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Introduction

• Machine Learning is a chair with three legs

– Statistics

– Computer Science

– Domain knowledge(Bio-Science, Econometrics)

– Each group seems to give at best lip service to the 
others

• Biotech has shown the way

• Social Sciences and Statistics Lag
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Introduction

• Computer Science will tell you that it invented 
“big data” methods

• True to some extent BUT

• Actually, a lot comes from economics

Much of the new stuff is quite old.

Impossible to do in its day

Made Possible by Advances in CS and Statistics
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Econometric History of  Machine 
Learning

• Causality and identification
– Economics 1950

• Leonid Hurwicz (Economics 2007, Nobel Prize winner)(U Minnesota)

– Computer Science 1998
• Judea Pearl (UCLA)

• DAGS and Causality
– Economics 1921

• Phillip and Sewell Wright 

– Computer Science 1988
• Judea Pearl (UCLA)

• Tree methods 
– Economics 1963

• James N. Morgan (U of Michigan) 

– Statistics 1984
• Leo Brieman (Berkeley)

• Map Reduce
– Economics 1980

• Me (Northwestern)

– Computer Science 2004
• Jeffrey Dean and Sanjay Ghemawat (Google)
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Econometric History of  Machine 
Learning

• Bagging/Ensemble Methods
– Economics 1969

• Bates and Granger (UCSD)

– ML 1996
• Brieman (almost of course)

• Principal Components (PCA)
– Economics 1938

• Harold Hotelling

– ML
• Something they don’t take credit for

• Multi-armed Bandits
– Economics 1974 

• Rothschild 

– ML ~2005

• Neural Nets
– Economists early contributors to neural net/deep learning literature (late 1980’s early 1990’s)

• Hal White, Jeff Wooldridge, Ron Gallant, Max Stinchcombe 1990s

– Quantile neural nets, learning derivatives, guarantees for convergence, distributions etc. 
• Needed for counterfactuals when out of sample validation make no conceptual sense
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Computers made this possible

• Much of machine learning 
– rediscovers old statistical and econometric methods
– but making them blindingly fast and practicable

This is not damning with faint praise

• Many of the tools used today have been enabled purely by 
computers
– Bootstrap (1978)

• resampling

– SAS (1966, but really 1976)
• Huge datasets

– TSP (1966)
• UI

– Albeit command line

– Principled Model Selection (Lasso, L2-boosting, Double LASSO)
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Black Box Models

• Basis function Models
– Expand non-linear function into linear combination of 

large number of basis functions
• Number of basis functions > number of observations

– Difficult to interpret

• Regression Trees and Variants
– CART 

• Interpretable

– Random forests
• Uninterpretable

• Neural Nets
– Difficult if not impossible to interpret
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• Machine learning allows more complex 
models than economists are used to

• These models are spectacularly predictive

– Out of sample

• In part this has led to the
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Culture Wars

• Brieman(2000) Statistical Modeling: The Two Cultures 
• Shmueli(2010) To Explain or To Predict

– ML 
• How does the model predict out-of-sample
• Proofs of properties more-or-less useless
• Let data reveal structure
• Doesn’t care about guarantees or properties

– If I beat you out of sample every time
– Who cares if you are best in class on paper

– Statistics and Economics
• What is the underlying probability model
• How to infer structure
• How to predict using structure
• Can we determine causality
• Though economist and nearly as famous Economist Milton Friedman was 

clearly amenable to the ML camp
– I would add Sims as well.
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Some ML Contributions

Pointed out Bias Variance Tradeoff

• Bias falls with the complexity of the model

• Variance increases with complexity
• Constant models are simple

• Basis function regression models or neural nets complex

• Interpretability decreases with complexity or flexibility

• Yielding the

Interpretability Flexibility Tradeoff
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Some ML Contributions

• Value of Out of Sample Prediction
– Models evaluated on hold out sample
– When economists miss this we disastrously overfit

• Excellent in sample predictions R2 ~.9
• Corr(Out of Sample Actual, fitted)2~0

– Just fit noise

• Cross validation
– Variant on hold out sample

• Regularization
– Penalize complex models to reduce variance
– LASSO, Ridge and Elastic Net are good examples in Linear 

Regression Framework
• Work outside linear regression framework
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Some Things Economists Can 
Contribute

• Handling Causality

– Your perfect AI/ML model predicts 3% revenue 
decline next month

– No kudos from management for perfection

– Just two questions

WHY?
And

WHAT CAN WE DO ABOUT IT?
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Causality

• Generally want to identify variables endogenous and 
exogenous

• Split exogenous into actionable and not
• Economists have contributed lots of work on the 

identification side starting with Reirosol, Marschak and 
Hurwicz.

• More recently Chesher, Chernozhukov, Matzkin, 
Newey, White
– No idea how to do this at scale

• Without theory
• Not enough econometricians in the world to do a day’s work in a 

lifetime.
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The Causal Counterfactual Challenge

• These require causal and counterfactual 
models

• ML models not designed for these

• Problem 1

– Can’t do out-of-sample cross validation for 
counterfactuals

• Problem 2

– Best predictive models uninterpretable
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The Causal Counterfactual Challenge

• Height and weight highly correlated
– Dieting doesn’t make you shorter

• City altitude and average temperature highly negatively 
correlated
– Putting heaters in all homes
– Or global warming
– Won’t decrease altitude

• New models required
• Some effort here

– Athey, Imbens, Pearl, Jantzig, Schölkopf, Wager, White 
among others

– Lots of work needed
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Causality

Hal White addressed this at the end of his life

– Factor the joint characteristic function of Y and X 
given Z

• If factors into CF(Y|Z)CF(X|Z) then Y‖X given Z. 

• This requires a functional approach
– Some interesting results on detecting global non-causality

– No code

– No implementation

– Research program needs to be finished
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Interpretability

• A person doesn’t get a loan

• Reasonably asks why

• Reasonably asks what can I do to get approved

– Thinking credit score, paying quicker, lowering 
debt

• The answer: “Don’t know. The model says you 
don’t get the loan.” will not fly.

– Class action attorneys will have a field day
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An Approach to Interpretability

• Black-box predictive models

– Interpret by old fashioned comparative statics

• Intuition

– Black box model filters out the error

– If model is differentiable, take derivatives along 
coordinate axes

– If model is not differentiable

• Smooth model

• Take derivatives of smoothed model
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Framework

• Usual independent and identically 
distributed framework

• By some method learn 

• Prediction denoted by 
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Surrogate Models

• For the prediction matrix X, get the predictions

• Choose an interpretable model (linear model, decision tree, 
…).

• Train the interpretable model on the predictions as pseudo-
data 

• Surrogate represents fitted model. 
– Different from whether the fitted model is representative of 

reality.
– Explains model
– Not necessarily data

• Interpret or visualize surrogate model
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Local Surrogate Models

• Choose a reference point or point of interest(POI)
– For policy often the current state

• Simulate along single coordinate

• Fit a univariate local linear regression or spline
– Very much like LIME

• Repeat in each coordinate direction

• Interpret coefficients as gradient at POI
– Numerically

– Visually
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OF COURSE

All this 

is old fashioned 

first year 

micro

COMPARATIVE STATICS

10/21/2019 CESG 2019 22



Importance Measures

• Discussed only lest we get misled
– ML is fixated on the Feature Importance Question

• How important is a variable relative to others in reducing Loss

• Cannot answer the comparative statics question

– Shapley Values for Importance per feature
• Hot think in ML right now

• Answers an uninteresting question
– What is a fair method for determining which variables are the “most” 

important

• Cannot answer questions about changes in prediction for changes 
in the input
– “If I you to earn $300 more each month would you qualify for a loan.”
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Confidence Intervals

• ML relatively uninterested in these

• Confidence intervals available in some cases
– If predictor is random forest or tree

• Use Efron-Hastie-Stein infinitesimal jackknife approach

• Followed by Athey-Wager approximate normality result

– Likely for boosted regression but haven’t shown
• Zhou and Hooker (2018)

– Works on neural nets
• Chen and White (1999) but need extension to deep 

learned nets
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Confidence Intervals

• In the above Spline fit predictions with 
Generalized Least Squares 

– Covariances of predicted values as Weight Matrix

– Confidence intervals follow directly 

• Gives presumably more efficient derivative 
estimates

• Gives accurate variances for confidence 
intervals
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Time Series

• Almost all ML have underlying their 
approaches the independent and identically 
distributed model

– Useful in some experimental situations

– Problematic in most economic and business 
contexts
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Finance

• High frequency financial data

– Time series based

– Vast

• A lot of propriety solutions out there

• Known only within the companies

• Known completely only by a few

• Backcasting is a bad way to cross validate
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Some Examples: Supply Chain and 
Inventory Control

• Millions of products and sub products
• Many sell only a few in a year

– Called the intermittent demand problem
– Bane of spare parts inventory planning

• Boeing
• GM

– Bane of retail

• Vendor managers must have what’s needed on 
hand

• Vendor managers must not have too much on 
hand
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Supply Chain

• Classic Newsboy Problem

– Need demand predictive distribution (quantiles)

– But with only 2 sales in a year what to do?

– Learn across “similar” products

– What products are “similar” in this sense?

• How to “cluster” millions of products into sensible 
groups

• In real time

• As products enter and exit
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Clustering: A Lasso Idea
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• Regression model with fixed effects
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• Generalized LASSO

• Regularization penalty: sum of absolute 
differences of all pairs of fixed effects. 



Clustering

• Drives the differences of similar fixed effects to 
zero. 

• Natural Clusters

– Thus if a group of observations have the 
same fixed effect they are in the same 
category, segment or cluster. 

• Gertheiss and Tutz (2011)
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Issues Economists Need Address

• Vast data available today
– hundreds of billions of observations and millions of 

features
– A 100,000,000,000 x 1,500,000 dimensional 

tables/matrices common

• Allows analyses unthinkable 15 years ago
• Presents challenges to econometricians, computer 

scientists and statisticians
– How to get that matrix into a computer

• Can you get that matrix into a computer

– If so how do you interpret 1.5 million independent 
variables
• Can you interpret 1.5 million independent variables
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Operating At Scale

• Econometricians my generation

– Programmed their own stuff

• FORTRAN, C, APL, Assembly, Cobol
– The weak used BASIC

• This changed somewhere in the mid 1980’s 

– Programming became using SAS, TSP, SPSS, GAUSS

• Now it means STATA

– For a few MatLab and R
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This Is Insufficient

• Data won’t fit in memory.

– Sampling fails with low signal to noise ratios

• Standard methods fail with on-line real time data

• New PhD seem not to know the rudiments of CS

– Github for version control

– Basic Database management

– Choosing the right language for the problem

• The language should be a detail

– Parallel Processing
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Pet Peeve

• We typically spend a year or more teaching new PhD 
Economists rudimentary CS

• Their training usually allows them to grasp the statistical 
part very well.

• Except many do not know how to handle truly 
observational data

• In business unacceptable to answer: 
– Nature did the wrong experiment. Too bad. So sad.

• Their response 
– either you can help us or not.

• CS, Finance and Marketing filled gap 
– And economics got left behind
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Need for CS and Stat

• Need basic course in CS

– To say otherwise like saying theorists don’t need 
calculus

• Need serious training in Stat and Probability

– Unlike parametric models where one can specify 
optimal or best models

– No Free Lunch Theorem

• There is no universal best learner

• Different datasets require different approaches
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Some Newer Stuff: Double LASSO

• To avoid data mining problems
– Overfitting with very high numbers of uninteresting variables
– Incorrect inference

• Divide independent variables into two parts
– Focal Variables
– Uninteresting variables

• Like to omit the uninteresting variables
• But omitted variables problem if important and correlated with the focal variables

– The lasso finds the features with non-zero coefficients

• LASSO dependent and each focal variable on all the uninteresting variables
– Keep ones that are kept in any of LASSOs
– Using these and the focal features in subsequent OLS of the dependent 

variable requires no adjustment for the lasso 
• All tests are correct 
• In large enough samples
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Even Newer: SAFER LASSO

• In double LASSO
– You don’t need to do any LASSOs!

• Work with the dual of the LASSO
• Then turns out can work with the correlations of

– y with nuisance
– Focal with nuisance
– Keep any variable where the correlation is too Large!

• Ghaoui, Viallon, and Rabbani 2010
• Xiang, James and Ramadge (2012)
• Fercoq, Gramfort, and Salmon 2015

• Final regression of y on focal and kept nuisance variables
• Usual asymptotics hold! 
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The End
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Appendix

• The Lasso
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• Drives coefficients that should be zero to zero 
with high probability



Example of Black Box Models: Trees 
and Forests

• Partition the feature space into a set of mutually exclusive regions, 𝑅𝑚
• Fit a simple model in each

– Average for regressions
– 0/1 prediction for classification

• In essence, a piecewise constant approximation

E y|x ≈
m=1

M
cmI x∈Rm

– I x∈Rm indicator function for set Rm

• Choose M, cm and Rm to minimize


n=1

N
yn −

m=1

M
cmI xn∈Rm

2

• If we knew the regions 𝑅𝑚, this would be a straightforward dummy 
variable regression
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Trees

• But we don’t know the regions. 
– So find them by searching

• As stated, this problem is too hard to solve
– Typically need at least 5 observations in a region

– How many possible 5 observation regions are there with N 
observations with p (say 1000) independent variables?
• I would not know how to even approach the counting problem

• SO we solve a simpler one using simple regions defined 
recursively

• Brings us to the second ML method we will discuss
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CART

• For each independent variable
– split range into two regions, 

• Calculate mean and sum of squares of Y in each region.
• Split point minimizes the SSR of Y in the two regions

– (best fit)

• Choose the variable to split on as the one with the lowest SSR
• Both of these regions are split into two more regions, 
• this process is continued, until some stopping rule is applied. 

– The split points are called nodes
– The end points are called leaves

• Stop splitting a leaf if 
– all the values in the leaf are the same
– the number of branches exceeds some tuning parameter
– the tree gets too complex by some criteria

• Quit when no leaves can be split.
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Example: Pima Indian Diabetes Study

• The binary-valued variable tested positive for diabetes 

• The population lives near Phoenix, Arizona, USA. 

• Number of Instances: 768 

• Number of Attributes: 8 plus class 

1. Npreg- Number of times pregnant 

2. Glucose- Plasma glucose concentration a 2 hours in an oral glucose tolerance test 

3. Diastol- Diastolic blood pressure (mm Hg) 

4. TSF- Triceps skin fold thickness (mm) 

5. Insulin- 2-Hour serum insulin (mu U/ml) 

6. BMI- Body mass index (weight in kg/(height in m)^2) 

7. DPF- Diabetes pedigree function 

8. Age (years) 

9. Class variable (0 or 1)  

(class value 1 is interpreted as "tested positive for diabetes") 

Class Value Number of instances 

0 500 

1 268 
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Glucose <127.5

Age<28.5

0 (245/23) BMI<26.35

0 (39/2) Gl<99.5

0 45/10 DPF<.561

1/(9/25)

0 (17/4)

DPF<.2

Npreg≥ 1.5

Diasol≥ 67 1(2/9)

0 (28/12) 1 (3/9)

BMI<29.95

GL<145.5

GL<157.5

Insulin<14.5
0(35/6)

1 (4/10)0 (13/8)

1 (12/80)Age<30.5

Disol≥61 1 (18/47)

1 (0/10)BMI<41.8

1 (3/6)0 (27/7)

PIMA Indian Diabetes Study



Problems

• Overfitting
– Horrid out of sample accuracy

• What tuning parameters to use
– How complex a tree, how deep

• Huge literature on what to do
– Not very persuasive

• Legitimate researchers of good will using 
acceptable  criteria would come up with VERY 
different answers.
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Rescue 1:Boosting

• Train a tree
• Train a second tree 

– Probably, you’ll see error decrease.

• Continue m=2,..,M

• Stop when sufficient accuracy is achieved. 
• Questions: what to use for a loss function, what 

to use for the h, what to use for the η, stopping.

  0    oy h x r 

 0 1 1    r h x r 

 1r     m m mh x r  

 
1

ˆ    
m

m i ii
y h x
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Boosting Rarely Overfits

Repeat!!

Boosting Rarely 
Overfits
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Rescue 2: Random Forests

• Brieman (2001)
• Simple trees:

– if independent and unbiased
– average would be unbiased and have a small variance.

• Called ensemble learning
– averaging over many small models tends to give better out-of-

sample prediction than choosing a single complicated model.

• New insight for ML/Statistics
• Economists have done this for years

– We call it model averaging
• Primarily in macro modeling

– Bates and Granger (1969)
– Granger and Ramanathan (1984)
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Random Forest Details

• For b = 1 to B:

– Draw N bootstrap observations from the training data.

– Grow a single tree T(b) from the bootstrapped data

• repeat the following steps for each node, until minimum 
node size nmin

– Select m variables at random from the p variables.

– Pick the best variable/split-point among the m.

– Split the node into two daughter nodes. 

• The output of tree is average of the y in the regression case 
or a 0/1 for classification. 
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Random Forest Details

– To predict the outcome of a new x

• Run x through each tree to get the prediction 
for that tree.

• Average the predictions

TA!DA!
You are DONE
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