SEARCH AND MULTIPLE JOBHOLDING

Etienne Lalé

Université du Québec à Montréal, CIRANO and IZA

Preliminary and incomplete

CIRANO Macro Workshop, 26 November 2018

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Multiple jobholding remains poorly documented and not well understood. Partly this is due to the fact that multiple jobholders make up a small share of employment

Empirical evidence (e.g. Paxson & Sicherman [JoLE, '94]) suggest that multiple jobholding plays an important role in shaping labor market trajectories

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Multiple jobholding remains poorly documented and not well understood. Partly this is due to the fact that multiple jobholders make up a small share of employment

Empirical evidence (e.g. Paxson & Sicherman [JoLE, '94]) suggest that multiple jobholding plays an important role in shaping labor market trajectories

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ - のへで

This paper: We develop a quantitative general equilibrium theory of multiple jobholding

Theory: DMP model with hours, search off- and on-the-job, and multiple jobholding

Applications: Determinants and macroeconomic implications of multiple jobholding

(ロト・日本)・モン・モン・モー のへで

Theory: DMP model with hours, search off- and on-the-job, and multiple jobholding

> An 'empirically reasonable' full-time/part-time margin

▷ cf. Borowczyk-Martins and Lalé [WP, '18] 'The rise of part-time employment'

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Applications: Determinants and macroeconomic implications of multiple jobholding

Theory: DMP model with hours, search off- and on-the-job, and multiple jobholding

▷ Jobs are *ex ante* homogeneous, *i.e.* no job is inherently secondary

Workers bargain with their employers

Applications: Determinants and macroeconomic implications of multiple jobholding

Theory: DMP model with hours, search off- and on-the-job, and multiple jobholding

▷ Jobs are *ex ante* homogeneous, *i.e.* no job is inherently secondary

Workers bargain with their employers

Applications: Determinants and macroeconomic implications of multiple jobholding

> Quantitatively, the model provides a very good account of multiple jobholding

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theory: DMP model with hours, search off- and on-the-job, and multiple jobholding

▷ Jobs are *ex ante* homogeneous, *i.e.* no job is inherently secondary

Workers bargain with their employers

Applications: Determinants and macroeconomic implications of multiple jobholding

> Micro: Returns to scale in the flow cost of working matter a lot

▷ Macro: Secular decline in multiple jobholding contributed to reducing search frictions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Labor supply and multiple jobholding: Shishko & Rostker [AER, '76], Krishnan [ReStat '90], Paxson & Sicherman [JoLE, '94], Renna & Oaxaca [IZA, '06]
 - 1.1 Hours changes within vs. across jobs: Altonji & Paxson [JHR '92], Blundell, Brewer & Francesconi [JoLE, '08], Borowczyk-Martins & Lalé [AEJ Macro, '19]
- Changing U.S. labor market dynamism: Hyatt & Spletzer [JoLE, '13], Davis & Haltiwanger [NBER, '14], Lalé [MLR, '15], Hyatt & Spletzer [LE, '17]
- The rise of alternative work arrangements: Katz & Krueger [AER P&P '17, ILRR, '19], Chen, Chevalier, Rossi & Oehlsen [NBER '17], Mas & Pallais [AER, '17]

EQUILIBRIUM

CALIBRATION

EXPERIMENTS

CONCLUSION

I. The economy

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Workers

Maximize

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(c_t^m + c_t^h \right)$$

Home production

$$z_t g (1-h_t)$$

z_t: idiosyncratic and stochastic
 g(.) has the standard form

$$g(1-h_t) = \frac{(1-h_t)^{1-\frac{1}{\gamma}} - 1}{1-\frac{1}{\gamma}}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Employers

Match productivity

 $y_t f(h_t)$

where y_t is stochastic

 \blacktriangleright f(.) maps market hours onto labor services

$$f(h_t) = \begin{cases} (1-\psi)h_t & \text{if } h_t < \bar{h} \\ (1-\psi)h_t + \psi & \text{if } h_t \ge \bar{h} \end{cases}$$

 $\psi > 0$ will bunch hours at \bar{h}

Cf. Prescott, Rogerson & Wallenius [RED, '09], Chang, Kim, Kwon & Rogerson [IER, '19]

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ - のへで

Search frictions

Standard CRS matching function

Unemployed and SJH-ers face probabilities

$$\lambda_{0,t} = \theta_t q(\theta_t)$$
 and $\lambda_{1,t} = s_e \lambda_{0,t}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $0 < s_e < 1$

MJH-ers do not search for jobs ($s_e = 0$)

• On meeting, y_t is drawn from a distribution F_0

Key assumptions

1. Outside job offer \rightarrow the worker either moves to the new employer, becomes a *multiple jobholder*, or she chooses to discard these two options

2. If multiple jobholding \rightarrow the worker commits to staying with the *primary employer* until either the first match breaks up or until she gives up her second job

3. A multiple jobholder uses the primary job as her outside option when she bargains with the *secondary employer*

II. Equilibrium

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

ASSET VALUES, SURPLUS AND BARGAINING

Asset values

- Workers: N(z), $E(y_1, z)$, $E(y_1, y_2, z)$
- Employers: $J(y_1, z), J_1(y_1, y_2, z), J_2(y_1, y_2, z)$

Join match surplus

Single jobs

$$S(y_1, z) = J(y_1, z) + E(y_1, z) - N(z)$$

Multiple jobs

$$S(y_1, y_2, z) = J_2(y_1, y_2, z) + E(y_1, y_2, z) - E(y_1, z)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

ASSET VALUES, SURPLUS AND BARGAINING

Asset values

- Workers: N(z), $E(y_1, z)$, $E(y_1, y_2, z)$
- Employers: $J(y_1, z), J_1(y_1, y_2, z), J_2(y_1, y_2, z)$

Join match surplus

Single jobs

$$S(y_1, z) = J(y_1, z) + E(y_1, z) - N(z)$$

Multiple jobs

$$S(y_1, y_2, z) = J_2(y_1, y_2, z) + E(y_1, y_2, z) - E(y_1, z)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Wage bargaining

•
$$(1 - \phi) (E(y_1, z) - N(z)) = \phi J(y_1, z)$$

• $(1 - \phi) (E(y_1, y_2, z) - E(y_1, z)) = \phi J_2(y_1, y_2, z)$

HOURS WORKED

Single jobholders

• $y_{\bar{h}}(z)$ defined by

$$y_{\bar{h}}(z)f(h(y_{\bar{h}}(z),z)) + zg(1-h(y_{\bar{h}}(z),z)) = y_{\bar{h}}(z)f(\bar{h}) + zg(1-\bar{h})$$

Hours schedule

$$h(y_1, z) = \begin{cases} \bar{h} & \text{if } y_{\bar{h}}(z) \le y_1 < \tilde{y}(z) \\ 1 - \left(\frac{z}{(1 - \psi)y_1}\right)^{\gamma} & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

HOURS WORKED

Single jobholders

• $y_{\bar{h}}(z)$ defined by

$$y_{\bar{h}}(z)f(h(y_{\bar{h}}(z),z)) + zg(1-h(y_{\bar{h}}(z),z)) = y_{\bar{h}}(z)f(\bar{h}) + zg(1-\bar{h})$$

$$h(y_1, z) = \begin{cases} \bar{h} & \text{if } y_{\bar{h}}(z) \leq y_1 < \tilde{y}(z) \\ 1 - \left(\frac{z}{(1-\psi)y_1}\right)^{\gamma} & \text{otherwise} \end{cases}$$

Multiple jobholders

$$y_{\bar{h}}(y_{1},z) \text{ defined by}$$

$$y_{\bar{h}}(y_{1},z)f\left(h\left(y_{1},y_{\bar{h}}(y_{1},z),z\right)\right) + zg\left(1-h\left(y_{1},z\right)-h\left(y_{1},y_{\bar{h}}(y_{1},z),z\right)\right)$$

$$= y_{\bar{h}}(y_{1},z)f\left(\bar{h}\right) + zg\left(1-h\left(y_{1},z\right)-\bar{h}\right)$$

Hours schedule

$$h(y_1, y_2, z) = \begin{cases} \bar{h} & \text{if } y_{\bar{h}}(y_1, z) \le y_2 < \tilde{y}(y_1, z) \\ 1 - h(y_1, z) - \left(\frac{z}{(1 - \psi)y_2}\right)^{\gamma} & \text{otherwise} \end{cases}$$

Policy functions (Proposition 1)

1. Positive surplus

$$p(y_1, z) = \mathbb{1} \{ J(y_1, z) > 0 \}$$

= $\mathbb{1} \{ S(y_1, z) > 0 \}$

2. Leaving the current employer

$$\ell(y_1, y_2, z) = \mathbb{1} \left\{ \max \left\{ E(y_2, z), N(z) \right\} > p(y_1, z) \max \left\{ E(y_1, z), E(y_1, y_2, z) \right\} + (1 - p(y_1, z)) N(z) \right\} \\ = \mathbb{1} \left\{ p(y_2, z) S(y_2, z) > p(y_1, z) (S(y_1, z) + d(y_1, y_2, z) S(y_1, y_2, z)) \right\}$$

3. Taking on a second job

$$d(y_1, y_2, z) = \mathbb{1} \{ E(y_1, y_2, z) - E(y_1, z) > 0 \}$$

= $\mathbb{1} \{ S(y_1, y_2, z) > 0 \}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Single jobs

$$S(y_{1},z) = y_{1}f(h(y_{1},z)) + zg(1 - h(y_{1},z)) - (N(z) + \omega_{1}) + \beta \left(S_{e}^{+}(y_{1},z) + S_{j}^{+}(y_{1},z) + \int \left(\int \left(1 - \lambda_{1} \int \ell(y'_{1},y'_{2},z') dF_{0}(y'_{2})\right) p(y'_{1},z') S(y'_{1},z')\right) dF(y'_{1}|y_{1}) dG(z'|z)\right)$$

where

$$S_{e}^{+}(y_{1},z) = \int \left(N(z') + \phi \lambda_{1} \int \int \left(\ell(y'_{1},y'_{2},z') p(y'_{2},z') S(y'_{2},z') + (1 - \ell(y'_{1},y'_{2},z')) \right) \\ \times p(y'_{1},z') d(y'_{1},y'_{2},z') S(y'_{1},y'_{2},z') dF_{0}(y'_{2}) dF(y'_{1}|y_{1}) \right) dG(z'|z)$$

and

$$S_{j}^{+}(y_{1},z) = \lambda_{1} \int \int \int \left(\left(1 - \ell \left(y_{1}', y_{2}', z' \right) \right) p\left(y_{1}', z' \right) d\left(y_{1}', y_{2}', z' \right) \left(J_{1}\left(y_{1}', y_{2}', z' \right) - \left(1 - \phi \right) S\left(y_{1}', z' \right) \right) dF_{0}\left(y_{2}' \right) dF\left(y_{1}'|y_{1} \right) dG\left(z'|z \right)$$

Multiple jobs

$$\begin{split} S(y_1, y_2, z) &= y_2 f\left(h\left(y_1, y_2, z\right)\right) + zg\left(1 - h\left(y_1, z\right) - h\left(y_1, y_2, z\right)\right) - \omega_2 \\ &- \left(\phi S\left(y_1, z\right) + N\left(z\right) + \omega_1 - w_1\left(y_1, z\right)\right) + \beta \left(S_e^+\left(y_1, y_2, z\right) + \int \left(\int \int p\left(y_1', z'\right) \right) \\ &\times d\left(y_1', y_2', z'\right) S\left(y_1', y_2', z'\right) dF\left(y_1'|y_1\right) dF\left(y_2'|y_2\right) \\ &+ \left(\int \left(1 - p\left(y_1', z'\right)\right) dF\left(y_1'|y_1\right)\right) \left(\int p\left(y_2', z'\right) S\left(y_2', z'\right) dF\left(y_2'|y_2\right)\right) dG\left(z'|z\right)\right) \end{split}$$

where

$$S_{e}^{+}(y_{1}, y_{2}, z) = \int \left(N(z') + \phi \int p(y'_{1}, z') S(y'_{1}, z') dF(y'_{1}|y_{1}) \right) dG(z'|z)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Primary employer

$$J_{1}(y_{1}, y_{2}, z) = y_{1}f(h(y_{1}, z)) - w_{1}(y_{1}, z) + \beta \int \int p(y'_{1}, z') \left((1 - \phi) S(y'_{1}, z') + \int (d(y'_{1}, y'_{2}, z') + (1 - \phi) S(y'_{1}, z')) dF(y'_{2}|y_{2}) \right) dF(y'_{1}|y_{1}) dG(z'|z)$$

Nonemployed

$$N(z) = \beta \int \left(N(z') + \lambda_0 \phi \int p(y'_1, z') S(y'_1, z') dF_0(y'_1) \right) dG(z'|z)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

FREE ENTRY CONDITION

Free entry

$$\begin{aligned} \frac{\kappa}{q(\theta)} &= \beta \left(1 - \phi\right) \left(\int \int p\left(y_1', z'\right) S\left(y_1', z'\right) dF_0\left(y_1'\right) dG\left(z'|z\right) \frac{\mu_0(z)}{\bar{\mu}_0 + s_e \bar{\mu}_1} dz \\ &+ \int \int \int S_j^+\left(y_1', y_2', z'\right) dF_0\left(y_2'\right) dF\left(y_1'|y_1\right) dG\left(z'|z\right) \frac{s_e \mu_1\left(y_1, z\right)}{\bar{\mu}_0 + s_e \bar{\mu}_1} dy_1 dz \end{aligned} \end{aligned}$$

where

$$S_{j}^{+}(y_{1},y_{2},z) = \ell(y_{1},y_{2},z)p(y_{2},z)S(y_{2},z) + (1 - \ell(y_{1},y_{2},z))p(y_{1},z)d(y_{1},y_{2},z)S(y_{1},y_{2},z)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

EQUILIBRIUM

Equilibrium (Proposition 2)

• Given θ , the list of asset values $S(y_1, z)$, $S(y_1, y_2, z)$, $J_1(y_1, y_2, z)$ exists and is unique

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- From θ , $p(y_1, z)$, $\ell(y_1, y_2, z)$, $d(y_1, y_2, z)$ we obtain endogenous:
 - job finding
 - job separation
 - ▶ job-to-job transitions
 - ► MJH flows

III. Calibration and validation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

EMPIRICAL COUNTERPARTS

Data

- Monthly CPS data from 1994 to 2016
- Part-time work, job-to-job transitions and multiple jobs

Framework

The labor market in period t is described by

$$s_t = \begin{bmatrix} F_M & P_M \\ M & S \end{bmatrix}_{t=1}^{T_M} \begin{bmatrix} F_S & P_S \\ S \end{bmatrix}_{t=1}^{T_M} \begin{bmatrix} F_S & F_S \\ S \end{bmatrix}_{t=1}^{T_M} \end{bmatrix} \end{bmatrix}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

- s_t is governed by a first-order Markov chain: $s_t = X_t s_{t-1}$
- The elements of X_t are outflow transition probabilities

CALIBRATION

Specification

Match productivity

$$y' = (1 - \rho_y) \mu_y + \rho_y y + \varepsilon'$$

$$z' = \begin{cases} z & \text{with proba } \rho_z \\ \sim N\left(\mu_z, \sigma_z^2\right) & \text{otherwise} \end{cases}$$

Frictions

 $q(\theta) = M \theta^{-\alpha}$

Frisch elasticity is

$$\gamma \frac{1-h}{h}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

CALIBRATION

	Parameter		Value					
A. Parameters set externally								
subjective discount factor	β		0.9951					
threshold for full-time work	\bar{h}		0.4					
match productivity, unconditional mean	μ_y		1.0					
match productivity, persistence	ρ_y		0.975					
elasticity of job filling w.r.t. tightness	α		0.5					
bargaining power of workers	φ		0.5					
matching efficiency	М		0.70					
B. Parameters set internally		$\gamma = 0.125$	$\gamma = 0.250$	$\gamma = 0.375$				
home productivity, mean	μ_z	0.085	0.440	0.787				
home productivity, persistence	ρ_z	0.907	0.932	0.958				
home productivity, standard deviation	σ_z	0.046	0.228	0.272				
productivity gap at \bar{h} hours	Ψ	0.109	0.139	0.143				
vacancy posting cost	κ	0.254	0.087	0.069				
match productivity, standard deviation	σ_{ε}	0.698	0.417	0.399				
on-the-job search relative efficiency	Se	0.340	0.351	0.354				
fixed cost of working, job 1	ω_1	0.293	0.249	0.236				
fixed cost of working, job 2	ω_2	0.473	0.296	0.250				

Table 1: Parameter values

VALIDATION

Table 2: Targeted data vs. model-generated moments

	Data		Model	
		$\gamma = 0.125$	$\gamma = 0.250$	$\gamma = 0.375$
A. Labor market stocks				
multiple jobholding share	5.70	5.67	5.72	5.75
part-time employment share	17.5	17.1	17.1	17.3
mass point at 40 hours	57.8	58.7	57.7	59.3
B. Labor market flows				
job-finding rate	45.0	44.7	45.3	45.1
job separation rate	3.50	3.39	3.55	3.68
job-to-job transition rate	2.30	2.41	2.37	2.42
full-time to part-time rate	4.70	4.75	4.68	4.81
C. Other moments				
average hours per worker	38.5	39.0	38.4	38.1
job creation cost	7.60	7.98	7.73	6.80

VALIDATION

	Data			
		$\gamma = 0.125$	$\gamma = 0.250$	$\gamma = 0.375$
A. MJH inflows				
F_S to M	1.87	1.53	1.75	1.83
P_S to M	3.61	3.52	3.73	3.69
N to M	0.16	0.00	0.00	0.00
B. MJH outflows				
F_M to S	30.0	27.3	28.7	27.7
F_M to N	0.56	0.27	0.57	0.30
P_M to S	34.2	35.3	36.2	37.4
P_M to N	1.81	1.42	2.21	1.73

Table 3: Multiple jobholding flows: Data vs. model

WORKINGS OF THE MODEL

Figure 1: Hours worked during single and multiple jobholding

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - のへで

WORKINGS OF THE MODEL

Figure 2: Wages during single and multiple jobholding

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

WORKINGS OF THE MODEL

Figure 3: Distribution of home productivity among SJH-ers and MJH-ers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ(?)

IV. Numerical experiments

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Experiments

Role of various frictions in the decisions to take on and give up jobs

Short run

Long run (understanding \neq across markets)

Role of the hours constraint

Sources of the decline in multiple jobholding

	$E \rightarrow E$	$F_S \rightarrow M$	$P_S \rightarrow M$	$F_M \rightarrow S$	$P_M \rightarrow S$
A. Short run					
ω_1	0.10	-0.20	-0.33	0.06	0.35
ω_2	0.03	-3.08	-3.38	1.58	0.89
s_e	0.73	0.01	0.43	0.34	0.08
М	0.90	0.67	0.31	0.27	0.38
B. Long run					
ω_1	-0.09	-0.04	-0.45	0.00	0.30
ω_2	0.07	-2.88	-3.32	1.51	0.90
S_e	0.52	0.14	0.55	0.17	-0.03
М	0.91	0.72	0.29	0.27	0.37

Table 4: Elasticity of worker transition probabilities

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

	Base	κ ₁ (+69%)		<i>κ</i> ₂	(+7%)	s _e (-40%)	M (-60%)	
		Alt.	\triangle (%)	Alt.	△ (%)	Alt.	\triangle (%)	Alt.	\triangle (%)
A. Hours									
hours per worker	38.4	40.6	5.62	38.4	-0.12	38.4	-0.09	36.5	-4.84
F_s to P_s	4.91	3.53	-28.1	4.96	1.01	4.88	-0.55	6.27	27.6
P_s to F_s	20.8	25.2	21.2	20.8	0.13	20.4	-1.99	18.6	-10.8
B. Employment									
job-finding	45.3	24.0	-47.0	45.3	0.02	44.2	-2.51	25.0	-44.7
job separation	3.55	5.24	47.7	3.63	2.36	4.23	19.1	2.92	-17.9
job-to-job, all	2.37	1.78	-25.1	2.34	-1.11	1.55	-34.8	1.47	-38.1
job-to-job, SJH-ers	2.00	1.40	-30.0	2.03	1.48	1.22	-38.9	1.24	-38.1
nonemployment	7.27	17.7	143	7.41	2.01	8.71	19.8	10.4	42.8
vacancies	0.39	0.46	20.6	0.39	0.66	0.28	-27.9	0.41	6.77

Table 5: Sources of the decline in multiple jobholding

		$\gamma = 0.125$ $\gamma = 0.25$		$\gamma = 0.250$	0			$\gamma = 0.375$		
	$\psi > 0$	$\psi = 0$	\triangle (%)	$\psi > 0$	$\psi = 0$	\triangle (%)		$\psi > 0$	$\psi = 0$	\triangle (%)
A. Hours										
hours per job	37.7	36.3	-3.71	36.1	34.3	-5.10		35.8	34.8	-2.91
hours per worker	39.0	36.9	-5.28	38.4	35.5	-7.68		38.1	35.6	-6.70
hours per MJH-er	39.4	38.9	-1.00	38.7	41.1	6.18		45.8	50.9	19.0
B. Employment										
multiple jobholding	5.67	3.34	-41.2	5.72	2.64	-53.8		5.75	1.43	-75.2
job-finding	44.7	42.8	-4.27	45.3	38.9	-14.4		45.1	30.5	-32.3
job separation	3.39	3.67	8.18	3.55	4.22	18.9		3.68	4.97	35.0
job-to-job transition	2.41	2.26	-6.15	2.37	2.04	-13.9		2.42	1.88	-22.5
nonemployment	7.05	7.86	11.5	7.27	9.75	34.1		7.54	13.9	84.5

Table 6: Effects of the hours constraint ψ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Experiments

Equilibrium allocations with vs. without multiple jobholding

Long run effects

Decomposing the impact on search frictions

Inference on preferences and technology

Efficiency of multiple jobholding

		$\gamma = 0.125$				$\gamma = 0.25$	50	$\gamma = 0.375$			
	MJH	MJH	△(%)	N	1JH	MJH	△(%)	MJH	MJH	△(%)	
A. Hours											
hours per job	37.7	39.2	3.99	3	86.1	37.8	4.78	35.8	37.6	4.84	
hours per worker	39.0	38.9	-0.13	3	38.4	38.2	-0.51	38.1	37.8	-0.60	
B. Employment											
job-finding	44.7	48.0	7.37	4	15.3	45.9	1.21	45.1	45.0	-0.26	
job separation	3.39	3.84	13.2	3	3.55	4.15	16.9	3.68	4.31	17.2	
job-to-job, all	2.41	2.34	-2.71	2	2.37	2.20	-7.00	2.42	2.28	-5.97	
job-to-job, SJH-ers	2.01	2.34	16.1	2	2.00	2.20	9.89	2.07	2.28	9.91	
nonemployment	7.05	7.35	4.32	7	.27	8.24	13.4	7.54	8.70	15.4	
C. Output											
output per job	0.43	0.47	9.05	(0.36	0.40	11.8	0.36	0.41	12.8	
output per worker	0.45	0.47	4.73	(0.38	0.40	6.17	0.38	0.41	6.93	
vacancies	0.49	0.52	4.78	().43	0.48	11.4	0.45	0.50	12.6	
total output	0.36	0.37	3.06	(0.31	0.32	3.09	0.32	0.33	3.37	

Table 7: The economy with vs. without multiple jobholding

	$\gamma = 0.125$	$\gamma = 0.250$	$\gamma = 0.375$
A. Output per worker			
(total) employment	[18.3, 19.7]	[18.1, 19.0]	[18.8, 19.8]
/total { distrib empl	[80.2, 81.7]	[81.0, 81.8]	[80.1, 81.2]
total (/baseline)	4.73	6.17	6.93
B. Vacancies			
(meeting	[42.9, 57.6]	[44.0, 59.0]	[45.9, 63.4]
/total { matching meeting	[72.5, 80.3]	[76.6, 82.8]	[84.09, 89.8]
surplus matching	[-28.4, -13.2]	[-35.6, -26.8]	[-48.3, -35.6]
total (/baseline)	4.78	11.4	12.6

Table 8: Decomposition of the effects of multiple jobholding

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The planner's problem

- Only benefit of MJH is in exploiting the discontinuity in f(.)
- This entails making an individual work $2\bar{h}$ hours
- However, for most individuals z is too high to devote $2\bar{h}$ hours to market work
- Preliminary results suggest that efficient multiple jobholding rates are ~ 0.5 percent

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

CONCLUSION

• We develop a quantitative general equilibrium theory of multiple jobholding

The 25-year steady decline in multiple jobholding is likely caused by more convex costs of working a second job

While some worry that this decline heralds a less-flexible labor market, our model predicts that it has increased job creation and improved welfare