Price Discovery in a Matching and Bargaining Market with Aggregate Uncertainty

Artyom Shneyerov¹ and Adam Chi Leung Wong²

Workshop in Memory of Artyom Shneyerov CIRANO October 12, 2018

< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回

¹Concordia University and CIREQ, CIRANO ²Lingnan University

Introduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	000	0000000	0000	000000	0

- In a market where buyers and sellers are strategic and **uncertain about demand and supply**, at what price should they trade?
- Study dynamic market with search frictions and decentralized bilateral bargaining
 - e.g. second-hand housing market, used car market, labor market
- 2 states:
 - H: high-demand low-supply (sellers' market)
 - L: high-supply low-demand (buyers' market)
- Traders learn from search experiences
- If search frictions are small, would the transaction prices be close to the true-state Walrasian (or competitive, or market-clearing) price?

Introduction	Model	Equilibrium	Basic properties	Main results	Conclusion
○●○	000	0000000		000000	O
Main Resu	ults				

In our model, as search frictions converge to 0, the market discovers the true-state Walrasian price quickly:

- transaction prices converge to the true-state Walrasian price in expectation
- the rate of convergence is linear in search frictions, the same as it would be if the state were commonly known

- Initiated by Rubinstein & Wolinsky (1985), homogeneous buyers/sellers, no uncertainty
- Heterogeneous buyers/sellers, complete info bargaining
 - Gale (1987), Mortensen & Wright (2002)
- Heterogeneous buyers/sellers, IPV bargaining
 - Wolinsky (1988), Satterthwaite & Shneyerov (2007, 2008), Atakan (2008, 2009), Shneyerov & Wong (2010a,b), Lauermann (2012, 2013)
- Common values uncertainty
 - Wolinsky (1990), Blouin & Serrano (2001), Serrano (2002)
- Aggregate (demand-supply) uncertainty
 - Majumdar, Shneyerov, & Xie (2016), Lauermann, Merzyn, & Virag (2018)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

I ntroduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	●00	0000000		000000	0
Model					

- Buyers/sellers arrive at market deterministically and continuously
- Each seller has a unit supply of a homogeneous, indivisible good; cost is 0
- Each buyer has a unit demand; valuation is 1

I ntroduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	●○○	0000000		000000	0
Model					

- Buyers/sellers arrive at market deterministically and continuously
- Each seller has a unit supply of a homogeneous, indivisible good; cost is 0
- Each buyer has a unit demand; valuation is 1
- Two possible states: $\omega \in \{H, L\}$; inflow rates of buyers/sellers in state ω are λ_B^{ω} and λ_S^{ω}

Assumption 1: $\lambda_B^H > \lambda_S^H$ and $\lambda_B^L < \lambda_S^L$.

 \bullet State is constant over time. No one knows the true state; common prior belief ϕ^ω

Note: flow Walrasian price is 1 if $\omega = H$ and 0 if $\omega = L$

I ntroduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	●○○	0000000		000000	0
Model					

- Buyers/sellers arrive at market deterministically and continuously
- Each seller has a unit supply of a homogeneous, indivisible good; cost is 0
- Each buyer has a unit demand; valuation is 1
- Two possible states: $\omega \in \{H, L\}$; inflow rates of buyers/sellers in state ω are λ_B^{ω} and λ_S^{ω}

Assumption 1: $\lambda_B^H > \lambda_S^H$ and $\lambda_B^L < \lambda_S^L$.

 $\bullet\,$ State is constant over time. No one knows the true state; common prior belief ϕ^ω

Note: flow Walrasian price is 1 if $\omega = H$ and 0 if $\omega = L$

- Every trader is risk neutral
- Continuous time, infinite horizon; focus on steady state

Introduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	000	0000000	0000	000000	0

- Given stocks of buyers/sellers Λ_B, Λ_S, the mass of pairs matched per unit time is μ · min{Λ_B, Λ_S}
- Who gets matched and Who matches whom are random
- Once matched, they bargain:
 - Nature randomly chooses a proposer: buyer with prob. $\beta_B \in (0, 1)$; seller with prob. $\beta_S \equiv 1 \beta_B$
 - Proposer makes take-it-or-leave-it price offer
 - O Responder chooses to accept or reject

Introduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	000	0000000	0000	000000	0

- Given stocks of buyers/sellers Λ_B, Λ_S, the mass of pairs matched per unit time is μ · min{Λ_B, Λ_S}
- Who gets matched and Who matches whom are random
- Once matched, they bargain:
 - Nature randomly chooses a proposer: buyer with prob. $\beta_B \in (0, 1)$; seller with prob. $\beta_S \equiv 1 \beta_B$
 - Proposer makes take-it-or-leave-it price offer
 - Sesponder chooses to accept or reject

Assumption 2: Upon meeting, each trader observes the total time his partner has participated in the market.

- If trade at p, buyer leaves with payoff 1 p, seller leaves with p
- If don't trade, stay searching for another match
- Friction profile: (r, δ)
 - $\delta > 0$: exogenous exit rate
 - $r \ge 0$: time discount rate

< □ > < 同 > < 回 > < 回 > < 回 >

Introduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	○○●	0000000	0000	000000	O
Full trade	(steady	state) mark	et equilibriur	n	

Basic equilibrium objects:

- steady state stocks and distributions of traders
- traders' beliefs about state
- traders' bargaining strategies

Introduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	00●	0000000		000000	0
Full trade ((steady s	tate) mark	et equilibrium	1	

Basic equilibrium objects:

- steady state stocks and distributions of traders
- traders' beliefs about state
- traders' bargaining strategies

such that

- Given bargaining strategies, steady state equations are satisfied to maintain the stocks and distributions
- Given steady state stocks and distributions, the traders' beliefs and bargaining strategies constitute Perfect Bayesian Equilibrium
- In addition, restrict attention to *full trade equilibria* (FTE), in which every meeting on equilibrium path results in trade.

< □ > < 同 > < 回 > < 回 > < 回 >

Introduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	000	●000000		000000	0
Steady sta	te stock	S			

For each $\omega = L, H$, stocks $\Lambda_B^{\omega}, \Lambda_S^{\omega}$ satisfy

$$\begin{split} \lambda^{\omega}_{B} &= \delta \Lambda^{\omega}_{B} + \mu \min\{\Lambda^{\omega}_{B}, \Lambda^{\omega}_{S}\}\\ \lambda^{\omega}_{S} &= \delta \Lambda^{\omega}_{S} + \mu \min\{\Lambda^{\omega}_{B}, \Lambda^{\omega}_{S}\} \end{split}$$

so that

$$\begin{split} \Lambda_B^{\omega} &= \frac{(\delta + \mu)\lambda_B^{\omega} - \mu \min\{\lambda_B^{\omega}, \lambda_S^{\omega}\}}{\delta(\delta + \mu)},\\ \Lambda_S^{\omega} &= \frac{(\delta + \mu)\lambda_S^{\omega} - \mu \min\{\lambda_B^{\omega}, \lambda_S^{\omega}\}}{\delta(\delta + \mu)}.\\ \textbf{Note: } \Lambda_B^H &> \Lambda_S^H \text{ and } \Lambda_B^L < \Lambda_S^L. \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E 990

Introduction	Mode l	Equilibrium	Basic properties	Main results	Conclusion
000	000	0●00000		000000	0

Steady state finding rates

For each $\omega = L, H$, finding rates $\alpha_B^{\omega}, \alpha_S^{\omega}$ are

$$\alpha_B^{\omega} \equiv \frac{\mu \min\{\Lambda_B^{\omega}, \Lambda_S^{\omega}\}}{\Lambda_B^{\omega}}, \quad \alpha_S^{\omega} \equiv \frac{\mu \min\{\Lambda_B^{\omega}, \Lambda_S^{\omega}\}}{\Lambda_S^{\omega}}$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Introduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	000	000000	0000	000000	0

Steady state finding rates

For each $\omega = L, H$, finding rates $\alpha^{\omega}_{B}, \alpha^{\omega}_{S}$ are

$$\alpha_B^{\omega} \equiv \frac{\mu \min\{\Lambda_B^{\omega}, \Lambda_S^{\omega}\}}{\Lambda_B^{\omega}}, \ \alpha_S^{\omega} \equiv \frac{\mu \min\{\Lambda_B^{\omega}, \Lambda_S^{\omega}\}}{\Lambda_S^{\omega}}$$

In particular, short sides' finding rates are

$$\alpha_B^L = \alpha_S^H = \mu,$$

long sides' finding rates are

$$\alpha_B^H = \frac{\delta\mu\lambda_S^H}{(\delta+\mu)\lambda_B^H - \mu\lambda_S^H} < \mu,$$
$$\alpha_S^L = \frac{\delta\mu\lambda_B^L}{(\delta+\mu)\lambda_S^L - \mu\lambda_B^L} < \mu.$$

Lemma 1. α_B^H and α_S^L are $O(\delta)$.

Shneyerov and Wong

≣▶ **स्≣▶ ≣ २०**९० Oct 12, 2018 9/25

- Let $G_B^{\omega}(t_B)$ be the fraction of buyers' steady-state stock in state ω who have been in the market for less than time t_B
- Steady-state equation for $G^{\omega}_B(\cdot)$ implies

 $G_B^{\omega}(t_B) = 1 - \exp(-(\delta + \alpha_B^{\omega})t_B)$

- 3

10 / 25

< □ > < 同 > < 回 > < 回 > < 回 >

- Let $G_B^{\omega}(t_B)$ be the fraction of buyers' steady-state stock in state ω who have been in the market for less than time t_B
- Steady-state equation for ${\it G}^{\omega}_{B}(\cdot)$ implies

$$G_B^{\omega}(t_B) = 1 - \exp(-(\delta + \alpha_B^{\omega})t_B)$$

Alternative Interpretation: conditional distribution of searching time

- $G_B^{\omega}(t_B)$ is, from an unmatched buyer's perspective, the prob. of being matched after some searching time less than t_B , conditional on the event that the true state is ω and this buyer will meet a seller (rather than exogenously exit before meeting)
- Similar note for ${\it G}^{\omega}_{{\it S}}(t_{{\it S}})=1-\exp(-(\delta+lpha^{\omega}_{{\it S}})t_{{\it S}})$

l ntroduction 000	Model 000	Equilibrium ○○○●○○○	Basic properties	Main results 000000	Conclusion O
Belief for	mation				
Search history	/ and bargai	ning history			

Search history (on or off equilibrium path) of a buyer who has met n sellers:

$$(t_{B1},\ldots,t_{Bn},t_{B(n+1)};t_{S1},\ldots,t_{Sn})$$

- t_{Bi} for $i \in \{1, \ldots, n\}$ is searching time spent to have the i-th meeting
- t_{Si} for $i \in \{1, \ldots, n\}$ is the observed time on the market of the *i*-th seller met
- $t_{B(n+1)}$ is the time on the market since last meeting

Introduction 000	Model 000	Equilibrium ○○○●○○○	Basic properties	Main results 000000	Conclusion O
Belief for	mation				
Search history	/ and bargain	ning history			

Search history (on or off equilibrium path) of a buyer who has met n sellers:

$$(t_{B1},\ldots,t_{Bn},t_{B(n+1)};t_{S1},\ldots,t_{Sn})$$

- t_{Bi} for $i \in \{1, \ldots, n\}$ is searching time spent to have the i-th meeting
- t_{Si} for $i \in \{1, \ldots, n\}$ is the observed time on the market of the *i*-th seller met
- $t_{B(n+1)}$ is the time on the market since last meeting

Bargaining history:

- which side proposed in previous meetings
- previous price offers
- that these offers are rejected

l ntroduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	000	○○○●○○○		000000	O
Belief forn Search history	nation and bargain	ning history			

Search history (on or off equilibrium path) of a buyer who has met n sellers:

$$(t_{B1},\ldots,t_{Bn},t_{B(n+1)};t_{S1},\ldots,t_{Sn})$$

- t_{Bi} for $i \in \{1, \ldots, n\}$ is searching time spent to have the i-th meeting
- t_{Si} for $i \in \{1, \ldots, n\}$ is the observed time on the market of the *i*-th seller met
- $t_{B(n+1)}$ is the time on the market since last meeting

Bargaining history:

- which side proposed in previous meetings
- previous price offers
- that these offers are rejected

Can WLOG assume every trader only uses search history to update belief, since focus on FTE.

Shneyerov and Wong

l ntroduction 000	Model 000	Equilibrium ○○○ ○ ●○○	Basic properties	Main results 000000	Conclusion 0
Belief for	mation				
Updating from	n search hist	ory			

$$h_B \equiv (t_{B1},\ldots,t_{Bn},t_{B(n+1)};t_{S1},\ldots,t_{Sn})$$

- Given α_B^{ω} , α_S^{ω} , $G_B^{\omega}(t_B)$, $G_S^{\omega}(t_S)$, a buyer's belief $\pi_B^{\omega}(h_B)$ about state ω after h_B can be computed from Bayes' rule
- $\pi_B^{\omega}(h_B)$ depends on h_B only through $\sum_{i=1}^{n+1} t_{Bi} \equiv t_B$, $\sum_{i=1}^{n} t_{Si} \equiv t_S$ and n

(日) (周) (日) (日) (日) (000

$$h_B \equiv (t_{B1}, \ldots, t_{Bn}, t_{B(n+1)}; t_{S1}, \ldots, t_{Sn})$$

- Given α_B^{ω} , α_S^{ω} , $G_B^{\omega}(t_B)$, $G_S^{\omega}(t_S)$, a buyer's belief $\pi_B^{\omega}(h_B)$ about state ω after h_B can be computed from Bayes' rule
- $\pi_B^{\omega}(h_B)$ depends on h_B only through $\sum_{i=1}^{n+1} t_{Bi} \equiv t_B$, $\sum_{i=1}^{n} t_{Si} \equiv t_S$ and n
- Similarly, $\pi_S^{\omega}(h_S)$ depends on h_S only through $\sum_{i=1}^n t_{Bi} \equiv t_B$, $\sum_{i=1}^{n+1} t_{Si} \equiv t_S$ and n
- Write $\pi^{\omega}_{B}(t_{B},t_{S},n)$ and $\pi^{\omega}_{S}(t_{B},t_{S},n)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

l ntroduction 000	Model 000	Equilibrium ○○○ ○ ●○○	Basic properties	Main results 000000	Conclusion 0
Belief for	mation				
Updating from	m search hist	tory			

$$h_B \equiv (t_{B1}, \ldots, t_{Bn}, t_{B(n+1)}; t_{S1}, \ldots, t_{Sn})$$

- Given α_B^{ω} , α_S^{ω} , $G_B^{\omega}(t_B)$, $G_S^{\omega}(t_S)$, a buyer's belief $\pi_B^{\omega}(h_B)$ about state ω after h_B can be computed from Bayes' rule
- $\pi_B^{\omega}(h_B)$ depends on h_B only through $\sum_{i=1}^{n+1} t_{Bi} \equiv t_B$, $\sum_{i=1}^{n} t_{Si} \equiv t_S$ and n
- Similarly, $\pi_S^{\omega}(h_S)$ depends on h_S only through $\sum_{i=1}^n t_{Bi} \equiv t_B$, $\sum_{i=1}^{n+1} t_{Si} \equiv t_S$ and n
- Write $\pi^{\omega}_{B}(t_{B},t_{S},n)$ and $\pi^{\omega}_{S}(t_{B},t_{S},n)$

Feature: $\pi_B^{\omega}(t_B, t_S, 1) = \pi_S^{\omega}(t_B, t_S, 1)$ for every t_B, t_S

- meeting on eqm path is the first meeting for both
- bargaining on eqm path is under sym info

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	000	○○○○○●○		000000	O
Bellman eo	quations				

- Bargaining strategies are fully characterized by the continuation payoffs (or search values) $W_B(h_B)$ and $W_S(h_S)$ just after breaking-up
- Write $W_B(t_B, t_S, n)$ and $W_S(t_B, t_S, n)$

★ 3 > 3

Introduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	000	○○○○○●○		000000	0
Bellman eo	quations				

- Bargaining strategies are fully characterized by the continuation payoffs (or search values) $W_B(h_B)$ and $W_S(h_S)$ just after breaking-up
- Write $W_B(t_B, t_S, n)$ and $W_S(t_B, t_S, n)$

Let T_B, T_S be independent r.v. that follow distributions $G_B^{\omega}(\cdot), G_S^{\omega}(\cdot)$.

$$W_B(t_B, t_S, n) = \sum_{\omega=L, H} \pi_B^{\omega}(t_B, t_S, n) \frac{\alpha_B^{\omega}}{\delta + \alpha_B^{\omega}} \mathbb{E}[e^{-rT_B}q_B(t_B + T_B, t_S, n; T_S)|\omega]$$

where $q_B(t_B + T_B, t_S, n; T_S) \equiv$

 $\beta_B \max \{1 - W_S(t_B + T_B, T_S, 1), W_B(t_B + T_B, t_S + T_S, n+1)\} + \beta_S \max \{W_B(t_B + T_B, T_S, 1), W_B(t_B + T_B, t_S + T_S, n+1)\}$

Similarly for $W_S(t_B, t_S, n)$

(日) (周) (日) (日) (日) (000

13 / 25

I ntroduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	000	000000●		000000	0
Equilibrium	า				

Given α^ω_B, α^ω_S, G^ω_B(·), G^ω_S(·), π^ω_B(·), π^ω_S(·) derived above, full trade (market) equilibrium (FTE) can be redefined as functions

$$W_B, W_S : \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{N} \to [0, 1]$$

that solve buyers' and sellers' Bellman equations and such that the *trading condition*

$$W_B(t_B, t_S, 1) + W_S(t_B, t_S, 1) \leq 1$$

holds for every (t_B, t_S) .

• Transaction prices on equilibrium path are:

- either $W_S(t_B, t_S, 1)$ when buyer proposes
- or $1 W_B(t_B, t_S, 1)$ when seller proposes

Introduction
oooModel
oooEquilibrium
coococoBasic properties
ococococoMain results
ococococoConclusion
oNo uncertainty benchmark

Suppose true state ω is commonly known ($\phi^{\omega} = 1$).

Existence, uniqueness, rate of convergence under certainty

• *W_B*, *W_S* become constants

$$\begin{split} \overline{W}_B^{\omega} &= \frac{\beta_B \alpha_B^{\omega}}{r + \delta + \beta_B \alpha_B^{\omega} + \beta_S \alpha_S^{\omega}}, \\ \overline{W}_S^{\omega} &= \frac{\beta_S \alpha_S^{\omega}}{r + \delta + \beta_B \alpha_B^{\omega} + \beta_S \alpha_S^{\omega}}. \end{split}$$

•
$$\overline{W}_{B}^{\omega} + \overline{W}_{S}^{\omega} < 1$$

• $\overline{W}_{B}^{H}, 1 - \overline{W}_{S}^{H}, 1 - \overline{W}_{B}^{L}, \overline{W}_{S}^{L} = O(r + \delta)$
• because $\alpha_{B}^{L} = \alpha_{S}^{H} = \mu$ and $\alpha_{B}^{H}, \alpha_{S}^{L} = O(\delta)$

Shneyerov and Wong

15 / 25

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition 1. If true state ω is commonly known,

- $\forall (r, \delta) \in \mathbb{R}_+ \times \mathbb{R}_{++}, \exists a unique FTE.$
- $\exists \overline{C}_0, \overline{C}_1 > 0$, not depending on r, δ , s.t. when $r + \delta > 0$ is sufficiently small,

$$\overline{C}_0 \cdot (r+\delta) \leq egin{array}{c} \overline{W}^H_B, \ 1-\overline{W}^H_S, \ 1-\overline{W}^L_B, \ \overline{W}^L_S, \ \overline{W}^L_S \end{array} \leq \overline{C}_1 \cdot (r+\delta),$$

i.e., discrepancy between equilibrium transaction prices and Walrasian price is of order $r + \delta$.

Shneyerov and Wong

Aggregate Uncertainty

Oct 12, 2018

16 / 25

イロト イポト イヨト イヨト 二日

I ntroduction	Mode l	Equilibrium	Basic properties	Main results	Conclusion
000	000	0000000	00●0	000000	0
Uniqueness	S				

Return to the aggregate uncertainty case $(\phi^L, \phi^H \in (0, 1))$

 Neglect the trading condition: FTE candidate defined only by a pair of Bellman equations

Proposition 2 (Uniqueness). $\forall (r, \delta) \in \mathbb{R}_+ \times \mathbb{R}_{++}$, there is at most one FTE.

Sketch of proof: Apply Contraction Mapping Theorem to show that the system of Bellman equations has a unique solution.

Proposition 3. In any FTE,

- $\pi_B^L(t_B, t_S, n)$ and $W_B(t_B, t_S, n)$ are continuous in (t_B, t_S) , nonincreasing in t_B , and nondecreasing in t_S ;
- $\pi_{S}^{H}(t_{B}, t_{S}, n)$ and $W_{S}(t_{B}, t_{S}, n)$ are continuous in (t_{B}, t_{S}) , nondecreasing in t_{B} , and nonincreasing in t_{S} ;

•
$$\forall (t_B, t_S, n) \in \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{N},$$

$$\overline{W}_{B}^{H} \leq W_{B}(t_{B}, t_{S}, n) \leq \overline{W}_{B}^{L},$$
$$\overline{W}_{S}^{L} \leq W_{S}(t_{B}, t_{S}, n) \leq \overline{W}_{S}^{H}.$$

< □ > < 同 > < 回 > < 回 > < 回 >

18 / 25

Introduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	000	0000000		●00000	0
Belief conv	/ergence				

- Traders' bargaining values (on equilibrium path) depend on their outside option values.
- Their outside option values depend on their first-order beliefs and their bargaining values of off-equilibrium future bargaining.
- Values of off-equilibrium future bargaining depend on second-level outside option values, which in turn depend on second-order beliefs and bargaining values of second-level off-equilibrium future bargaining; and so on.
- In a off-equilibrium bargaining, buyer and seller do not have symmetric info; one or both of their beliefs are formed based on wrong info about n
- However, all these on- and off-equilibrium beliefs become asymptotically precise in expectation.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let T_{Bi} 's and T_{Si} 's be *independent* random copies of T_B and T_S respectively.

Lemma 3. For j = B, S,

$$\max_{1 \le k_1, k_2, k_3 \le n} \left\{ \mathbb{E} \left[\pi_j^L \left(\sum_{i=1}^{k_1} T_{Bi}, \sum_{i=1}^{k_2} T_{Si}, k_3 \right) | H \right] \right\} \le (c_1 + c_2 n) \cdot \delta,$$
$$\max_{1 \le k_1, k_2, k_3 \le n} \left\{ \mathbb{E} \left[\pi_j^H \left(\sum_{i=1}^{k_1} T_{Bi}, \sum_{i=1}^{k_2} T_{Si}, k_3 \right) | L \right] \right\} \le (c_1 + c_2 n) \cdot \delta,$$

where c_1, c_2 are constants not depending on r, δ, n .

イロト 不得 トイヨト イヨト 二日

20 / 25

Introduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	000	000000	0000	00000	0

Intuition:

- Say true state is H, and let $\delta \rightarrow 0$.
- Recall that $\alpha_{S}^{H} = \mu$ but $\alpha_{B}^{H} = O(\delta)$.
- Buyers' random searching time $T_B o \infty$ in probability, but T_S does not.
- The reverse is true if true state is *L*.
- Realizations of T_B, T_S are more and more informative as $\delta \rightarrow 0$.

Proposition 4. In any FTE,

$$0 \leq \frac{\mathbb{E}\left[W_B(T_B, T_S, 1)|H\right] - \overline{W}_B^H}{\overline{W}_B^H - \mathbb{E}\left[W_S(T_B, T_S, 1)|H\right],} \leq C \cdot \delta, \\ \mathbb{E}\left[W_S(T_B, T_S, 1)|L\right], \\ \mathbb{E}\left[W_S(T_B, T_S, 1)|L\right] - \overline{W}_S^L$$

where C is a constant that does not depend on r, δ .

- Convergence in expectation (Recall that $\forall (t_B, t_S)$ $\overline{W}_B^H \leq W_B(t_B, t_S, 1) \leq \overline{W}_B^L$ and $\overline{W}_S^L \leq W_S(t_B, t_S, 1) \leq \overline{W}_S^H$)
- expected discrepancy between equilibrium transaction prices and true-state no uncertainty benchmark price is of order δ.

Main Theorem: \exists constants $C_0, C_1 > 0$ not depending on r, δ s.t. if $r + \delta > 0$ is sufficiently small, any FTE satisfies

$$C_{0} \cdot (r + \delta) \leq \begin{array}{c} \mathbb{E} \left[W_{B} \left(T_{B}, T_{S}, 1 \right) | H \right], \\ 1 - \mathbb{E} \left[W_{S} \left(T_{B}, T_{S}, 1 \right) | H \right], \\ 1 - \mathbb{E} \left[W_{B} \left(T_{B}, T_{S}, 1 \right) | L \right], \\ \mathbb{E} \left[W_{S} \left(T_{B}, T_{S}, 1 \right) | L \right], \end{array} \leq C_{1} \cdot (r + \delta),$$

i.e., expected discrepancy between equilibrium transaction prices and the true-state Walrasian price is of order $r + \delta$.

< 日 > < 同 > < 回 > < 回 > < 回 >

I ntroduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	000	0000000		00000●	0
Existence					

Proposition 5. $\forall \underline{r} > 0$, $\exists \overline{\delta} > 0$ s.t. whenever $r \geq \underline{r}$ and $0 < \delta \leq \overline{\delta}$, the FTE candidate satisfies

 $W_B(t_B, t_S, 1) + W_S(t_B, t_S, 1) \leq 1 \quad \forall (t_B, t_S) \in \mathbb{R}_+ \times \mathbb{R}_+.$

Corollary 3. For any level $\tau > 0$, $\exists (r, \delta) \in \mathbb{R}_+ \times \mathbb{R}_{++}$ with $r + \delta = \tau$ s.t. a FTE exists under (r, δ) .

I ntroduction	Model	Equilibrium	Basic properties	Main results	Conclusion
000	000	0000000		000000	●
Summary					

- Study dynamic model of a market with search friction and bilateral random-proposer take-it-or-leave-it bargaining
- Two possible states:
 - at *H* state, more buyers than sellers
 - at *L* state, more sellers than buyers
- The only info transmitted in a meeting is the time a trader spent on the market
- As search frictions vanish, the market discovers the true-state competitive price quickly
 - Transaction prices converge to the true-state Walrasian price in expectation
 - Rate of convergence is linear in the total search friction, the same as it would be if the state were commonly known.