T_{S}, 1\right) \mid H\right], \\
C_{0} \cdot(r+\delta) \leq \begin{array}{l}
1-\mathbb{E}\left[W_{S}\left(T_{B}, T_{S}, 1\right) \mid H\right], \leq C_{1} \cdot(r+\delta), \\
1-\mathbb{E}\left[W_{B}\left(T_{B}, T_{S}, 1\right) \mid L\right], \\
\mathbb{E}\left[W_{S}\left(T_{B}, T_{S}, 1\right) \mid L\right]
\end{array}, ~
\end{gathered}
$$

i.e., expected discrepancy between equilibrium transaction prices and the true-state Walrasian price is of order $r+\delta$.

Existence

Proposition 5. $\forall \underline{r}>0, \exists \bar{\delta}>0$ s.t. whenever $r \geq \underline{r}$ and $0<\delta \leq \bar{\delta}$, the FTE candidate satisfies

$$
W_{B}\left(t_{B}, t_{S}, 1\right)+W_{S}\left(t_{B}, t_{S}, 1\right) \leq 1 \quad \forall\left(t_{B}, t_{S}\right) \in \mathbb{R}_{+} \times \mathbb{R}_{+} .
$$

Corollary 3. For any level $\tau>0, \exists(r, \delta) \in \mathbb{R}_{+} \times \mathbb{R}_{++}$with $r+\delta=\tau$ s.t. a FTE exists under (r, δ).

Summary

- Study dynamic model of a market with search friction and bilateral random-proposer take-it-or-leave-it bargaining
- Two possible states:
- at H state, more buyers than sellers
- at L state, more sellers than buyers
- The only info transmitted in a meeting is the time a trader spent on the market
- As search frictions vanish, the market discovers the true-state competitive price quickly
- Transaction prices converge to the true-state Walrasian price in expectation
- Rate of convergence is linear in the total search friction, the same as it would be if the state were commonly known.

[^0]: ${ }^{1}$ Concordia University and CIREQ, CIRANO
 ${ }^{2}$ Lingnan University

