# SEARCH AND MULTIPLE JOBHOLDING 

Etienne Lalé<br>Université du Québec à Montréal, CIRANO and IZA

Preliminary and incomplete

CIRANO Macro Workshop, 26 November 2018

## INTRODUCTION

- Multiple jobholding remains poorly documented and not well understood. Partly this is due to the fact that multiple jobholders make up a small share of employment
- Empirical evidence (e.g. Paxson \& Sicherman [JoLE, '94]) suggest that multiple jobholding plays an important role in shaping labor market trajectories


## INTRODUCTION

- Multiple jobholding remains poorly documented and not well understood. Partly this is due to the fact that multiple jobholders make up a small share of employment
- Empirical evidence (e.g. Paxson \& Sicherman [JoLE, '94]) suggest that multiple jobholding plays an important role in shaping labor market trajectories

This paper: We develop a quantitative general equilibrium theory of multiple jobholding

## INTRODUCTION

Theory: DMP model with hours, search off- and on-the-job, and multiple jobholding

Applications: Determinants and macroeconomic implications of multiple jobholding

## INTRODUCTION

Theory: DMP model with hours, search off- and on-the-job, and multiple jobholding
$\triangleright$ An 'empirically reasonable' full-time/part-time margin
$\triangleright c f$. Borowczyk-Martins and Lalé [WP, '18] 'The rise of part-time employment'

Applications: Determinants and macroeconomic implications of multiple jobholding

## INTRODUCTION

Theory: DMP model with hours, search off- and on-the-job, and multiple jobholding
$\triangleright$ Jobs are ex ante homogeneous, i.e. no job is inherently secondary
$\triangleright$ Workers bargain with their employers

Applications: Determinants and macroeconomic implications of multiple jobholding

## INTRODUCTION

Theory: DMP model with hours, search off- and on-the-job, and multiple jobholding
$\triangleright$ Jobs are ex ante homogeneous, i.e. no job is inherently secondary
$\triangleright$ Workers bargain with their employers

Applications: Determinants and macroeconomic implications of multiple jobholding
$\triangleright$ Quantitatively, the model provides a very good account of multiple jobholding

## INTRODUCTION

Theory: DMP model with hours, search off- and on-the-job, and multiple jobholding
$\triangleright$ Jobs are ex ante homogeneous, i.e. no job is inherently secondary
$\triangleright$ Workers bargain with their employers

Applications: Determinants and macroeconomic implications of multiple jobholding
$\triangleright$ Micro: Returns to scale in the flow cost of working matter a lot
$\triangleright$ Macro: Secular decline in multiple jobholding contributed to reducing search frictions

## INTRODUCTION

1. Labor supply and multiple jobholding: Shishko \& Rostker [AER, '76], Krishnan [ReStat '90], Paxson \& Sicherman [JoLE, '94], Renna \& Oaxaca [IZA, '06]
1.1 Hours changes within vs. across jobs: Altonji \& Paxson [JHR '92], Blundell, Brewer \& Francesconi [JoLE, '08], Borowczyk-Martins \& Lalé [AEJ Macro, ' 19]
2. Changing U.S. labor market dynamism: Hyatt \& Spletzer [JoLE, '13], Davis \& Haltiwanger [NBER, '14], Lalé [MLR, '15], Hyatt \& Spletzer [LE, '17]
3. The rise of alternative work arrangements: Katz \& Krueger [AER P\&P '17, ILRR, '19], Chen, Chevalier, Rossi \& Oehlsen [NBER '17], Mas \& Pallais [AER, '17]

## OUTLINE

# THE ECONOMY 

EQUILIBRIUM

CALIBRATION

## EXPERIMENTS

CONCLUSION

I. The economy

## THE ECONOMY

Workers

- Maximize

$$
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}\left(c_{t}^{m}+c_{t}^{h}\right)
$$

- $c_{t}^{m}=$ wage(s),$c_{t}^{h}=$ home production
- $\omega_{j}$ : fixed costs of working, $j=1,2$
- Home production

$$
z_{t} g\left(1-h_{t}\right)
$$

- $z_{t}$ : idiosyncratic and stochastic
$-g($.$) has the standard form$

$$
g\left(1-h_{t}\right)=\frac{\left(1-h_{t}\right)^{1-\frac{1}{\gamma}}-1}{1-\frac{1}{\gamma}}
$$

## THE ECONOMY

## Employers

- Match productivity

$$
y_{t} f\left(h_{t}\right)
$$

where $y_{t}$ is stochastic

- $f$ (.) maps market hours onto labor services

$$
f\left(h_{t}\right)= \begin{cases}(1-\psi) h_{t} & \text { if } h_{t}<\bar{h} \\ (1-\psi) h_{t}+\psi & \text { if } h_{t} \geq \bar{h}\end{cases}
$$

$\psi>0$ will bunch hours at $\bar{h}$
$\rightarrow$ Cf. Prescott, Rogerson \& Wallenius [RED, '09], Chang, Kim, Kwon \& Rogerson [IER, '19]

## THE ECONOMY

## Search frictions

- Standard CRS matching function
- Unemployed and SJH-ers face probabilities

$$
\lambda_{0, t}=\theta_{t} q\left(\theta_{t}\right) \text { and } \lambda_{1, t}=s_{e} \lambda_{0, t} .
$$

where $0<s_{e}<1$

- MJH-ers do not search for jobs $\left(s_{e}=0\right)$
- On meeting, $y_{t}$ is drawn from a distribution $F_{0}$


## THE ECONOMY

## Key assumptions

1. Outside job offer $\rightarrow$ the worker either moves to the new employer, becomes a multiple jobholder, or she chooses to discard these two options
2. If multiple jobholding $\rightarrow$ the worker commits to staying with the primary employer until either the first match breaks up or until she gives up her second job
3. A multiple jobholder uses the primary job as her outside option when she bargains with the secondary employer

## II. Equilibrium

## ASSET VALUES, SURPLUS AND BARGAINING

Asset values
$\rightarrow$ Workers: $N(z), E\left(y_{1}, z\right), E\left(y_{1}, y_{2}, z\right)$

- Employers: $J\left(y_{1}, z\right), J_{1}\left(y_{1}, y_{2}, z\right), J_{2}\left(y_{1}, y_{2}, z\right)$

Join match surplus

- Single jobs

$$
S\left(y_{1}, z\right)=J\left(y_{1}, z\right)+E\left(y_{1}, z\right)-N(z)
$$

- Multiple jobs

$$
S\left(y_{1}, y_{2}, z\right)=J_{2}\left(y_{1}, y_{2}, z\right)+E\left(y_{1}, y_{2}, z\right)-E\left(y_{1}, z\right)
$$

## ASSET VALUES, SURPLUS AND BARGAINING

Asset values
$\rightarrow$ Workers: $N(z), E\left(y_{1}, z\right), E\left(y_{1}, y_{2}, z\right)$

- Employers: $J\left(y_{1}, z\right), J_{1}\left(y_{1}, y_{2}, z\right), J_{2}\left(y_{1}, y_{2}, z\right)$

Join match surplus

- Single jobs

$$
S\left(y_{1}, z\right)=J\left(y_{1}, z\right)+E\left(y_{1}, z\right)-N(z)
$$

- Multiple jobs

$$
S\left(y_{1}, y_{2}, z\right)=J_{2}\left(y_{1}, y_{2}, z\right)+E\left(y_{1}, y_{2}, z\right)-E\left(y_{1}, z\right)
$$

Wage bargaining

- $(1-\phi)\left(E\left(y_{1}, z\right)-N(z)\right)=\phi J\left(y_{1}, z\right)$
- $(1-\phi)\left(E\left(y_{1}, y_{2}, z\right)-E\left(y_{1}, z\right)\right)=\phi J_{2}\left(y_{1}, y_{2}, z\right)$


## HOURS WORKED

Single jobholders

- $y_{\bar{h}}(z)$ defined by

$$
y_{\bar{h}}(z) f\left(h\left(y_{\bar{h}}(z), z\right)\right)+z g\left(1-h\left(y_{\bar{h}}(z), z\right)\right)=y_{\bar{h}}(z) f(\bar{h})+z g(1-\bar{h})
$$

Hours schedule

$$
h\left(y_{1}, z\right)= \begin{cases}\bar{h} & \text { if } y_{\bar{h}}(z) \leq y_{1}<\widetilde{y}(z) \\ 1-\left(\frac{z}{(1-\psi) y_{1}}\right)^{\gamma} & \text { otherwise }\end{cases}
$$

## HOURS WORKED

Single jobholders

- $y_{\bar{h}}(z)$ defined by

$$
y_{\bar{h}}(z) f\left(h\left(y_{\bar{h}}(z), z\right)\right)+z g\left(1-h\left(y_{\bar{h}}(z), z\right)\right)=y_{\bar{h}}(z) f(\bar{h})+z g(1-\bar{h})
$$

- Hours schedule

$$
h\left(y_{1}, z\right)= \begin{cases}\bar{h} & \text { if } y_{\bar{h}}(z) \leq y_{1}<\widetilde{y}(z) \\ 1-\left(\frac{z}{(1-\psi) y_{1}}\right)^{\gamma} & \text { otherwise }\end{cases}
$$

Multiple jobholders

- $y_{\bar{h}}\left(y_{1}, z\right)$ defined by

$$
\begin{aligned}
y_{\bar{h}}\left(y_{1}, z\right) f\left(h\left(y_{1}, y_{\bar{h}}\left(y_{1}, z\right), z\right)\right)+z g(1-h & \left.\left(y_{1}, z\right)-h\left(y_{1}, y_{\bar{h}}\left(y_{1}, z\right), z\right)\right) \\
& =y_{\bar{h}}\left(y_{1}, z\right) f(\bar{h})+z g\left(1-h\left(y_{1}, z\right)-\bar{h}\right)
\end{aligned}
$$

- Hours schedule

$$
h\left(y_{1}, y_{2}, z\right)= \begin{cases}\bar{h} & \text { if } y_{\bar{h}}\left(y_{1}, z\right) \leq y_{2}<\tilde{y}\left(y_{1}, z\right) \\ 1-h\left(y_{1}, z\right)-\left(\frac{z}{(1-\psi) y_{2}}\right)^{\gamma} & \text { otherwise }\end{cases}
$$

## BELLMAN EQUATIONS

Policy functions (Proposition 1)

1. Positive surplus

$$
\begin{aligned}
p\left(y_{1}, z\right) & =\mathbb{1}\left\{J\left(y_{1}, z\right)>0\right\} \\
& =\mathbb{1}\left\{S\left(y_{1}, z\right)>0\right\}
\end{aligned}
$$

2. Leaving the current employer

$$
\begin{aligned}
\ell\left(y_{1}, y_{2}, z\right) & =\mathbb{1}\left\{\max \left\{E\left(y_{2}, z\right), N(z)\right\}>p\left(y_{1}, z\right) \max \left\{E\left(y_{1}, z\right), E\left(y_{1}, y_{2}, z\right)\right\}+\left(1-p\left(y_{1}, z\right)\right) N(z)\right\} \\
& =\mathbb{1}\left\{p\left(y_{2}, z\right) S\left(y_{2}, z\right)>p\left(y_{1}, z\right)\left(S\left(y_{1}, z\right)+d\left(y_{1}, y_{2}, z\right) S\left(y_{1}, y_{2}, z\right)\right)\right\}
\end{aligned}
$$

3. Taking on a second job

$$
\begin{aligned}
d\left(y_{1}, y_{2}, z\right) & =\mathbb{1}\left\{E\left(y_{1}, y_{2}, z\right)-E\left(y_{1}, z\right)>0\right\} \\
& =\mathbb{1}\left\{S\left(y_{1}, y_{2}, z\right)>0\right\}
\end{aligned}
$$

## BELLMAN EQUATIONS

Single jobs

$$
\begin{aligned}
& S\left(y_{1}, z\right)=y_{1} f\left(h\left(y_{1}, z\right)\right)+z g\left(1-h\left(y_{1}, z\right)\right)-\left(N(z)+\omega_{1}\right)+\beta\left(S_{e}^{+}\left(y_{1}, z\right)+S_{j}^{+}\left(y_{1}, z\right)\right. \\
& \left.\left.\quad+\int\left(\int\left(1-\lambda_{1} \int \ell\left(y_{1}^{\prime}, y_{2}^{\prime}, z^{\prime}\right) d F_{0}\left(y_{2}^{\prime}\right)\right) p\left(y_{1}^{\prime}, z^{\prime}\right) S\left(y_{1}^{\prime}, z^{\prime}\right)\right) d F\left(y_{1}^{\prime} \mid y_{1}\right)\right) d G\left(z^{\prime} \mid z\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
S_{e}^{+}\left(y_{1}, z\right)=\int\left(N\left(z^{\prime}\right)\right. & +\phi \lambda_{1} \iint\left(\ell\left(y_{1}^{\prime}, y_{2}^{\prime}, z^{\prime}\right) p\left(y_{2}^{\prime}, z^{\prime}\right) S\left(y_{2}^{\prime}, z^{\prime}\right)+\left(1-\ell\left(y_{1}^{\prime}, y_{2}^{\prime}, z^{\prime}\right)\right)\right. \\
& \left.\left.\times p\left(y_{1}^{\prime}, z^{\prime}\right) d\left(y_{1}^{\prime}, y_{2}^{\prime}, z^{\prime}\right) S\left(y_{1}^{\prime}, y_{2}^{\prime}, z^{\prime}\right)\right) d F_{0}\left(y_{2}^{\prime}\right) d F\left(y_{1}^{\prime} \mid y_{1}\right)\right) d G\left(z^{\prime} \mid z\right)
\end{aligned}
$$

and

$$
\begin{aligned}
S_{j}^{+}\left(y_{1}, z\right)=\lambda_{1} \iiint\left(( 1 - \ell ( y _ { 1 } ^ { \prime } , y _ { 2 } ^ { \prime } , z ^ { \prime } ) ) p ( y _ { 1 } ^ { \prime } , z ^ { \prime } ) d ( y _ { 1 } ^ { \prime } , y _ { 2 } ^ { \prime } , z ^ { \prime } ) \left(J_{1}\left(y_{1}^{\prime}, y_{2}^{\prime}, z^{\prime}\right)\right.\right. \\
\left.\left.-(1-\phi) S\left(y_{1}^{\prime}, z^{\prime}\right)\right)\right) d F_{0}\left(y_{2}^{\prime}\right) d F\left(y_{1}^{\prime} \mid y_{1}\right) d G\left(z^{\prime} \mid z\right)
\end{aligned}
$$

## BELLMAN EQUATIONS

Multiple jobs

$$
\begin{aligned}
& S\left(y_{1}, y_{2}, z\right)=y_{2} f\left(h\left(y_{1}, y_{2}, z\right)\right)+z g\left(1-h\left(y_{1}, z\right)-h\left(y_{1}, y_{2}, z\right)\right)-\omega_{2} \\
& -\left(\phi S\left(y_{1}, z\right)+N(z)+\omega_{1}-w_{1}\left(y_{1}, z\right)\right)+\beta\left(S_{e}^{+}\left(y_{1}, y_{2}, z\right)+\int\left(\iint p\left(y_{1}^{\prime}, z^{\prime}\right)\right.\right. \\
& \quad \times d\left(y_{1}^{\prime}, y_{2}^{\prime}, z^{\prime}\right) S\left(y_{1}^{\prime}, y_{2}^{\prime}, z^{\prime}\right) d F\left(y_{1}^{\prime} \mid y_{1}\right) d F\left(y_{2}^{\prime} \mid y_{2}\right) \\
& \left.\left.+\left(\int\left(1-p\left(y_{1}^{\prime}, z^{\prime}\right)\right) d F\left(y_{1}^{\prime} \mid y_{1}\right)\right)\left(\int p\left(y_{2}^{\prime}, z^{\prime}\right) S\left(y_{2}^{\prime}, z^{\prime}\right) d F\left(y_{2}^{\prime} \mid y_{2}\right)\right)\right) d G\left(z^{\prime} \mid z\right)\right)
\end{aligned}
$$

where

$$
S_{e}^{+}\left(y_{1}, y_{2}, z\right)=\int\left(N\left(z^{\prime}\right)+\phi \int p\left(y_{1}^{\prime}, z^{\prime}\right) S\left(y_{1}^{\prime}, z^{\prime}\right) d F\left(y_{1}^{\prime} \mid y_{1}\right)\right) d G\left(z^{\prime} \mid z\right)
$$

## BELLMAN EQUATIONS

Primary employer

$$
\begin{aligned}
J_{1}\left(y_{1}, y_{2}, z\right)=y_{1} f & \left(h\left(y_{1}, z\right)\right)-w_{1}\left(y_{1}, z\right)+\beta \iint p\left(y_{1}^{\prime}, z^{\prime}\right)\left((1-\phi) S\left(y_{1}^{\prime}, z^{\prime}\right)+\int\left(d\left(y_{1}^{\prime}, y_{2}^{\prime}, z^{\prime}\right)\right.\right. \\
& \left.\times\left(J_{1}\left(y_{1}^{\prime}, y_{2}^{\prime}, z^{\prime}\right)-(1-\phi) S\left(y_{1}^{\prime}, z^{\prime}\right)\right) d F\left(y_{2}^{\prime} \mid y_{2}\right)\right) d F\left(y_{1}^{\prime} \mid y_{1}\right) d G\left(z^{\prime} \mid z\right)
\end{aligned}
$$

Nonemployed

$$
N(z)=\beta \int\left(N\left(z^{\prime}\right)+\lambda_{0} \phi \int p\left(y_{1}^{\prime}, z^{\prime}\right) S\left(y_{1}^{\prime}, z^{\prime}\right) d F_{0}\left(y_{1}^{\prime}\right)\right) d G\left(z^{\prime} \mid z\right)
$$

## FREE ENTRY CONDITION

Free entry

$$
\begin{aligned}
\frac{\kappa}{q(\theta)}=\beta(1-\phi) & \left(\iint p\left(y_{1}^{\prime}, z^{\prime}\right) S\left(y_{1}^{\prime}, z^{\prime}\right) d F_{0}\left(y_{1}^{\prime}\right) d G\left(z^{\prime} \mid z\right) \frac{\mu_{0}(z)}{\bar{\mu}_{0}+s_{e} \bar{\mu}_{1}} d z\right. \\
& \left.+\iiint S_{j}^{+}\left(y_{1}^{\prime}, y_{2}^{\prime}, z^{\prime}\right) d F_{0}\left(y_{2}^{\prime}\right) d F\left(y_{1}^{\prime} \mid y_{1}\right) d G\left(z^{\prime} \mid z\right) \frac{s_{e} \mu_{1}\left(y_{1}, z\right)}{\bar{\mu}_{0}+s_{e} \bar{\mu}_{1}} d y_{1} d z\right)
\end{aligned}
$$

where

$$
\begin{aligned}
S_{j}^{+}\left(y_{1}, y_{2}, z\right)=\ell\left(y_{1}, y_{2}, z\right) p\left(y_{2}, z\right) & S\left(y_{2}, z\right) \\
& +\left(1-\ell\left(y_{1}, y_{2}, z\right)\right) p\left(y_{1}, z\right) d\left(y_{1}, y_{2}, z\right) S\left(y_{1}, y_{2}, z\right)
\end{aligned}
$$

## EQUILIBRIUM

## Equilibrium (Proposition 2)

$\checkmark$ Given $\theta$, the list of asset values $S\left(y_{1}, z\right), S\left(y_{1}, y_{2}, z\right), J_{1}\left(y_{1}, y_{2}, z\right)$ exists and is unique
$\rightarrow$ From $\theta, p\left(y_{1}, z\right), \ell\left(y_{1}, y_{2}, z\right), d\left(y_{1}, y_{2}, z\right)$ we obtain endogenous:

- job finding
- job separation
- job-to-job transitions
- MJH flows


## III. Calibration and validation

## EMPIRICAL COUNTERPARTS

## Data

- Monthly CPS data from 1994 to 2016
- Part-time work, job-to-job transitions and multiple jobs


## Framework

- The labor market in period $t$ is described by
- $s_{t}$ is governed by a first-order Markov chain: $s_{t}=X_{t} s_{t-1}$
- The elements of $X_{t}$ are outflow transition probabilities


## CALIBRATION

## Specification

- Match productivity

$$
y^{\prime}=\left(1-\rho_{y}\right) \mu_{y}+\rho_{y} y+\varepsilon^{\prime}
$$

- Home productivity

$$
z^{\prime}= \begin{cases}z & \text { with proba } \rho_{z} \\ \sim N\left(\mu_{z}, \sigma_{z}^{2}\right) & \text { otherwise }\end{cases}
$$

- Frictions

$$
q(\theta)=M \theta^{-\alpha}
$$

- Frisch elasticity is

$$
\gamma \frac{1-h}{h}
$$

## CALIBRATION

## Table 1: Parameter values

|  | Parameter |  | Value |  |
| :--- | :---: | :---: | :---: | :---: |
| A. Parameters set externally |  |  |  |  |
| subjective discount factor | $\beta$ |  | 0.9951 |  |
| threshold for full-time work | $\bar{h}$ |  | 0.4 |  |
| match productivity, unconditional mean | $\mu_{y}$ |  | 1.0 |  |
| match productivity, persistence | $\rho_{y}$ |  | 0.975 |  |
| elasticity of job filling w.r.t. tightness | $\alpha$ |  | 0.5 |  |
| bargaining power of workers | $\phi$ |  | 0.5 |  |
| matching efficiency | $M$ |  | 0.70 |  |
| B. Parameters set internally |  |  |  |  |
| home productivity, mean | $\mu_{z}$ | 0.085 | 0.440 | 0.787 |
| home productivity, persistence | $\rho_{z}$ | 0.907 | 0.932 | 0.958 |
| home productivity, standard deviation | $\sigma_{z}$ | 0.046 | 0.228 | 0.272 |
| productivity gap at $\bar{h}$ hours | $\psi$ | 0.109 | 0.139 | 0.143 |
| vacancy posting cost | $\kappa$ | 0.254 | 0.087 | 0.069 |
| match productivity, standard deviation | $\sigma_{\varepsilon}$ | 0.698 | 0.417 | 0.399 |
| on-the-job search relative efficiency | $s_{e}$ | 0.340 | 0.351 | 0.354 |
| fixed cost of working, job 1 | $\omega_{1}$ | 0.293 | 0.249 | 0.236 |
| fixed cost of working, job 2 | $\omega_{2}$ | 0.473 | 0.296 | 0.250 |

## VALIDATION

Table 2: Targeted data vs. model-generated moments

|  | Data | Model |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\gamma=0.125$ | $\gamma=0.250$ | $\gamma=0.375$ |
| A. Labor market stocks |  |  |  |  |
| multiple jobholding share | 5.70 | 5.67 | 5.72 | 5.75 |
| part-time employment share | 17.5 | 17.1 | 17.1 | 17.3 |
| mass point at 40 hours | 57.8 | 58.7 | 57.7 | 59.3 |
| B. Labor market flows |  |  |  |  |
| job-finding rate | 45.0 | 44.7 | 45.3 | 45.1 |
| job separation rate | 3.50 | 3.39 | 3.55 | 3.68 |
| job-to-job transition rate | 2.30 | 2.41 | 2.37 | 2.42 |
| full-time to part-time rate | 4.70 | 4.75 | 4.68 | 4.81 |
| C. Other moments |  |  |  |  |
| average hours per worker | 38.5 | 39.0 | 38.4 | 38.1 |
| job creation cost | 7.60 | 7.98 | 7.73 | 6.80 |

## VALIDATION

Table 3: Multiple jobholding flows: Data vs. model

| Data | Model |  |  |
| :--- | :---: | :---: | :---: |
|  | $\gamma=0.125$ | $\gamma=0.250$ | $\gamma=0.375$ |

A. MJH inflows

| $F_{S}$ to $M$ | 1.87 | 1.53 | 1.75 | 1.83 |
| :--- | :--- | :--- | :--- | :--- |
| $P_{S}$ to $M$ | 3.61 | 3.52 | 3.73 | 3.69 |
| $N$ to $M$ | 0.16 | 0.00 | 0.00 | 0.00 |

B. MJH outflows

| $F_{M}$ to $S$ | 30.0 | 27.3 | 28.7 | 27.7 |
| :--- | :--- | :--- | :--- | :--- |
| $F_{M}$ to $N$ | 0.56 | 0.27 | 0.57 | 0.30 |
| $P_{M}$ to $S$ | 34.2 | 35.3 | 36.2 | 37.4 |
| $P_{M}$ to $N$ | 1.81 | 1.42 | 2.21 | 1.73 |

## WORKINGS OF THE MODEL

A. Single jobholding


Figure 1: Hours worked during single and multiple jobholding

## WORKINGS OF THE MODEL

A. Single jobholding

B. Multiple jobholding






Figure 2: Wages during single and multiple jobholding

## WORKINGS OF THE MODEL



Figure 3: Distribution of home productivity among SJH-ers and MJH-ers

## IV. Numerical experiments

## MICRO-DETERMINANTS

## Experiments

- Role of various frictions in the decisions to take on and give up jobs
- Short run
- Long run (understanding $\neq$ across markets)
- Role of the hours constraint
- Sources of the decline in multiple jobholding


## MICRO-DETERMINANTS

Table 4: Elasticity of worker transition probabilities

$$
E \rightarrow E \quad F_{S} \rightarrow M \quad P_{S} \rightarrow M \quad F_{M} \rightarrow S \quad P_{M} \rightarrow S
$$

A. Short run

| $\omega_{1}$ | 0.10 | -0.20 | -0.33 | 0.06 | 0.35 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\omega_{2}$ | 0.03 | -3.08 | -3.38 | 1.58 | 0.89 |
| $s_{e}$ | 0.73 | 0.01 | 0.43 | 0.34 | 0.08 |
| $M$ | 0.90 | 0.67 | 0.31 | 0.27 | 0.38 |

## B. Long run

| $\omega_{1}$ | -0.09 | -0.04 | -0.45 | 0.00 | 0.30 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\omega_{2}$ | 0.07 | -2.88 | -3.32 | 1.51 | 0.90 |
| $s_{e}$ | 0.52 | 0.14 | 0.55 | 0.17 | -0.03 |
| $M$ | 0.91 | 0.72 | 0.29 | 0.27 | 0.37 |

## MICRO-DETERMINANTS

Table 5: Sources of the decline in multiple jobholding

|  | Base | $\kappa_{1}(+69 \%)$ |  | $\kappa_{2}(+7 \%)$ |  | $s_{e}(-40 \%)$ |  | $M(-60 \%)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Alt. | $\triangle(\%)$ | Alt. | $\triangle(\%)$ | Alt. | $\triangle(\%)$ | Alt. | $\triangle(\%)$ |
| A. Hours |  |  |  |  |  |  |  |  |  |
| hours per worker | 38.4 | 40.6 | 5.62 | 38.4 | -0.12 | 38.4 | -0.09 | 36.5 | -4.84 |
| $F_{s}$ to $P_{s}$ | 4.91 | 3.53 | -28.1 | 4.96 | 1.01 | 4.88 | -0.55 | 6.27 | 27.6 |
| $P_{s}$ to $F_{S}$ | 20.8 | 25.2 | 21.2 | 20.8 | 0.13 | 20.4 | -1.99 | 18.6 | -10.8 |
| B. Employment |  |  |  |  |  |  |  |  |  |
| job-finding | 45.3 | 24.0 | -47.0 | 45.3 | 0.02 | 44.2 | -2.51 | 25.0 | -44.7 |
| job separation | 3.55 | 5.24 | 47.7 | 3.63 | 2.36 | 4.23 | 19.1 | 2.92 | -17.9 |
| job-to-job, all | 2.37 | 1.78 | -25.1 | 2.34 | -1.11 | 1.55 | -34.8 | 1.47 | -38.1 |
| job-to-job, SJH-ers | 2.00 | 1.40 | -30.0 | 2.03 | 1.48 | 1.22 | -38.9 | 1.24 | -38.1 |
| nonemployment | 7.27 | 17.7 | 143 | 7.41 | 2.01 | 8.71 | 19.8 | 10.4 | 42.8 |
| vacancies | 0.39 | 0.46 | 20.6 | 0.39 | 0.66 | 0.28 | -27.9 | 0.41 | 6.77 |

## MICRO-DETERMINANTS

Table 6: Effects of the hours constraint $\psi$

|  | $\gamma=0.125$ |  |  | $\gamma=0.250$ |  |  | $\gamma=0.375$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\psi>0$ | $\psi=0$ | $\triangle(\%)$ | $\psi>0$ | $\psi=0$ | $\triangle$ (\%) | $\psi>0$ | $\psi=0$ | $\triangle$ (\%) |
| A. Hours |  |  |  |  |  |  |  |  |  |
| hours per job | 37.7 | 36.3 | -3.71 | 36.1 | 34.3 | -5.10 | 35.8 | 34.8 | -2.91 |
| hours per worker | 39.0 | 36.9 | -5.28 | 38.4 | 35.5 | -7.68 | 38.1 | 35.6 | -6.70 |
| hours per MJH-er | 39.4 | 38.9 | -1.00 | 38.7 | 41.1 | 6.18 | 45.8 | 50.9 | 19.0 |
| B. Employment |  |  |  |  |  |  |  |  |  |
| multiple jobholding | 5.67 | 3.34 | -41.2 | 5.72 | 2.64 | -53.8 | 5.75 | 1.43 | -75.2 |
| job-finding | 44.7 | 42.8 | -4.27 | 45.3 | 38.9 | -14.4 | 45.1 | 30.5 | -32.3 |
| job separation | 3.39 | 3.67 | 8.18 | 3.55 | 4.22 | 18.9 | 3.68 | 4.97 | 35.0 |
| job-to-job transition | 2.41 | 2.26 | -6.15 | 2.37 | 2.04 | -13.9 | 2.42 | 1.88 | -22.5 |
| nonemployment | 7.05 | 7.86 | 11.5 | 7.27 | 9.75 | 34.1 | 7.54 | 13.9 | 84.5 |

## MACRO IMPLICATIONS

## Experiments

- Equilibrium allocations with vs. without multiple jobholding
- Long run effects
- Decomposing the impact on search frictions
- Inference on preferences and technology
- Efficiency of multiple jobholding


## MACRO IMPLICATIONS

Table 7: The economy with vs. without multiple jobholding

|  | $\gamma=0.125$ |  |  | $\gamma=0.250$ |  |  | $\gamma=0.375$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MJH | M ${ }^{\text {H }}$ | $\triangle(\%)$ | MJH | MJH | $\triangle$ (\%) | MJH | M ${ }^{\text {H }}$ | $\triangle(\%)$ |
| A. Hours |  |  |  |  |  |  |  |  |  |
| hours per job | 37.7 | 39.2 | 3.99 | 36.1 | 37.8 | 4.78 | 35.8 | 37.6 | 4.84 |
| hours per worker | 39.0 | 38.9 | -0.13 | 38.4 | 38.2 | -0.51 | 38.1 | 37.8 | -0.60 |
| B. Employment |  |  |  |  |  |  |  |  |  |
| job-finding | 44.7 | 48.0 | 7.37 | 45.3 | 45.9 | 1.21 | 45.1 | 45.0 | -0.26 |
| job separation | 3.39 | 3.84 | 13.2 | 3.55 | 4.15 | 16.9 | 3.68 | 4.31 | 17.2 |
| job-to-job, all | 2.41 | 2.34 | -2.71 | 2.37 | 2.20 | -7.00 | 2.42 | 2.28 | -5.97 |
| job-to-job, SJH-ers | 2.01 | 2.34 | 16.1 | 2.00 | 2.20 | 9.89 | 2.07 | 2.28 | 9.91 |
| nonemployment | 7.05 | 7.35 | 4.32 | 7.27 | 8.24 | 13.4 | 7.54 | 8.70 | 15.4 |
| C. Output |  |  |  |  |  |  |  |  |  |
| output per job | 0.43 | 0.47 | 9.05 | 0.36 | 0.40 | 11.8 | 0.36 | 0.41 | 12.8 |
| output per worker | 0.45 | 0.47 | 4.73 | 0.38 | 0.40 | 6.17 | 0.38 | 0.41 | 6.93 |
| vacancies | 0.49 | 0.52 | 4.78 | 0.43 | 0.48 | 11.4 | 0.45 | 0.50 | 12.6 |
| total output | 0.36 | 0.37 | 3.06 | 0.31 | 0.32 | 3.09 | 0.32 | 0.33 | 3.37 |

## MACRO IMPLICATIONS

Table 8: Decomposition of the effects of multiple jobholding

$$
\gamma=0.125 \quad \gamma=0.250 \quad \gamma=0.375
$$

A. Output per worker

| /total $\left\{\begin{array}{c}\text { employment } \\ \text { distrib\|empl }\end{array}\right.$ | $[18.3,19.7]$ | $[18.1,19.0]$ | $[18.8,19.8]$ |
| :--- | :---: | :---: | :---: |
| total (/baseline) | $[80.2,81.7]$ | $[81.0,81.8]$ | $[80.1,81.2]$ |
|  | 4.73 | 6.17 | 6.93 |

B. Vacancies

| /total | meeting matching $\mid$ meeting surplus\|matching | [42.9, 57.6] | [44.0, 59.0] | [45.9, 63.4] |
| :---: | :---: | :---: | :---: | :---: |
|  |  | [72.5, 80.3] | [76.6, 82.8] | [84.09, 89.8] |
|  |  | [-28.4, -13.2] | [-35.6, -26.8] | [-48.3, -35.6] |
| total (/b | eline) | 4.78 | 11.4 | 12.6 |

## MACRO IMPLICATIONS

## The planner's problem

- Only benefit of MJH is in exploiting the discontinuity in $f($.
- This entails making an individual work $2 \bar{h}$ hours
- However, for most individuals $z$ is too high to devote $2 \bar{h}$ hours to market work
- Preliminary results suggest that efficient multiple jobholding rates are $\sim 0.5$ percent

Conclusion

## CONCLUSION

- We develop a quantitative general equilibrium theory of multiple jobholding
- The 25-year steady decline in multiple jobholding is likely caused by more convex costs of working a second job
- While some worry that this decline heralds a less-flexible labor market, our model predicts that it has increased job creation and improved welfare

