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Emergence of Intelligent Machines

Dramatic Progress in AI 
Rapid shift in AI research: 

Academic world   Real-world 

• Machine perception is starting to work: finally! after “only” 50+ yrs of 
research…
AI systems are starting to  “see” and “hear” (computer vision, speech 
recognition, natural language understanding)

• Our systems are finally becoming grounded in (our) world. Already:
 super-human face recognition (Facebook)
 super-human traffic sign recognition (Nvidia)

• Enabled by qualitative change in the field, driven in part by Big Data & 
Deep Learning  but also other cumulative progress (reasoning, search,  
reinforcement learning, planning, decision theoretic methods, knowledge 
representation) 



Emergence of Intelligent Machines

Intelligent systems are radically transforming businesses, medicine, …

Automated
Supply Chain 

Wall Street:
Autonomous
Trading Systems

Genome
sequencingAssistive robotics 

Remote Robotic 
Surgery

Selfdriving CarWatson defeats the 
two greatest 
Jeopardy! 
champions

IBM’s Watson
Phone
Music player
Calculator
TV
Video camera
GPS navigator,
Environment monitor
Etc, etc, etc.

Smart 
-Phone

And our daily lives …. 

Deep Blue defeats 
IBM Deep Blue 

defeats Kasparov 

Unfortunately, the digital  and AI  revolution have done 
little for  Sustainability

Our vision: 
Computer Science and AI  can — and should — play a key role in helping 

address societal and environmental challenges in pursuit of a sustainable future,
while also advancing computer science as a discipline.

AlphaGo
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 To nucleate the  Computational 
Sustainability field 

 To identify a number of core 
research directions for maximal 
impact, both in terms of  Computer 
Science and Sustainability.

Conference,
Referred CompSust Tracks,

Workshops

1st Expeditions in Computational Sustainability  (2008)Thank you!

2nd Expeditions: Large-Scale Research Network
for Expanding the Horizons of  Computational Sustainability

300+ faculty, students, and collaborators!!!
CompSustNet

and Gov and  NGOs  and several  International Universities as collaborators 



Sustainable Development encompasses

balancing 

• environmental,  

• economic, and 

• societal needs.

Computational Sustainability
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New interdisciplinary field that aims to develop  

computational methods for Sustainable 

Development. 

Sustainable development is development that meets the needs

of the present without compromising future generations.

United Nations, Our Common Future,
1987

https://sustainabledevelopment.un.org/sdgs (2015)

Ultimate goal of 
Sustainable 

Development
HUMAN 

WELL-BEING  
of  current and future 

generations. 

2008/2016

https://sustainabledevelopment.un.org/sdgs
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Sample of  Interdisciplinary Research Projects @ Cornell 

Herders in Africa

II Balancing Environmental-and-Socio-Economic Needs

Impacts of  Hydropower Dam Placement in the Amazon 
Basin

Protecting Migratory  Herders in Africa 
Socio-Econ-Environmental 

Impacts of Dams in Amazon Basin

Wildlife Corridors
Social-Economic 

Ecological Corridor
(Ecuador) 

Bird Conservation 

Elephant
Listening Project

I Conservation and Biodiversity 

Wildlife Corridors
Bird Conservation
Protecting Endangered Species

Wide range of sustainability applications covering
Cross-Cutting Core Computational Problems

Cornell High 
Energy Synchrotron

Solar Fuels

Caltech

III Accelerating Discovery of Materials for Renewable 
Energy 

Accelerating the Discovery of Solar Fuels

SARA: Scientific Autonomous Reasoning Agent for 
Materials Discovery   



3 Core Computational Thrusts

Main computational thrusts:

(1) Big data and Machine Learning 
(2) Constraint Reasoning, Optimization, Dynamical 

Models and Simulation 
(3) Multi-Agent Systems, Citizen Science,

and Crowdsourcing

Interdisciplinary Research Projects (IRPs) 
lead to transformative syntheses 

across sustainability  domains and computer science sub-areas 



Socio-Ecological 
Wildlife Corridor
(Ecuador)

Citizen Science
Avicaching ,
Estimating Bird 
Populations and 
Migrations  

Monitoring 
Eelgrass and Sea 
tar Wasting 
Disease

Designing 
Experiments  
for Fertilizers 

Inferring Crystal 
Structures for 
Materials 
Discoevry

Modeling of 
Pastoralists’ 
Movements and 
Vegetation Mapping 
(Kenya)

Dynamic
Precision Bird 
Conservation 

Pattern Recognition  in Big Data

Citizen Science/ Crowdsourcing

Agents: Mechanism Design 

Large Scale Spatio-Temporal 
Modeling and Prediction

Stochastic, Probabilistic Inference, 
and Optimization  

Large Scale Sequential Decision Making

Elephant Call 
Detection

Flight Call 
Detection

GrazeIt

Socio-Econ-
Environment
Impacts of Dams in 
The Amazon Basin 

Invasive 
Species

Expeditions 
in 

Computing
(CISE)

www.Udiscover.It

SoFI
Artificial Tree

(solar-fuel generator)

Subway Lines:
Examples of Cross-Cutting Computational Themes and  

Interactions of some Computational Sustainability Projects



Impact of Hydropower Dam Placement in the Amazon Basin on 
Ecosystem Services
 Multifaceted “trust” in decision support systems 
 Optimization with Multiple (and Conflicting)  Objectives: 

Computing The Pareto Frontier 

Species distributions  
 Reducing Bias in  Citizen Science Data: 

 Avicaching Game
 Co-variate shift 

 Multi-Entity Dependency Learning: Deep Multivariate Probit Model

Inferring Crystal Structures for Materials Discovery for Clean Energy

 Constrained Pattern Decomposition 
 Human Computation for Speeding up Search   

FCC Crystal Structure 

Outline



Sustainability concerns balancing  
environmental, economic, and societal needs

Key Issue: 
Understanding trade-offs of solutions wrt
multiple (and often conflicting) objectives 



Hydropower Dam Proliferation in the Amazon Basin



Hydropower Dam Proliferation in the Amazon Basin

170 dams already built or 
under construction



500+ dams planned or 
proposed

Hydropower Dam Proliferation in the Amazon Basin



Hydropower Dam Proliferation in the Amazon Basin
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Ecosystem Services of River Networks

Examples of Ecosystem Services

Transportation 
and navigation 

Sediments and 
Nutrients 

Energy Fisheries

Computational Perspective:  
Multi-objective Optimization Problem

Pareto frontier:
the trade-offs wrt to the different objectives of different 

non-dominated solutions of dam portfolios



Goal: Find Optimal Portfolios of Dams to Build

Build no dams

Build all dams

Pareto Frontier



Example: Connectivity

Longest connected network

Planned dams

Existing dams

Two dam network configurations with similar hydropower 
yields, but different degrees of river connectivity 

Longest connected network

Planned dams

Better connectivity

Mouth of 
the river

Mouth of 
the river



River network

(a). River Network

potential dam 
locations

u

v

w

s

1

2

3

Wu, Gomes-Selman, Shi, Xue, García-Villacorta, Anderson, Sethi, Steinschneider, Flecker, Gomes, AAAI18

(Amazon Basin has ~ 5M river segments!)

Computing the Pareto Frontier
Problem Representation 



River network (left)  Rooted tree (right)

(a). River Network

potential dam 
locations

u

v

w

s

1

2

3

(b). Graph Representation

u

v w

s

32

1

potential dam locations

Wu, Gomes-Selman, Shi, Xue, García-Villacorta, Anderson, Sethi, Steinschneider, Flecker, Gomes, AAAI18

Computing the Pareto Frontier
Problem Representation 

(Original Amazon network has
~ 5 M river segments!)

Compressed Amazon network: 
~ 500  nodes/edges)



River network (left)  Rooted tree (right)

Edge – potential dam location
Node – contiguous river sub-network not 
affected by a potential dam (assign to the 
node the utilities for  the different criteria)

Computing the Pareto Frontier
Problem Representation 

(a). River Network

potential dam 
locations

u

v

w

s

1

2

3

Wu, Gomes-Selman, Shi, Xue, García-Villacorta, Anderson, Sethi, Steinschneider, Flecker, Gomes, AAAI18

(b). Graph Representation

u

v w

s

32

1

potential dam 
locations

(Original Amazon network has
~ 5 M river segments!)

Compressed Amazon network: 
~ 500  nodes/edges)



● Recursively compute the Pareto-frontier 
from leaves to root.

● Key Insight: Only need to keep Pareto-
optimal partial solutions at each node.

● Fully polynomial-time approximation 
scheme (FPTAS) – rounding solutions  
guaranteeing accuracy of (1 – ε).

● Faster pruning dominated solutions. 
Improved from                   to

● Other improvements to speed up 
algorithm (e.g., batching; imbalance 
binary tree)

{(3MW, 2km)} {(2MW, 8km)}

(Hydropower, Conn)

h=2.5MW h=2.0MW

{(5MW,14km), (A,B)  
(7.5MW,12km), (A,B)
(7MW,6km),  (A,B) 
(9.5MW,4km)} (A,B)

length=4km

Computing the Pareto Frontier 
Dynamic Programming Based  Exact and Approximation 

Mouth of the river

A B



Approximation: in practice better than worst case guarantee

Entire Amazon Basin Two Criteria: Energy vs Connectivity 



Rafael de Almeida et al 2019

Greenhouse Gas Emissions

Current situation

Current situation



We can now approximate  the Pareto frontier 
for Entire Amazon basin (~5M  river segments)  

Four criteria: energy, connectivity, sediment,  and seismic risk

Within 25% from true optimal Pareto frontier containing
~80K non-dominated solutions   in ~ 6 minutes.

Within 10% from true optimal Pareto frontier containing 
~500K non-dominated solutions in ~ 6 hours.

Within 5% from true optimal Pareto frontier containing 
~2M non-dominated solutions in ~ 3 days.

Our approaches outperform other approaches (e.g., based on GAs). 
We also provide guarantees



Interactive Visualizer: Parallel Coordinate Plots  

Energy

C
on

ne
ct

iv
ity

Color: Seismic 
risk

Particular hydropower dam solution
Size of circle: Sediment

Additional Criteria:
Green House Gas Emissions; biodiversity; impact on populations; etc



energy sediment connectivity seismic

energy sediment connectivity seismic
Bounding 
different 
criteria

Bounding 
different 
criteria

Interactive Visualizer: Parallel Coordinate Plots  



Frontier: 
All dams (~500  =  existing + proposed)

Foregone 
environmental 

benefits

Installed Capacity (MW)

C
o

n
n

e
ct

iv
it

y
 (

D
C

I P
)

Existing dams

Foregone power 
earnings

Message to Policy Makers: The cost of inefficient planning

Exact Pareto Frontier Amazon Basin 
(Energy vs River Connectivity) 

(~5M river segments: 212 secs)

Getting, vetting data and 
expertise  for different 
criteria! 
• Energy
• Connectivity
• Sediment 
• Seismic risk
• Biodiversity
• Green House Gases
• Populations affected
• Cost
• …
Group 40+ collaborators: 
ecologists, hydrologists, 
biologists, social scientists, …

Key challenge: 
How to effectively establish the

large-scale interdisciplinary projects and  collaborations. 

Energy 

Challenge of Interdisciplinary Projects

R
iv

er



Efficiently Approximation the Pareto Frontier:
Hydropower Dam Placement in the Amazon Basin

RoosQinru

JonathanXiaojian

Yexiang ErinBrendan

Students

Faculty

Collaborators

Rafa



Impact of Hydropower Dam Placement in the Amazon Basin 
on Ecosystem Services
 Optimization with Multiple (and Conflicting)  Objectives: 

Computing The Pareto Frontier 

Species distributions  (briefly)
 Reducing Bias in  Citizen Science Data: Avicaching Game
 Multi-Entity Dependency Learning: Deep Multivariate Probit

Model

Inferring Crystal Structures for Materials Discovery:
 Unsupervised learning with combinatorial constraints  

FCC Crystal Structure 

Outline



Biodiversity or Biological Diversity
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Fundamental question in 
biodiversity research:
How different species 

are distributed
across landscapes over time.



Sensors, sensor networks, and remote sensing  

Photo courtesy of www.carboafrica.net

Very sophisticated sensor

LandSat
~50years old

LandSat
images



Species distributions

Adaptive Spatial and Temporal   
Machine Learning Models

& High-Performance Computing 

Relate environmental predictors to 
observed patterns of occurrences 

and absences of the species

Land Cover

Weather

Remote Sensing

En
vi

ro
nm

en
ta

l D
at

a

Patterns of occurrence of Northern Pintail  for different 
months of the year Source: Daniel Fink

eBird
Citizen Science 

300,000+
volunteer 

birders

300,000,000+
bird 

observations

22,000,000+
hours of field work 

(2500+years)

Bird Observations

The models reveal the habitat preferences of the birds, at a fine resolution, 
Allowing for High-Precision Bird Conservation  

3X



Species Distributons 

Adaptive Spatial and Temporal   
Machine Learning Models

& High-Performance Computing 

Relate environmental predictors to 
observed patterns of occurrences 

and absences of the species

Land Cover

Weather

Remote Sensing

En
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nm
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Patterns of occurrence of Northern Pintail  for different 
months of the year Source: Daniel Fink

eBird
Citizen Science 

300,000+
volunteer 

birders

300,000,000+
bird 

observations

22,000,000+
hours of field work 

(2500+years)

Bird Observations

The models reveal the habitat preferences of the birds, at a fine resolution, 
Allowing for High-Precision Bird Conservation  

State of the Birds Report
(officially released by Secretary of Interior) 

Distribution 
Models for  

400+ species with 
weekly  estimates 

at  fine spatial 
resolution

(3km2)

Novel 
Approaches 

To Conservation
Based on eBird

Models

3X



High-Precision Bird Conservation
The Bird Returns Program 

Sacramento Valley, CA 

Pacific Migration 
Flyway

Bids selected 
based on targeted 

estimates

Farmers 
Submit Bids

Target Areas Reverse Auction  
Bid SelectioneBird Models

Farmers submit bids 
to keep the target rice fields 

flooded during short periods of 
bird migration in California.

Protecting  Migratory WaterBirds in California Against Drought



Data-Science, Game-Theory,  and 
Market-based approach  

Sacramento Valley, CA 

Pacific Migration 
Flyway

Bids selected 
based on targeted 

estimates

Farmers 
Submit Bids

Target Areas Reverse Auction  
Bid SelectioneBird Models

Over 30,000 acres 
of additional habitat for 
waterbirds in  California

Radically novel way of doing bird conservation.
Possible only because of advanced computational methods 

for high precision conservation.



Multi-Entity Dependence Learning 

Species dependencies
• Competition, cooperation, not captured in most 

previous models (boosted random forests)

Multi-Entity Dependence 
Learning with Rich Context 
via Conditional Variational 

Auto-encoder
[Luming, Chen, Xue, Gomes, 

AAAI 18]

End-to-End GPU Boosted 
Learning for the 

Deep Multivariate Probit
Model (DMVP) 

[Chen, Xue, Gomes, ICML 18]

Deep Multi-Entity joint 
Embedding 

[Chen, Xue, Fink, Gomes 16]



Multi-Entity Dependence Learning
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Species dependencies
• Competition, cooperation, etc.

Correlations of  bird species

Multi-object 
detection
Computer 
vision

The embedding of
the multi-species

interactions learned from
DMVP.

DMVP 
embeddings 

show elemental 
group and 

period trends 
correctly

Chemical Elements



Data Bias Problem

Avicaching: 
A Two Stage Game for Incentivizing  Bias Reduction in Citizen Science

Principal-Agent Framework

Organizer can influence the agents by 
setting  incentives to induce the desired 
behavior from agents 
Pricing Problem:
Bi-level Optimization Problem

Organizer has to learn agents’ 
preferences and constraints (to set the 
right incentives for the desire behavior)
Identification Problem: 

Agent directly sees 
the Organizerl ‘s prices or incentives 

eBirders

Incentivize eBirders to 
visit undersampled

locations.

Incentives:
Avicaching points, 
leaderboards  
Lotteries (e.g.  

binoculars.)

Field: Pilot Program 

How to incentivize  Citizens 
to visit under-sampled areas?

Prevalent problem in citizen science 
Collected data are often aligned with 
the participants’ preferences rather 

than scientific objectives.

Distribution of eBird Observations in the US

Yexiang Xue, Ian Davies, Daniel Fink, Christopher Wood, Carla P. Gomes, AAMAS 2015, CP 2016,  NIPS 2016

Rewards

eBird
Obs

Very Successful in Two US  
Counties

(19% shift to undersampled
areas in a 6 month period)



Bias Reduction via End-to-End Shift Learning:
Application to Citizen Science

:

Also applicable to other bias reduction situations (loans etc)



Big Data for Africa

Africa is very poorly sensed 
(limited environmental data, vegetation maps, only a few reliable weather stations)

Herders Submit Vegetation Images and 
Surveys with Smartphones:

incentives: real money (small for us, good 
money for pastoralists)

3 month Pilot project: 
 100,000+ surveys

Improving Forage Maps in Africa 
to protect farmers and herders   

grazeIt



Impact of Hydropower Dam Placement in the Amazon Basin 
on Ecosystem Services
 Optimization with Multiple (and Conflicting)  Objectives: 

Computing The Pareto Frontier 

Species distributions  (briefly)
 Avicaching Game: Mechanism design for  Reducing Bias in  

Citizen Science Data 

Inferring Crystal Structures for Accelerating Materials Discovery 
(very briefly):
 Constrained Matrix Factorization
 Human Computation for Speeding up Search   

FCC Crystal Structure 

Outline



Accelerating the Discovery of New Energy Materials
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Goal: Accelerate the pace and reduce 
the cost of discovery of new materials 

(Obama 2010)

Solar fuel Cell

Catalysts

……
Caltech

Cornell High-Energy Synchrotron Stanford Linear Accelerator 



Crystal Structure Phase Mapping from Experimental Data:
A Computational Perspective

43



Crystal Structure Mapping Problem from 
Hugh-Throughput Experiments  

44
Caltech

High-Throughput
Materials Discovery

Metal1

Metal3Metal2 

(38% M1, 45% M2, 17% M3)

Silicon 
Wafer

X-ray Diffraction

Diffraction angle

B
ea

m
 

In
te

n
si

ty

How to infer  the crystal structure
of the  materials, based on the X-ray diffraction patterns

(or other form of characterization, e.g., Raman)?

Cornell High-Energy Synchrotron 

Simultaneous  synthesis 
of  thousands  of materials 

Co-sputtering

(similar to atomic spray painting)

Rapid characterization 
of  thousands  of materials 

Difficulty: Often X-ray diffraction patterns correspond  to a 
mixture of crystal structures

FCC Crystal Structure 

Crystal Str)ucture Map  
Problem:

Infer the  crystal structures of  
the materials  from 

the X-ray diffraction patterns 
Source Separation Problem

Goal:
Achieve High-Throughput Crystal Structure Identification 

Challenging to un-mix the X-ray diffraction patterns

102 – 103 materials/day

Mainly manual  task 
requiring expert knowledge!

Only  a few 
systems a year

103 – 105 materials/day



A

C

B
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15 20 25 30 35 40 45 50 55 60
0
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INPUT:

pure phase
region

A

C

B

m phase regions
 k pure regions
 m-k mixed regions

XRD pattern
characterizing
pure crystal phases

Mixed
phase
region

OUTPUT:

45

Collection of XRD Patterns

Possible Additional Physical Requirements:
• Phase Connectivity
• Gibb’s Rule:

Mixtures of at most 3 pure phases
• Peaks shift by ~15% within a region

– Continuous and Monotonic

 Small peaks might be discriminative
 Peak locations matter, 

more than peak intensities

Phase Map Identification Problem



Related Problems:
Pattern (Factor)  Decomposition or Source Separation

Elephant Listening Project;

Elephant Call Detection 

Flight Call Detection

for Bird Conservation
Materials Discovery:

Phase Map Identification 

Topic Modeling: 
Identifying the Key Topics 

of a collection of articles 

(or an article) 
Blei, ACM 2012 

Music source separation:

Extracting and identifying each 

single instrument sound in a 

song



Matrix factorization With Combinatorial Constraints 
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… ≈

A

(X-ray diffraction patterns
or documents)

…

W
(k basis vectors

-- corresponding to crystal 

structures or topics )

H
(Activation  matrix)

k

Issue: Data is non-negative. Need to 
enforce

W ≥ 0
H ≥ 0

And additional 
combinatorial constraints

Subject to:
Combinatorial constraints to encode laws of physics
– e.g shifts, Gibbs Rule, etc

Min    ||A – WH||p

W,H 
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=
All matrix 
elements

Elementwise matrix 
multiplication

XRD at one sample point

Σ

Phase Mapping as A Matrix Factorization Problem

W H



Crystal Structure Map:
Computational Challenges

 Standard ML  techniques: 
fail to capture the underlying physics of the phenomena

Required: Rich set of combinatorial constraints 
to capture the physics of the phenomena

Unsupervised learning – No labeled data
(ML success depends on large amounts  of labeled data)

 Need to deal with noise, incomplete data, uncertainty

Computational  Synthesis: 
Integration of  machine learning techniques  
with constraint and probabilistic reasoning, 

sampling,  and optimization techniques   

Integration  multiple knowledge 
sources and reasoning mechanisms

1. XRD data (also Raman, optical, others)
2. Materials databases prior knowledge 

(Materials Project, OQMD, etc.)
3. Quantum physics (DFT calculations)
4. Human expertise



Relaxation and Projection Methods for Constrained 
Matrix Factorization Problems  producing physically 
meaningful solution

Phase Mapping as 

Constrained Matrix Factorization

Convolutive Non-
Negative
Matrix 

Factorization

Specialized 
constraint 
reasoning 
algorithms
to enforce 

physical
constraints

IAFD

INTERLEAVED AGILE FACTOR DECPOMPOSITION (IAFD)

We can now automatically generate a physically 
meaningful phase-diagram in ~5 min!!!!
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Crystal: 
Phase Mapping Agent  Ensemble

Crystal is a multi-agent system that encapsulates a diverse collection of fast and 
specialized algorithms with different types of knowledge and computational capabilities 

for Crystal Structure Phase Mapping 

Interleaved Agile
Factor Decomposition Method 

(PIAFD)

Gomes, Bai, Xue, Bjorck, Rappazzo, Ament, Bernstein, Kong, Suram, van Dover, Gregoire, 2019

Crystal’s Brain: 
Interleaved Agile Factor Decomposition 



Pd-Ta-Rh system

198 synchrotron
x-ray diffraction patterns



CRYSTAL:  Pd-Rh-Ta System

a) Clustering of the 2480 phase diagrams produced by Crystal for the Pd-Rh-Ta system b) 20 clusters and respective 
representative phase-diagrams were identified. Out of the 20 phase diagrams, the human expert ruled out 15, based on 
subtleties not enforced by Crystal. c) From the remaining 5 phase diagrams, the human expert selected the enlarged 
phase diagram, based on additional metrics, characterized by the phases represented in e). The five-phase solution 
selected by the human expert for the Pd-Rh-Ta system. d) Color scheme for the phase fields. e) The basis patterns are 
plotted along with the ICSD basis patterns.  Each phase map is shown as a composition plot where the size represents the 
phase fraction and the color denotes the relative lattice constant, compared to the respective basis pattern, aligned to 
the best match of the ICSD pattern. f) Onset potential for 105 XRD/XRF samples (excluding samples with no observed 
catalytic activity), showing the discovered  mixed-intermetallic electrocatalysts for the methanol oxidation reaction.
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CRYSTAL --> 
2480 valid phase diagrams

 20 representative

Human experts
 Selects 5 for refinement
 Selects final solution

CRYSTAL enabled the discovery of
a mixed-intermetallic methanol oxidation electrocatalyst: Pd0.17Rh0.33Ta0.5

~2500 valid phase diagrmas



CRYSTAL’s Interactive Phase Mapper
(to be made publicly available)

Interactive Phase 
Mapper backend 
powered by IAFD
which provides the 
functionality  of 
producing physically 
meaningful 
solutions. 

Innovative AI  Award



Scientific Autonomous Reasoning Agent (SARA): 
Integrating Materials Experiment, Theory,  and Computation

An AFOSR MURI launched Feb. 2018

Dept. Materials 
Science and 
Engineering
Cornell University

Joint Center for Artificial 
Photosynthesis 
Caltech

Materials Science 
and Engineering
Univ. of Colorado 
Boulder

Materials Science and 
Engineering
Univ. of Northwestern

M
at

er
ia

ls
 S

ci
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tis
ts

 

Dept. of Computer 
Science
Cornell University

Co-PI Carla Gomes  Co-PI Bart SelmanC
om

pu
te

r S
ci

en
tis

ts
 

PI Bruce 
van Dover

Co-PI Mike 
Thompson 

Co-PI Chris 
Wolverton

Co-PI Alex Zunger
Co-PI John Gregoire



Scientific Autonomous Reasoning Agent (SARA): 
Integrating Materials Theory and Experiment
Bridge: AI and Computation

1 Database Mining and 

Hypothesis 

Generation 

Incorporation of 

Background knowledge 

and Prior knowledge

Human Computation

(Expert and Non-Expert)

2 – Plan and Design 

of Experiments

Scientific Literature & 

Materials Databases
(Element & materials properties 

from experiments & 

computation)

3 – Phase Mapping

and Crystal Structure 

discovery

4 On-the-fly DFT

Active Learning

Planning

OQMD

Scientific Literature 

& Materials 

Databases
(Element & materials 

properties from experiments 

& computation)

OQMDQuantum Physics

(DFT Calculations)

Materials 
Theory

Materials
Experiments

Formulating Hypotheses, Devising,  Planning , 

Running  and Analyzing Experiments 

MURI



Pattern Decomposition in Big Data

Flight Call 
Detection
from audio 
recordings 

Dimensionality Reduction, 
Source Separation, 
and Segmentation 

with Complex  Constraints

Crystal Phase Mapping  from 
X-Ray Diffraction Data 

FCC Crystal Structure 

Elephant Call Detection (from audio recordings)

My   Philosophy: 
Students should work on similar 

computational problems 
in different domains. 

Grad students working on materials 
discovery also work on the elephant 
and flight call, eelgrass  problems 

and music.

Identifying wasting disease 
lesions in eelgrass

Eelisa

Separating 
instruments in music



Socio-Ecological 
Wildlife Corridor
(Ecuador)

Citizen Science
Avicaching ,
Estimating Bird 
Populations and 
Migrations  

Monitoring 
Eelgrass and Sea 
tar Wasting 
Disease

Designing 
Experiments  
for Fertilizers 

Inferring Crystal 
Structures from 
X-Ray 
Diffraction Dat

Modeling of 
Pastoralists’ 
Movements and 
Vegetation Mapping 
(Kenya)

Dynamic
Precision Bird 
Conservation 

Pattern Decomposition in Big Data

Citizen Science/ Crowdsourcing

Agents: Mechanism Design 

Large Scale Spatio-Temporal 
Modeling and Prediction

Stochastic, Probabilistic Inference, 
and Optimization  

Large Scale Sequential Decision Making

Elephant Call 
Detection

Flight Call 
Detection

GrazeIt

Socio-Economic-
Environment
Impacts of Dams in 
The Amazon Basin 

Invasive 
Species

Expeditions 
in 

Computing
(CISE)

www.Udiscover.It

Materials Discovery

Computational Sustainability
@ Cornell
Gomes Lab

Identifying wasting 
disease lesions in eelgrass

Eelisa

Music source 
separation



Conclusions



Computational Sustainability 

Computational  Sciences 

Sustainability  
Questions

Computational Thinking 
providing new

insights, 
methodologies, 
and solutions 

to sustainability problems

1. New challenging problems

2. New formalisms and concepts 
from other disciplines

 New Core Paradigmatic  
problems in Comp. Sci.

Computational
Sustainability

Foundational 
C

ontributions to C
S

B
roaden Scope &
D

iversity of C
S

Computational Sustainability aims to advance computational methods to help balance 
economic, environmental, and societal needs for sustainable development.

 Societal Impact
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Computational Sustainability
Vibrant Research Community 

CompSust Conference Series:
(international researchers from several

disciplines and institutions (universities, labs, government)

Workshops at Conferences

Tracks at 
Established Conferences

Best paper awards

CROCS: Constraint Reasoning and 
Optimization for Computational 
Sustainability

CROCS at CP-09, CPAIOR-10
CP-10 and CP-12 

Theme of IJCAI-2013 
(CHINA) 
AI and 

Computational 
Sustainability

And many other related  conferences and journals

CP-2016

CompSust Virtual Seminar www.compsust.net

CompSust Virtual Seminar 

CoompSust@AAAI-2018

Thank you!

CoompSust@AAAI-2019



CompSustNet
125+ faculty, students, and  collaborators!!!

Expeditions 
in 

Computing
(CISE)

and Gov and  NGOs  and several  International Universities as collaborators 

Thank you!





Probabilistic Matrix  Factorization + 
Exponentially-Modified-Gaussian Mixture Model:

Multi-Component Background Learning Automates
Inference of Background

Collective learning for a set of measurements 

Multiple signal sources:  noise; substrate signal; signal for deposited materials

Fully automated algorithm, no 
human selected parameters 

Applicable to different 
spectroscopy data.

Ament, Gregoire, Gomes, 2019

XRD



PROBABILISTIC MATRIX FACTORIZATION + 
EXPONENTIALLY-MODIFIED-GAUSSSIAN MXTURE MODELS 

to automatically infer background and signal of interest

Collective learning for a set of 
measurements 

Multiple signal sources:  noise; 
substrate signal; signal for 
deposited materials

Fully automated algorithm, no 
human selected parameters 

Ament, Gregoire, Gomes, 2019

RAMAN

Probabilistic Matrix  Factorization + 
Exponentially-Modified-Gaussian Mixture Model:

Multi-Component Background Learning Automates Inference of 
Background  and Signal of Interest for Spectroscopic Data



Poverty Mapping:
Combining satellite imagery and 

machine learning to predict poverty

Neal Jean, Marshall Burke, Michael Xie, W. 
Matthew Davis4, David B. Lobell, Stefano 
Ermon, 
Science 19 Aug 2016:
Vol. 353, Issue 6301, pp. 790-794
DOI: 10.1126/science.aaf7894  

Deep learning and transfer learning

Stefano Ermon: IJCAI Computer & Thought Award –


