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Emergence of Intelligent Machines

Dramatic Progress in Al

Rapid shift in Al research:
Academic world = Real-world

Machine perception is starting to work: finally! after “only” 50+ yrs of
research...

> Al systems are starting to “see” and “hear” (computer vision, speech
recognition, natural language understanding)

Our systems are finally becoming grounded in (our) world. Already:
» super-human face recognition (Facebook)
» super-human traffic sign recognition (Nvidia)

Enabled by qualitative change in the field, driven in part by Big Data &
Deep Learning but also other cumulative progress (reasoning, search,
reinforcement learning, planning, decision theoretic methods, knowledge
representation)



Emergence of Intelligent Machines

Intelligent systems are radically transforming businesses, medicine, ...

amazon

Wall Street R |

all Street:

Autonomous Automated. Assistive robotics serll:ﬁIcl:ﬁ
Trading Systems Supply Chain Remote Robotic q 8

Surgery
And our daily lives ....

Unfortunately, the digital and AI revolution have done

little for Sustainability
Our vision:

Computer Science and AI can — and should —?)l lg}?oa key role in helping

address societal and environmental challenges in pursuit of a sustainable future,

while also advancing computer science as a discipline.



Thank you! 1st Expeditions in Computational Sustainability (2008)

» To nucleate the Computational
Sustainability field

LICAL

K] s - > To identify a number of core
J‘(% = e research directions for maximal
Y Referregc’c'::;;“:; racks impact, both in terms of Computer
Expeditions u ’ Sci - T
, : cience and Sustainability.
in Computing W°rk5h°ps_ _ y
(CISE) 2nd Expeditions: Large-Scale Research Network
for Expanding the Horizons of Computational Sustalnablllty
Carnegie
¢ '\l 7 Cornell University Caltech Pt ] Georgia
K o A University Tech Ho.é.lm TiffN?\lféﬁ suare ggﬁg
Stanfor PRINCETON UMASS %L SCUnwersitvof
University W UNIVERSITY AMHERST southe?ﬁvccr315¥o?nla V

300+ faculty, students, and collaborators!!!



Computational Sustainability

New interdisciplinary field that aims to develop
computational methods for Sustainable
Development.

Sustainable development is development that meets the needs
of the present without compromising future generations.
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https://sustainabledevelopment.un.org/sdgs

Sample of Interdisciplinary Research Projects (@ Cornell

D oBird 1
@ eBir s

I Conservation and Biodiversity neNature
s -,0.]1/55: l'\'ﬂ]lc}'
Wildlife Corridors
Bird Conservation RN 5 Elephant
Protecting Endangered Species ¥ Bird Conservation e s Listening Project
Wildlife C
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Impacts of Hydropower Dam Placement in the Amazon -
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Protecting Migratory Herders in Africa
Herders in Africa

Socio-Econ-Environmental

. . . Impacts of Dams in Amazon Basin
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SARA: Scientific Autonomous Reasoning Agent for Energy Synchrotron

Materials Discovery

Wide range of sustainability applications covering
Cross-Cutting Core Computational Problems




3 Core Computational Thrusts

Main computational thrusts:

D)
2)

(3)

Optimization
Dynamical Models
Simulation

3
%
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Big data and Machine Learning AN
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Constraint Reasoning, Optimization, Dynamical b
O,
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Models and Simulation
Multi-Agent Systems, Citizen Science, G g~
and Crowdsourcing Machine Learning, Transformative Citizen Science

Synthesis

Balancing Environmental &
Socioeconomic Needs

Interdisciplinary Research Projects (IRPs)
lead to transformative syntheses
across sustainability domains_and computer science sub-areas




Expeditions
in
Computing
(CISE)

Large Scale Spatio-Temporal
Modeling and Prediction

Large Scale Sequential Decision Making

Stochastic, Probabilistic Inference,
and Optimization

Citizen Science/ Crowdsourcing
Agents: Mechanism Design

Pattern Recognition in Big Data

Designing
Experiments
for Fertilizers

Subway Lines:
Examples of Cross-Cutting Computational Themes and

Interactions of some Computational Sustainability Projects
Grazelt

Modeling of TN Dynamic
Pastoralists’ £+ - Precision Bird

Movements and
Vegetation Mapping

Citizen Scienc
Avicaching ,

Estimating Bi |
Populations as

Migrations
Socio-Econ- Monitoring
Environment Eelgrass and Sea
Impacts of Dams in tar Wasting

Socio-Ecological
Wildlife Corridor
(Ecuador)

The Amazon Basin Disease

Structures for

) Invasive
Materials

Species

Artificial Tree
(solar-fuel generator) ERVVYVYYAWTe (Yol V2 @ I Atkinson Center for

Sustainable Fiilure




Outline

.—— Impact of Hydropower Dam Placement in the Amazon Basin on

=

==""""=.. Ecosystem Services
7==3 » Multifaceted “trust” in decision support systems
» Optimization with Multiple (and Conflicting) Obijectives:
Computing The Pareto Frontier

Species distributions

» Reducing Bias in Citizen Science Data:
» Avicaching Game
» Co-variate shift

» Multi-Entity Dependency Learning: Deep Multivariate Probit Model

Inferring Crystal Structures for Materials Discovery for Clean Energy

» Constrained Pattern Decomposition
» Human Computation for Speeding up Search

FCC Crystal Structure



Sustainability concerns balancing

environmental, economic, and societal needs

Key Issue:
Understanding trade-offs of solutions wrt
multiple (and often conflicting) objectives



Hydropower Dam Proliferation in the Amazon Basin

Legend

Capacity (MW)
0.97 - 250
250 - 1000
1000 - 2000
2000 - 5000

5000 - 11233

[ sub-basins LB3




Hydropower Dam Proliferation in the Amazon Basin

170 dams already built or
under construction



Hydropower Dam Proliferation in the Amazon Basin

500+ dams planned or
proposed



Hydropower Dam Proliferation in the Amazon Basin

Legend

Capacity (MW)
0.97 - 250
250 - 1000
1000 - 2000
2000 - 5000

5000 - 11233

[ sub-basins LB3




Ecosystem Services of River Networks
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Examples of Ecosystem Services

Computational Perspective:
Multi-objective Optimization Problem

Pareto frontier:
the trade-offs wrt to the different objectives of different
non-dominated solutions of dam portfolios

15



Goal: Find Optimal Portfolios of Dams to Build

@ Build no dams

High

Pareto Frontiern

e

Ecological Value

Build all dams

LOW Hydropower Energy High



Example: Connectivity

Mouth of Mouth of
A Planned dams the river the river
&~ | ongest connected network
A )
A
AA
A A A A, AA, A A
y ) A
A £

Better connectivity

Two dam network configurations with similar hydropower
yields, but different degrees of river connectivity




Computing the Pareto Frontier
Problem Representation }

River network . (t\, 3
>

potential dam
locations

(a). River Network

(Amazon Basin has ~ 5M river segments!)

Wu, Gomes-Selman, Shi, Xue, Garcia-Villacorta, Anderson, Sethi, Steinschneider, Flecker, Gomes, AAAI18



Computing the Pareto Frontier
Problem Representation )

River network (left) > Rooted tree (right) (\
* A\
'

potential dam
locations

(a). River Network

(Original Amazon network has
~ 5 M river segments!)

1 ‘ ”\\
I >
potential dam locations é

(b). Graph Representation

Compressed Amazon network:
~ 500 nodes/edges)

Wu, Gomes-Selman, Shi, Xue, Garcia-Villacorta, Anderson, Sethi, Steinschneider, Flecker, Gomes, AAAI18



Computing the Pareto Frontier
Problem Representation

W
V
River network (left) - Rooted tree (right) 3
Se\ /@
> \ 4
. : 2 >
Edge — potential dam location (},’. -

Node — contiguous river sub-network not u
affected by a potential dam (assign to the u ’
node the utilities for the different criteria) I O
1 A\
e\ L >
>

potential dam
locations

potential dam
locations

(a). River Network (b). Graph Representation

(Original Amazon network has Compressed Amazon network:
~ 5 M river segments!) ~ 500 nodes/edges)

Wu, Gomes-Selman, Shi, Xue, Garcia-Villacorta, Anderson, Sethi, Steinschneider, Flecker, Gomes, AAAI18



Computing the Pareto Frontier
Dynamic Programming Based Exact and Approximation

(Hydropower, Conn)

VBMW 2km)} V(ZMW 8km
0‘

h ZOMW

® Recursively compute the Pareto-frontier
from leaves to root.

® Key Insight: Only need to keep Pareto-
optimal partial solutions at each node.

® Fully polynomial-time approximation
scheme (FPTAS) — rounding solutions
guaranteeing accuracy of (1 — ¢).

® Faster pruning dominated solutions. dhl 2. 5|V|W
Improved from O(n2d) to O(n(logn)™ ")

. LA ((5MW, 14km), (AsB)
® Other improvements to speed up 4

algorithm (e.g., batching; imbalance (7.5MW,12km), (A&
binary tree) Iength 4km ARk (A,B)
(9.5MW,4km)} (A,B)

Mouth of the river



Approximation: in practice better than worst case guarantee

S

DP exact
3.2 —a— Time: 218s
. 38459 solutions

3.1
3.0
2.9 1

2B

Connectivity (10° x km)

2.

2.5

0.6 0.8 1.0 1.2
Energy (10° x MW)

Entire Amazon Basin Two Criteria: Energy vs Connectivity



Greenhouse Gas Emissions

Gas
/- 300

Emission intensity
(kg CO,eq MWh-1)

2030 Agenda

25 50 75 100 125
Electricity generation

25 50 75 100 125
Electricity generation

capacity (GWh) capacity (GWh)

Current situation

Rafael de Almeida et al 2019

Current situation




We can now approximate the Pareto frontier
for Entire Amazon basin (*5M river segments)

Four criteria: energy, connectivity, sediment, and seismic risk

->Within 25% from true optimal Pareto frontier containing
~80K non-dominated solutions in ~ 6 minutes.

->Within 10% from true optimal Pareto frontier containing
~500K non-dominated solutions in ~ 6 hours.

->Within 5% from true optimal Pareto frontier containing
~2M non-dominated solutions in ~ 3 days.

Our approaches outperform other approaches (e.g., based on GAs).
We also provide guarantees



2k

Interactive Visualizer: Parallel Coordinate Plots

Particular hydropower dam solution
Size of circle: Sediment

Color: Seismic

120k

Additional Criteria:
Green House Gas Emissions; biodiversity; impact on populations; etc



Interactive Visualizer: Parallel Coordinate Plots

Par Coords Color: energy v

energy sediment connectivity seismic

Bounding
Boundin . . i
. g energy sediment connectivity different
different criteria
. . : 3.2i
criteria
20) i
80k 3.0M+ . aM
60k 2.9M
2.8M
40k Y T0M
R 160K | — —— N 2.7M

21,927k 2.61584M 146.919k 5.29044M




Message to Policy Makers: The cost of inefficient planning

Challenge of Interdisciplinary Projec

River
Connectivity (DClp)

Key challenge:
How to effectively establish the

large-scale interdisciplinary projects and collaborations.

DClp

100 |
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50 ;

40 1

30 ;

Exact Pareto Frontier Amazon Basin
(Energy vs River Connectivity)
(~*5M river segments: 212 secs)

‘t'_AII dams (~500 = existing + propose

o ”“M Frontier:
. /
Foregone \\
environmental *-_
benefits -
Foregone power
earnings
(

Existing dams

-

L]

[ 1

h

)

Getting, vetting data and
expertise for different
criteria!

* Energy

Connectivity
Sediment

Seismic risk
Biodiversity

Green House Gases
Populations affected
Cost

Group 40+ collaborators:
ecologists, hydrologists,

20000 40000 60000 80000 100000120000140000

Energy Installed Capacity (MW)

N

, biologists, social scientists, ...

TheNature (& Wildlife
Conservancy @ ggg:?;vo ior
. ICH




Efficiently Approximation the Pareto Frontier:
Hydropower Dam Placement in the Amazon Basin
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Outline

Species distributions (briefly)
» Reducing Bias in Citizen Science Data: Avicaching Game

» Multi-Entity Dependency Learning: Deep Multivariate Probit
Model




Biodiversity or Biological Diversity

Fundamental question Iin
biodiversity research:
How different species

are distributed
across landscapes over time.

30



Sensors, sensor networks, and remote sensing

» gihers
- g)))' |Satellite
&

L4
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LandSat
images

Photo courtesy of www.carboafrica.net

Very sophisticated sensor



Species distributions

eBird

T ! Bird Observations
Citizen Science

300,000+ || 300,000,000+ || 22,000,000+
volunteer bird hours of field work
birders observations (2500+years)

Lanql Cover

Northern Pintail : January 4

=
F(X.s5.0= ——% fi(X.5.01(s. €6))
nn.r»z

Environmental Data

Adaptive Spatial and Temporal
Machine Learning Models
& High-Performance Computing

Relate environmental predictors to
observed patterns of occurrences Patterns of occurrence of Northern Pintail for different
and absences of the species months of the year Source: Daniel Fink

The models reveal the habitat preferences of the birds, at a fine resolution,
Allowing for High-Precision Bird Conservation




Species Distributons

Bird Observations 3X State of the Birds Report
" " (officially released by Secretary of Interior
+ AN [saws Novel
300,000+ || 300,000,000+ || 22,000,000+ ) Approaches
volunteer bird hours of field work To Conservation
birders observations (2500+years) Based on eBird

Distribution
Models for
400+ species with
weekly estimates
at fine spatial
resolution

(3km?)

=
F(X 8,0 )m — Errx.mu\.:em
nis.) &

Ehvironmental Déta -

Adaptive Spatial and Temporal
Machine Learning Models
& High-Performance Computing

Relate environmental predictors to
observed patterns of occurrences Patterns of occurrence of Northern Pintail for different
and absences of the species months of the year Source: Daniel Fink

The models reveal the habitat preferences of the birds, at a fine resolution,
Allowing for High-Precision Bird Conservation



C ) High-Precision Bird Conservation

eNature The Bird Returns Program

Protecting Migratory WaterBirds in California Against Drought

Farmers
Submit Bids

TheNature Q
Conservancy N
Protecting nature_ Preserving life”

Bids selected
based on targeted

SUOIINY 3Si3A3Y [eHOJEUIWIC)

estimates
Pacific Migration - del Target Areas Reverse Auction
Flyway eBird Models Bid Selection

Farmers submit bids
to keep the target rice fields
i flooded during short periods of
‘Sacramento Vallgy, CA - bird migration in California.




Data-Science, Game-Theory, and
Market-based approach

Farmers
Submit Bids

vy

TheNature @
Conservancy W&
Protecting nature_ Preserving life”

Bids selected
based on targeted
estimates

SUOIINY 3SiaA3Y [EMOJeUIQUIO)

Pacific Migration - del Target Areas Reverse Auction
EB'r_ Mo gs Bid Selection

) & Over 30,000 acres
},,..Na_;gl.q of additional habitat for
S waterbirds in California

—— -

Radically novel way of doing bird conservation.
Possible only because of advanced computational methods
for high precision conservation.

Sacramento Valley, CA




Multi-Entity Dependence Learning

Species dependencies
» Competition, cooperation, not captured in most
previous models (boosted random forests)

Multi-Entity Dependence End-to-End GPU Boosted
Deep Multi-Entity joint : Learning with Rich Context Learning for the
EmbEddlng via Conditional Variational > Deep Multivariate Probit
[Chen, Xue, Fink, Gomes 16] Auto-encoder Model (DMVP)
[Luming, Chen, Xue, Gomes, [Chen, Xue, Gomes, ICML 18]
AAAI 18]
Environmental Feature Species Embedding
Embedding
a8 W DANG) Conditional Varational AUlo-encodar Framework Contextual Data Binary outcomes
P o=  Gee omp WOR— )
| el ke Recognition -2 x i QO—O) Yi
Input mmp (@ == O  oee eoele Contet L | i b
Wink TG = (5,8 A= (g, s0d) Information i e o1/2 o ulti-Entity Distribution
Bl e e e | Chan e =0 (pme)
- ES CET ) W Pr(yi |xi) = (D(FL z‘_f)
e Gt Ve H o (sEE (o ()

Multi-Species Distribution
Ny (i1, X)

}
v E,
Independent |residual
o

GPU Boosted \
Easy to estimate



Multi-Entity Dependence Learning

Species dependencies
» Competition, cooperation, etc.

& Blue Jay

American

= . VAN ’\< >
MUIti-ObjeCt petf::‘;\c{eide 2. o ) M Birds live near the Xesidential “ a\’§/\b
. B o -3 bend A \A./ater-birfls v \//\
detection A\ -(‘ | e e ey @ @y @ ®
Computer > > Raptor \}a‘ ® o
. = — @ Birds live in forest =~ »
VISIO“ g ", Warbler /_‘“)(»:“
-1.5 -1.0 -0.5 0.0 0.5 1.0
OMVP Chemical Elements Correlations of bird species
embeddings L | AR The embedding of
Sh"g“r"oi'ﬁ?fé' R R e et the multi-species
perdvenss | | = | interactions leamed from
correctly RSN DMVP.
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Avicaching:

A Two Stage Game for Incentivizing Bias Reduction in Citizen Science

Data Bias Problem

Principal-Agent Framework

Field: Pilot Program

Distribution of eBird Observations in the US

Prevalent problem in citizen science
Collected data are often aligned with
the participants’ preferences rather
than scientific objectives.

How to incentivize Citizens
to visit under-sampled areas?

2014

Before Avicaching

—__

eBird 2015

Avicaching

@i’y ®
)
o’ ® 5 LI
When Avicaching js in the field

Very Successful in Two US
Counties

(19% shift to undersampled

areas in a 6 month period)

eBird

Avicaching

| | il

Incentivize eBirders to
visit undersampled
locations.

Incentives:

» Avicaching points

»leaderboards

» Lotteries (e.g.
binoculars.)

Yexiang Xue, lan Davies, Daniel Fink, Christopher Wood, Carla P. Gomes: AAMAS 2015, CP 2016, NIPS 2016



Bias Reduction via End-to-End Shift Learning:
Application to Citizen Science

Shift Compensation Network (SCN)

g G(Xp) e
i int o ol 5""5&',,‘,"""
Training: p(x,y) = p(lx)p(x) tor Tewsomge 2 r—
Q(x) ( ) (J’l ) Yp: Training Label J - 1 '
=7 X X | N |
=125 P P qx) qOlx) :

G: Feature Extractor
1 % K b ‘ 9 D: Disc ] ’_f_‘ !
c: X ' Y

05+ Minale Ah ) a“is 7
0.33 * "'ﬁf ZZEN ﬁ 2
a(0)

l055: Eyy)~p [t’(f(x),y)ﬁ - l055: Egryy~o [£(f (x),7)]

t

shift factor

Before: After:
The original data distribution The re-weighted data
distribution (using SCN)

Also applicable to other bias reduction situations (loans etc)
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Big Data for Africa

Improving Forage Maps in Africa
to protect farmers and herders

Preferences, Skills Rangeland and Forage
Information Incentive based
Crowd-Sourcing Models

Crowdsourcers (Pastoralists, etc.) ngZEIt graze,t

Incentives,
Site Recommendations Rangeland/Forage
Distributions
e Herders Submit Vegetation Images and

Surveys with Smartphones:
incentives: real money (small for us, good
money for pastoralists)

Observation Data

|

Location, Date “a\ v ;
! ! Feedback & X ‘
Vegetation lI Vegetation ‘\ ‘\\ [\ 2
& : % :

Validation

3 month Pilot project:

Spatial & Temporal Rangeland
and Forage Distribution Models > 100,000+ surveys

Environmental Data

»
3

;La;d Cove

r Weather Remote Sensing

SYDNEY

Africa is very poorly sensed LRI @

(limited environmental data, vegetation maps, only a few reliable weather stations)



Outline

Inferring Crystal Structures for Accelerating Materials Discovery
(very briefly):

» Constrained Matrix Factorization
m » Human Computation for Speeding up Search

FCC Crystal Structure




Accelerating the Discovery of New Energy Materials

THE U.S. MATERIALS GENOME INITIATIVE

to discover, develop, and deploy new materials twice ax fast, we're launching what we call the Materials Genome Ini

- President olm-u ull

©Meeting Soc]etal Needs © Accelerating Our Pace The U.S. Mat IsGe ome Initiativ (MGI)
Ad nced mate at the heart rchers
ﬂn

bsne leadevs( red e the (lm nd
resout needed to bring n wmat
ornark( 3 process that today ¢ (k
20 ye: arsormo

he fou n for
tools, and (ech nologies ti
urgent soc-eul needs in g clean
energy, human welfare, and national
security.

\

kRN - a
) e

—
L National Security

—O Before MGI

©Building Infrastructure for Success
The MGI is a multi-agency initiative t
renew investments in m'rastmc(ure

designed for performa nd t
foster a mre open, collabora 2 §
materals, h elping U.S. Institutio | -4 (‘
cCelerats their tira-to-maniet™ = - 9‘
tools o
Lt g G, " v Lk » oo Lol 4w Uit o U i
m" S Thm m = ‘Il ---' = J-- s mm = o

Goal: Accelerate the pace and reduce
the cost of discovery of new materials
(Obama 2010)

JCAP Caltech ey asn

JOINT CENTER FOR ggntrcli Linear Accelerator
ARTIFICIAL PHOTOSYNTHESIS

O)

TOYOTA

RESEARCH INSTITUTE

Solar fuel Cell

\\0
o

o=
7\

Catalysts

J
00000 i
® é@

: %\9.--.’; B

C H ESS
Cornell High-Energy Synchrotron



Crystal Structure Phase Mapping from Experimental Data:
A Computational Perspective

43



Crystal Structure Mapping Problem from
Hugh-Throughput Experiments

Co-sputtering Cornell High-Energy Synchrotron
(similar to atomic spray painting) . |

Beam
Intensity

. Metall
o Metal2 Metal3 High-Throughput
Materials Discovery

hns e o d Wy
Diffraction angle

X-ray Diffraction

(38% M1, 45% M2, 17% M3)

Water \ Rapid characterization
of thousands of materials

Simultaneous synthesis ; - oy
of thousands of materials 10° - 10° materials/day

107 - 10° als/d How to infer the crystal structure
~ 2T Matenials/day_ the materials, based on the X-ray diffraction patterns

(or other form of characterization, e.g., Raman)?
Crystal Str)ucture Map

Samples: @
’ha

Elc :'chinns: clur X-ru}' dil}i’uc@on R;\vllcvrns i
% o 1l | Problem:
-f | /{’.‘ 2|+« Infer the crystal structures of
FCC Crystal Structure 4 n . = AKX ; ]
——r , i s the materials from
L —H ¢ the X-ray diffraction patterns
J y Y
"/ Source Separation Problem
Metal 1 Metal 3
Goal: Mainly manual task
Achieve High-Throughput Crystal Structure Identification requiring expert knowledge!
Difficulty: Often X-ray diffraction patterns correspond to a
JCAP mixture of crystal structures Only afew
systems a year

sriinctonss Challenging to un-mix the X-ray diffraction patterns




Phase Map Identification Problem

Possible Additional Physical Requirements:

* Phase Connectivity
» Gibb’s Rule:
Mixtures of at most 3 pure phases
» Peaks shift by ~15% within a region

— Continuous and Monotonic
= Small peaks might be discriminative

Collection of XRD Patterns " Peak locations matter,
more than peak intensities

OUTPUT: pure phase
region

m phase regions
- k pure regions
- m-k mixed regions

Mixed
phase
region

XRD pattern
characterizing

pure crystal phases
A B

45



Related Problems:
Pattern (Factor) Decomposition or Source Separation

Flight Call Detection

for Bird Conservation Elephant Listening Project;

Elephant Call Detection

Materials Discovery:
Phase Map Identification

nnear Bw =amae |l

b ok e EIE - el =B _ r—

d o = . w’: DDDDD = Documents Essljnfnlnts ° ° o

.‘- q t i = = iﬂ ;L4e ,:ig;, Seeking Life's Bare (Genetic) Necessities 5 . TOplc MO dellngo

n, i g E «/\’2\§§ N Identlfymg.the Key TOplCS
L= 1% —mm——— = T of a collection of articles
L g T L e (or an article)

1 - Blei, ACM 2012

Music source separation:
Extracting and identifying each
single instrument sound in a



B AR

Matrix factorization With Combinatorial Constraints

N

H
(Activation matrix)

— o wes
- moa [
g L) Ll

s ¥

(X-ray diffraction patterns Issue: Data is non-negative. Need to
or documents) (k basis vectors enforce
-- corresponding to crystal W>0 And additional
Min ||A—WH]| structures or topics ) H>0 combinatorial constraints
p
W,H
Subject to:

Combinatorial constraints to encode laws of physics
— e.g shifts, Gibbs Rule, etc

47



XRD Patterns

G 2000
2

XRD at one sample point

Intensity

l
‘|n | A
I |

|
il b

sommmn] 1) ALY

Q Values

w
L il Nl L A !::
i il J LA M “:
a kb, Lk hl LA M "‘h“-
5 |
= 2l A IJ LA M ,‘"‘;l..
] A 1L Hl LA J M )\
All matrix : 1 A B J " |
elements A y l B J .
A 1) »Jt LA JL n /"‘“"\
= .02

Elementwise matrix
multiplication

.02

.98

=+ 98
Al .
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Crystal Structure Map:
Computational Challenges

—> Unsupervised learning — No labeled data

(ML success depends on large amounts of labeled data)
—> Need to deal with noise, incomplete data, uncertainty

—> Standard ML techniques:
fail to capture the underlying physics of the phenomena

Required: Rich set of combinatorial constraints
to capture the physics of the phenomena

l Integration multiple knowledge

. S . sources and reasoning mechanisms
Computational Synthesis: 1. XRD data (also Raman, optical, others)

Integration of machine learning techniques 2. Materials databases prior knowledge

with constraint and probabilistic reasoning, (Materials Project, OQMD, etc.)
Quantum physics (DFT calculations)

sampling, and optimization techniques Human expertise

>
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. ® ara® Phase Mapping as

£

®o.,, Constrained Matrix Factorization

X INTERLEAVED AGILE FACTOR DECPOMPOSITION (IAFD)

Relaxation and Projection Methods for Constrained
Matrix Factorization Problems = producing physically
meaningful solution

|A F D N Specialized
W Gibbs Phase [} T constraint
j reasoning
. — | AgileFD Alloying > algorithms
, - to enforce
. a4 .
Convolutive Non- Connectivity physu:.al
Negative constraints
Matrix We can now automatically generate a physically

Factorization meaningful phase-diagram in ~5 min!!!l!



Crystal:
Phase Mapping Agent Ensemble

Analysis &

eRO Visualizer &

Interface

Interleaved Agile
Factor Decomposition Method
(PIAFD)

AgileFDG" Phase Phase
; Connectivity Matching

CRYSTAL Planner

Gibbs-Alloy

@ CRYSTAL's Bots

Crystal’s Brain:
Interleaved Agile Factor Decomposition

Crystal is a multi-agent system that encapsulates a diverse collection of fast and
specialized algorithms with different types of knowledge and computational capabilities
for Crystal Structure Phase Mapping

Gomes, Bai, Xue, Bjorck, Rappazzo, Ament, Bernstein, Kong, Suram, van’Dover, Gregoire, 2019



Pd-Ta-Rh system
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20 representative <«——

~2500 valid phase diagrmas CRYSTAL: Pd-Rh-Ta System

21 Mivervvouls S T T 2
.;lx&&&l\l l..A FYYYYY AAAAA

o nShs T
o h‘ u«m fvc-d Lx fn ore-RrTa
s ’f & W ' 2780 /\ / \

_—ry »,¢¢ ” , % | CRYSTAL -->
i Qaa .*\ll /, ,,.T‘ tet-Rtyg 4 Tag o /,." . / \ 2480 valid phase diagrams
& _d 1) .; L h \
Pes ;-,J;,,d.’;: :i‘“" oAl __.LLLL L\./Lﬁh_.iw - 20 representative
¥, H \ ~ hex-PazTa /\. boc-Ta Fihg 4 Tag
/' \ Human experts
: / = '\_\ - Selects 5 for refinement
3 ?é / il '\\ “-.\ —> Selects final solution
. '). 4 . \
hex-PdyTa c g .L.l_l.u..' A l AALA.

a) Clustering of the 2480 phase diagrams produced by Crystal for the Pd-Rh-Ta system b) 20 clusters and respective
representative phase-diagrams were identified. Out of the 20 phase diagrams, the human expert ruled out 15, based on
subtleties not enforced by Crystal. ¢) From the remaining 5 phase diagrams, the human expert selected the enlarged
phase diagram, based on additional metrics, characterized by the phases represented in e). The five-phase solution
selected by the human expert for the Pd-Rh-Ta system. d) Color scheme for the phase fields. e) The basis patterns are
plotted along with the ICSD basis patterns. Each phase map is shown as a composition plot where the size represents the
phase fraction and the color denotes the relative lattice constant, compared to the respective basis pattern, aligned to

the best match of the ICSD pattern. CRYSTAL enabled the discovery of
a mixed-intermetallic methanol oxidation electrocatalyst: Pd, ,Rh, 33Tag <



CRYSTAL's Interactive Phase Mapper
(to be made publicly available)

Interactive Phase
Mapper backend
powered by IAFD
which provides the
functionality of
producing physically
meaningful
solutions.

Innovative Al Award /AW
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Scientific Autonomous Reasoning Agent (SARA):
Integrating Materials Experiment, Theory, and Computation
An AFOSR MURI launched Feb. 2018
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Scientific Autonomous Reasoning Agent (SARA): e onrn ® Materials
Integrating Materials Theory and Experiment “e s :' Experiments
Bridge: Al and Computation g

Formulating Hypotheses, Devising, Planniig s

: : : 5 Ceness>
Running and Analyzing Experiments

Planning

Constraint Reasoning
Optimization

Scientific Computing 2 — Plan and Design

of Experiments
1 Database Mining and

Hypothesis
Generation

Scientific Literature &
Materials Databases

(Element & materials properties Data Mining Human
. u
from expe?‘t‘l}e“ts & Probabilistic Reasoning Computer
computation) Machine Learning Interaction
OQMD

Active Learning

Incorporation of
Background knowledge
and Prior knowledge

3 — Phase Mapping
and Crystal Structure
discovery

(DFT Calculations) 4 On-the-fly DFT

Scientific Literature

|
Quantum Physics L )

& Materials
. Databases
Materials Human Computation (Element & materials
Theory properties from experiments
(Expert and Non-Expert) & computation)



My Philosophy:
Students should work on similar = Pattern Decomposition in Big Data
computational problems
in different domains.

Grad students working on materials
discovery also work on the elephant
and flight call, eelgrass problems
and music.

Dimensionality Reduction,
Source Separation,

and Segmentation

with Complex Constraints

Crystal Phase Mapping from

X-Ray Diffraction Data _
Eelisa

' S Separatin Identifying wasting disease
Flight Call e & . lesions in eelgrass
Detection - . InStruments 1n music

from audio
recordings

Elephant Call Detection (from audio recordings)




Computational Sustainability — Grazelt
@ Cornell

Gomes Lab

Modeling of
Pastoralists’
Movements and
Vegetation Mapping
(Kenya)

mmm— Pattern Decomposition in Big Data “Avicaching S
mmmmmm (Citizen Science/ Crowdsourcing
mmmmmm Agents: Mechanism Design
BN | arge Scale Spatio-Temporal Citizen Scienm
Modeling and Prediction Avicathiug ,
mmmmmm Stochastic, Probabilistic Inference, Estimating Bi
and Optimization i/?pUI?Flons a
. . 1grations
wesses Large Scale Sequential Decision Making Socio-Economic- s
Environment Monitoring
Eelgrass and Sea
tar Wasting
AR o

Designin )
E g ) g i Music source
Xperiments )
P e separation
for Fertilizers

Invasive
Species
Expeditions
in
Computing
(CISE)

www.Udiscover. |t It




Conclusions



Computational Sustainability

Computational Sustainability aims to advance computational methods to help balance
economic, environmental, and societal needs for sustainable development.

1. New challenging problems

2. New formalisms and concepts
from other disciplines

- New Core Paradigmatic

problems in Comp. Sci.

o Sustainability
o .
T
33 Questions
S
=
S a
o =
» O I
-3
° 9
O
»n
m I
99
-
G 2 |
< U)& Computational
Q 0 Sustainability
O
»

o ® ado

omputational Sciences

Computational Thinking
providing new
insights,
methodologies,
and solutions
to sustainability problems

> Societal Impact




//AM Thank you! Computational Sustainability
, , Vibrant Research Community
www.compsust.net

CompSust Conference Series: Workshops at Conferences

(international researchers from several
disciplines and institutions (universities, labs, government)

e T} ™ - .
e -29"9;‘." Neural Information  SustkDD 2012

3rdInternational Conference on - Worksh
Computatonal Sstanabiy * Processing Systems | JeSiret, cations
; In Sustainability

Foundation

y 4-6, 2012
University of Copenhagen, Denmark -

= | STOC 2012 - 44* ACM
&  SYMPOSIUM ON THEORY

| OF COMPUTING @

SIGACT

CompSust-2016 A
4th International Conference on A e — o 7 e
Computational Sustainability. ") " T , kil

¥ 5 ' E - ew v | ol
July 6-8, 2016 S Lo L e Y v =
Cornell University, Ithaca, NY . v T | ' A B B

Tracks at

CROCS: Constraint Reasoning and
| ., Optimization for Computational
“Sustainability

CROCS at CP-09, CPAIOR-10
CP-10 and CP-12

CoompSust@AAAI-2018 CoompSust@AAAI-2019

Theme of 1JCAI-2013

(CHINA)
/ﬁ\ Al and
CILIRE® omputational

Sustainability
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c
And many other related conferences and journals



Expeditions
in
Computing
(CISE)

Thank youl!

f_ L-Jrk"*" Carnegie i i
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—IJ University HOWARD THE OHIO STATE Oregon State
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antor W i iEnsry UMASS Eﬁ%[ SC Universityof
University AMHERST WY Southern California -

125+ faclity, students, and collaborators!!!






Probabilistic Matrix Factorization +

Exponentially-Modified-Gaussian Mixture Model:
Multi-Component Background Learning Automates

Inference of Background

Collective learning for a set of measurements

Fully automated algorithm, no
human selected parameters

Multiple signal sources: noise; substrate signal; signal for deposited materials Applicable to different

o

1.4 - —— Measurement
' —— Inferred Background
—— Net Signal
1.2 A
& nod
w0
o
@ 0.8
bt
o
0.6
@)
o
X 0.4
0.2
0.0 -
10 15 20 25 30

Q, scattering vector magnitude (nm~1!)

Ament, Gregoire, Gomes, 2019

o

XRD Intensity

1.4+

1.2 4

1.0+

0.8

0.6

0.4 4

0.2

0.0

spectroscopy data.

XRD

= Measurement
= |nferred Background
— Net Signal

e

M%M-wm

10 15 20 25 30
Q, scattering vector magnitude (nm~1)

B Cornell University
Gomes Lab

~ Gregoire Lab



Probabilistic Matrix Factorization +

Exponentially-Modified-Gaussian Mixture Model:

Mult| Component Background Learning Automates Inference of
Background and Signal of Interest for Spectroscopic Data

PROBABILISTIC MATRIX FACTORIZATION +
EXPONENTIALLY-MODIFIED-GAUSSSIAN MXTURE MODELS
to automatically infer background and signal of interest

a. 100

—— Measurement
= Rank:1

= Rank 16

* Detected signal

Collective learning for a set of
measurements

80

60

Multiple signal sources: noise;
substrate signal; signal for
deposited materials

measured and
background signals

Intensity (cps)

net signal

260 460 660 360 10‘00 12‘00 1400
Wavenumber (cm!)

c- 160 — Measurement
—— Rank 1
140 — Rank 16
* Detected signal
o 120
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£ 1001
>
= 804
%}
& 60
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cC
= 40
Cornell University 20
Gomes Lab
D 4

260 400 660 860 ldOO 1260 1400
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Gregoire Lab

Ament, Gregoire, Gomes, 2019

Fully automated algorithm, no
human selected parameters
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Poverty Mapping:
Combining satellite imagery and
machine learning to predict poverty

Deep learning and transfer learning

Neal Jean, Marshall Burke, Michael Xie, W.
Matthew Davis4, David B. Lobell, Stefano
Ermon,

Science 19 Aug 2016:

SCience AV Vol. 353, Issue 6301, pp. 790-794

DOI: 10.1126/science.aaf7894

Stefano Ermon: IJCAlI Computer & Thought Award —



